
 Introduction to RPC

Microsoft® Remote Procedure Call (RPC) for the C and C++ programming languages is designed to
help meet the needs of developers working on the next generation of software for the MS-DOS®,
Microsoft Windows®, and Microsoft Windows NT™ family of operating systems.

Microsoft RPC represents the convergence of three powerful programming models: the familiar model
of developing C applications by writing procedures and libraries; the model that uses powerful
computers as network servers to perform specific tasks for their clients; and the client-server model, in
which the client usually manages the user interface while the server handles data storage, queries, and
manipulation.

This section explains the convergence of these three powerful models in distributed computing, which
delivers the ability to share computational power among the computers on a network. This section also
describes the industry standard for RPC and provides an overview of Microsoft RPC components and
operation.

 The Programming Model

In the early days of computing, each program was written as a large monolithic chunk, filled with goto
statements. Each program had to manage its own input and output to different hardware devices. As
programming matured as a discipline, this monolithic code was organized into procedures, and
commonly used procedures were packed in libraries for sharing and reuse. Today's RPC is the next
step in the development of procedure libraries. Now procedure libraries can run on other, remote,
computers.

{ewc msdncd, EWGraphic, group10519 0 /a "SDK_a06.bmp"}

The C programming language supports procedure-oriented programming. In C, the main procedure
relates to all other procedures as black boxes. The main procedure cannot find out how procedures A,
B, and X, for example, do their work. The main procedure only calls another procedure; it has no
information about how that procedure is implemented.

{ewc msdncd, EWGraphic, group10519 1 /a "SDK_a08.bmp"}

Procedure-oriented programming languages provide simple mechanisms for specifying and writing
procedures. For example, the ANSI standard C function prototype is a construct used to specify the
name of a procedure, the type of the result it returns (if any), and the number, sequence, and type of its
parameters. Using the function prototype is a formal way to specify an interface between procedures.

In this guide, the term procedure is synonymous with the terms subroutine and subprocedure and
refers to any sequence of computer instructions that accomplishes a functional purpose. In this
documentation, the term function refers to a procedure that returns a value.

Related procedures are often grouped in libraries. For example, a procedure library can include a set of
procedures that perform tasks common to a single domain, such as floating-point math operations,
formatted input and output, and network functions.

The procedure library is another level of packaging that makes it easy to develop applications.
Procedure libraries can be shared among many applications. Libraries developed in C are usually
accompanied by header files. Each program that uses the library is compiled with the header files that
formally define the interface to the library's procedures.

The Microsoft RPC tools represent a general approach that allows procedure libraries written in C to
run on other computers. In fact, an application can link with libraries implemented using RPC without
indicating to the user that it is using RPC.

 The Client-Server Model

Client-server architecture is an effective and popular design for distributed applications. In the client-
server model, an application is split into two parts: a front-end client that presents information to the
user, and a back-end server that stores, retrieves, and manipulates data and generally handles the
bulk of the computing tasks for the client. In this model, the server is usually a more powerful computer
than the client and serves as a central data store for many client computers, making the system easy
to administer.

Typical examples of client-server applications include shared databases, remote file servers, and
remote printer servers. The following figure illustrates the client-server model.

{ewc msdncd, EWGraphic, group10519 2 /a "SDK_a04.bmp"}

Network systems support the development of client-server applications through an interprocess
communication (IPC) facility that allows the client and server to communicate and coordinate their
work. You can use NetBIOS NCBs (network control blocks), mailslots, or named pipes to transfer
information between two or more computers.

For example, the client can use an IPC mechanism to send an opcode and data to the server
requesting that a particular procedure be called. The server receives and decodes the request, then
calls the appropriate procedure. The server performs all the computations needed to satisfy the
request, then returns the result to the client. Client-server applications are usually designed to minimize
the amount of data transmitted over the network.

Using NetBIOS, mailslots, or named pipes to implement interprocess communication means learning
specific details relating to network communication. Each application must manage the network-specific
conditions. To write this network-specific level of code:

· You must learn details relating to network communications and how to handle error conditions.
· When the network includes different kinds of computers, you must translate data to different internal

formats.
· You must support communications using multiple transport interfaces.

In addition to all the possible errors that can occur on a single computer, the network has its own error
conditions. For example, a connection can be lost, a server can disappear from the network, the
network security service can deny access to system resources, and users can compete for and tie up
system resources. Because the state of the network is always changing, an application can fail in new
and interesting ways that are difficult to reproduce. For these reasons, each application must rigorously
handle all possible error conditions.

When you write a client-server application, you must provide the layer of code that manages network
communication. The advantage of using Microsoft RPC is that the RPC tools provide this layer for you.
RPC nearly eliminates the need to write network-specific code, making it easier to develop distributed
applications.

Using the remote procedure call model, RPC tools manage many of the details relating to network
protocols and communication. This allows you to focus on the details of the application rather than the
details of the network.

 The Compute-Server Model

Networking software for personal computers has been built on the model of a powerful computer, the
server, that provides specialized services to workstations, or client computers. In this model, servers
are designated as file servers, print servers, or communications (modem) servers, depending on
whether they are assigned to file sharing or are connected to printers or modems.

RPC represents an evolutionary step in this model. In addition to its traditional roles, a server using
RPC can be designated as a computational server, or compute server. In this role, the server shares its
own computational power with other computers on the network. A workstation can ask the compute
server to perform computations and return the results. The client not only uses files and printers, it also
uses the central processing units of other computers.

 The OSF Standards for RPC

The design and technology behind Microsoft RPC is just one part of a complete environment for
distributed computing defined by the Open Software Foundation (OSF), a consortium of companies
formed to define that environment. The OSF requests proposals for standards, accepts comments on
the proposals, votes on whether to accept the standards, and promulgates them. The components of
the OSF distributed computing environment (DCE) are shown in the following figure.

{ewc msdncd, EWGraphic, group10519 3 /a "SDK_a05.bmp"}

In selecting the RPC standard, the OSF cited the following rationale:

· The three most important properties of a remote procedure call are simplicity, transparency, and
performance.

· The selected RPC model adheres to the local procedure model as closely as possible. This
requirement minimizes the amount of time developers spend learning the new environment.

· The selected RPC model permits interoperability; its core protocol is well defined and can't be
modified by the user.

· The selected RPC model allows applications to remain independent of the transport and protocol on
which they run, while supporting a variety of transports and protocols.

· The selected RPC model can be easily integrated with other components of the DCE.

The OSF DCE remote procedure call standards define not only the overall approach but the language
and the specific protocols to use for communications between computers, down to the format of data
as it is transmitted over the network.

Microsoft's implementation of RPC is compatible with the OSF standard with minor differences. Client
or server applications written using Microsoft RPC will interoperate with any DCE RPC client or server
whose run-time libraries run over a supported protocol. For a list of supported protocols, see Building
RPC Applications.

 Microsoft RPC Components

The Microsoft RPC product includes the following major components:

· MIDL compiler
· Run-time libraries and header files
· Transport interface modules
· Name service provider
· Endpoint supply service

In the RPC model, you can formally specify an interface to the remote procedures using a language
designed for this purpose. This language is called the Interface Definition Language, or IDL. The
Microsoft implementation of this language is called the Microsoft Interface Definition Language, or
MIDL.

After you create an interface, you must pass it through the MIDL compiler. The MIDL compiler
generates the stubs that translate local procedure calls into remote procedure calls. Stubs are
placeholder functions that make the calls to the run-time library functions that manage the remote
procedure call. The advantage of this approach is that the network becomes almost completely
transparent to your distributed application. Your client program calls what appear to be local
procedures; the work of turning them into remote calls is done for you automatically. All the code that
translates data, accesses the network, and retrieves results is generated for you by the MIDL compiler,
and is invisible to your application.

 How RPC Works

The RPC tools make it look to users as though a client directly calls a procedure located in a remote
server program. The client and server each have their own address spaces; that is, each has its own
memory resource that is allocated to data used by the procedure. The following figure illustrates the
RPC architecture.

{ewc msdncd, EWGraphic, group10519 4 /a "SDK_a11.bmp"}

As the illustration shows, the client application calls a local stub procedure instead of the actual code
implementing the procedure. Stubs are compiled and linked with the client application. Instead of
containing the actual code that implements the remote procedure, the client stub code:

· Retrieves the required parameters from the client address space.
· Translates the parameters as needed into a standard network data representation (NDR) format for

transmission over the network.
· Calls functions in the RPC client run-time library to send the request and its parameters to the

server.

The server performs the following steps to call the remote procedure:

· The server RPC run-time library functions accept the request and call the server stub procedure.
· The server stub retrieves the parameters from the network buffer and converts them from the

network transmission format to the format the server needs.
· The server stub calls the actual procedure on the server.

The remote procedure runs, perhaps generating output parameters and a return value. When the
remote procedure is complete, a similar sequence of steps returns the data to the client:

· The remote procedure returns its data to the server stub.
· The server stub converts output parameters to the format required for transmission over the network

and returns them to the RPC run-time library functions.
· The server RPC run-time library functions transmit the data on the network to the client computer.

The client completes the process by accepting the data over the network and returning it to the calling
function:

· The client RPC run-time library receives the remote-procedure return values and returns them to the
client stub.

· The client stub converts the data from its network data representation to the format used by the
client computer. The stub writes data into the client memory and returns the result to the calling
program on the client.

· The calling procedure continues as if the procedure had been called on the same computer.

For Microsoft Windows and Microsoft Windows NT, the run-time libraries are provided in two parts: an
import library, which is linked with the application; and the RPC run-time library, which is implemented
as a dynamic-link library (DLL).

The server application contains calls to the server run-time library functions that register the server's
interface and allow the server to accept remote procedure calls. The server application also contains
the application-specific remote procedures that are called by the client applications.

 Summary: RPC Extends Client-Server Computing

Microsoft RPC is an evolution of the procedural programming model familiar to all developers. It also
represents a new category of specialized server and extends the model of client-server computing.

Microsoft RPC is a tool developers use to leverage the power of the single personal computer by
increasing its computational capacity far beyond its own resources. With RPC, you can harness all of
the CPU horsepower available on the network.

Microsoft RPC allows a process running in one address space to make a procedure call that will be
executed in another address space. The call looks like a standard local procedure call but is actually
made to a stub that interacts with the run-time library and performs all the steps necessary to execute
the call in the remote address space.

As a tool for creating distributed applications, Microsoft RPC provides the following benefits:

· The RPC programming model is already familiar. You can easily turn functions into remote
procedures, which simplifies the development and test cycles.

· RPC hides many details of the network interface from the developer. You don't have to understand
specific network functions or low-level network protocols to implement powerful distributed
applications.

· RPC solves the data-translation problems that crop up in heterogeneous networks; individual
applications can ignore this problem.

· The RPC approach is scalable. As a network grows, applications can be distributed to more than
one computer on the network.

· The RPC model is an industry standard. The Microsoft implementation is compatible with both client
and server.

 About This Guide

This guide explains the Microsoft RPC programming model, standards, and tools in detail.

A Tutorial Introduction provides an overview of the development of a small distributed application. This
example demonstrates all the steps in developing a distributed application, the tools you use, and the
components that make up the executable programs.

The following topics deal with the underlying mechanisms that pass data from the calling application to
the remote procedure. Data and Language Features demonstrates the use of standard data types.
Arrays and Pointers explains what happens when pointers are used as parameters. Binding and
Handles describes the binding handle, the data structure that allows the developer to bind the calling
application to the remote procedure.

Memory Management offers ideas about how to manage memory on the client and server when
performing remote procedure calls. Using Encoding Services describes the methods for encoding or
decoding data.

The IDL and ACF Files and Run-time RPC Functions describe the Microsoft RPC tools: the Microsoft
Interface Definition Language and compiler and the run-time libraries. "The IDL and ACF Files"
describes the IDL and ACF files used to specify the interface to the remote procedure call and the
MIDL compiler switches that control how these files are processed. "Run-time RPC Functions"
describes the functions in the run-time library that applications use to manage their own client and
server binding.

Building RPC Applications provides examples of how to build distributed applications on several
operating system platforms.

The following topics present the material related to RPC in alphabetical order. The MIDL Reference
contains a reference for each keyword in MIDL and the ACF, as well as for important language
productions and concepts. The MIDL Command-Line Reference alphabetizes information on each
command-line switch and switch option recognized by the MIDL compiler. RPC Data Types and
Structures defines the constants, data types, and data structures used by the RPC functions. The
Function Reference lists those functions.

Installing RPC discusses installing RPC in the MS-DOS, Microsoft Windows 3.x, and Microsoft
Windows NT environments.

Also included are Error Codes, and MIDL Compiler Errors and Warnings.

This guide offers general information about how to use the Microsoft RPC tools to develop a distributed
application. For information about Microsoft Windows, see the Microsoft Windows software
development kit. For information about the Microsoft Windows NT operating system, see the Microsoft
Windows NT operating system software development kit. For information about Microsoft C/C++
version 7.0, see your C programming documentation.

 A Tutorial Introduction

This introduction to RPC begins with a very simple application and focuses on the differences between
stand-alone C programs and distributed applications that use RPC. This sample application is not
meant to be an exhaustive demonstration of the capabilities of RPC. Succeeding topics explore the rich
features of the Microsoft Interface Definition Language (MIDL) and offer more detailed examples. This
introductory program provides a working example that quickly demonstrates distributed applications.

The application described in this tutorial prints the words "Hello, world." The client computer makes a
remote procedure call to the server and the server prints the words to its standard output.

This distributed application requires two distinct executable programs ¾ one for the client and one for
the server. Like other C programs, these client and server executables will be based on C-language
source files written by the developer. Unlike most C programs, however, some of the C-language
source files are automatically generated by an RPC tool: the MIDL compiler.

To make this a distributed application, you will create a file that includes a function prototype for the
remote procedure. The prototype is associated with attributes that describe how the data associated
with the remote procedure is to be transmitted over the network. Attributes, data, and function
prototypes describe the interface between the client and server. The interface is associated with a
unique identifier that distinguishes this interface from all others.

You will create a file that declares a variable, the binding handle, that the client and server use to
represent their logical connection through this interface.

You will also write client and server main programs that call RPC run-time functions to establish the
interface.

Don't worry if you don't understand every attribute, file, and concept mentioned in this section.
Successive sections discuss all the RPC components and concepts in greater detail. The purpose of
this section is to provide a quick overview of the entire territory. As you build the application, you will
see all the files and all the procedural steps for even the most complex distributed application.

 The Client Application

A stand-alone application that can be executed on a single computer consists of a call to a single
function, called HelloProc in the following example:

/* file: helloc.c (stand-alone) */

void HelloProc(unsigned char * pszString);

void main(void)
{

unsigned char * pszString = "Hello, world";

 HelloProc(pszString);
}

The HelloProc function calls the C library function printf to display the text "Hello, world":

/* file: hellop.c */

#include <stdio.h>

void HelloProc(unsigned char * pszString)
{
 printf("%s\n", pszString);
}

HelloProc is defined in its own source file, HELLOP.C, so it can be compiled and linked with either a
stand-alone application or the distributed application.

 The Interface Definition Language File

The first step in creating a distributed application is to provide a way for the client and the server to find
each other and communicate over the network by defining a formal interface using the Microsoft
Interface Definition Language (MIDL). The interface consists of data types, function prototypes,
attributes, and interface information.

Interface information is formally defined in its own file, which takes the extension IDL. For convenience,
this example uses the same name, HELLO, for both the IDL file and the C-language file. You can also
use separate names for the two files:

/* file: hello.idl */

[uuid (6B29FC40-CA47-1067-B31D-00DD010662DA),
 version(1.0)
]
interface hello
{
void HelloProc([in, string] unsigned char * pszString);
}

The IDL file's constructs differ from constructs in C-language source files, but they are easy to use
once you become familiar with them. The information provided in the IDL file replaces an enormous
amount of network programming and is virtually all you need to coordinate the client and server
applications.

The IDL file has two parts: the interface header and the interface body. The interface header includes
information about the interface as a whole, such as its identifier and version number. It consists of the
material enclosed in square brackets and ends with the keyword interface and the interface name. The
interface header in this example includes the keywords uuid, version, and interface. The interface
body contains data and function prototypes. The interface body is enclosed in braces.

The UUID is the universally unique identifier, a string of five groups of hexadecimal digits separated by
hyphens. The five groups contain eight digits, four digits, four digits, four digits, and 12 digits,
respectively. For example, "6B29FC40-CA47-1067-B31D-00DD010662DA" is a valid UUID. In the
Microsoft Windows NT environment the UUID is also known as a GUID, or globally unique identifier.
The interface UUID is generated from a utility program, uuidgen, that generates unique identifiers in
the required format.

The interface body contains C-like data-type definitions and function prototypes that are augmented
with attributes. Attributes appear in square brackets. The attributes describe how the data is to be
transmitted over the network.

The interface body in this sample application contains the function prototype HelloProc. The single
argument, pszString, is designated as an in parameter, which means it is passed from the client to the
server. Parameters can also be designated as out, which are passed from the server to the client, or
in, out, which are passed in both directions. These attributes tell the run-time libraries how to pass
data between the client and server. The string attribute indicates that the parameter is a special case
of character array.

Compile the IDL file using the MIDL compiler. The MIDL compiler generates C-language client and
server stub files and a header file. The header file produced from the interface definition file HELLO.IDL
is named, by default, HELLO.H. The generated header file includes the header file RPC.H and function
prototypes from the IDL file. The header file RPC.H defines data and functions used by the generated
header file:

/* file: hello.h (fragment) */

#include <rpc.h>

void HelloProc(unsigned char * pszString);

Rather than duplicate these function prototypes, the client source should include the header file that is
generated from the IDL file:

/* file: helloc.c (distributed version) */

#include <stdio.h>
#include "hello.h" // header file generated by the MIDL compiler

void main(void)
{
 char * pszString = "Hello, world";
 ...
 HelloProc(pszString);
 ...
}

The IDL file defines the network contract between the client and server. The network contract is a firm
agreement about the sequence, types, and sizes of data that are to be passed over the network.

 The Application Configuration File

As specified by the distributed computing environment (DCE) standard, you must also define an
application configuration file, or ACF, that is processed by the MIDL compiler with the IDL file. The ACF
contains RPC data and attributes that do not relate to transmitted data.

For example, a data object called the binding handle represents the connection between the client
application and the server application. The client calls run-time functions to establish the valid binding
handle; the handle can then be used by the run-time functions whenever the client application calls a
remote procedure. The binding handle is not part of the function prototype and is not transmitted over
the network, so it is defined in the ACF.

The ACF for the "Hello, world" program appears as follows:

/* file: hello.acf */

[implicit_handle(handle_t hello_IfHandle)
]interface hello
{
}

The format of the ACF is similar to that of the IDL file. Attributes appear in square brackets, followed by
the keyword interface and the interface name. The interface name specified in the ACF must match
the interface name specified in the IDL file.

The ACF contains the attribute implicit_handle to indicate that the handle is a global variable that is
accessed by the functions in the run-time library. The implicit_handle keyword is associated with the
handle type and the handle name; in this example, the handle is of the MIDL data type handle_t. The
handle name hello_IfHandle specified in the ACF is defined in the generated header file HELLO.H. This
handle will be used in calls to the client run-time library functions.

 Adding Functions RPC Requires

The RPC run-time libraries often call user-supplied functions. This approach allows the MIDL compiler
to generate C code automatically while still allowing you to control how operations themselves are
performed.

The user-supplied functions include functions with fixed names and names that are based on IDL-file
attributes or data types. For example, whenever the run-time libraries allocate or free memory, they call
the user-supplied functions midl_user_allocate and midl_user_free.

The C run-time libraries in the "Hello, world" example call the memory-allocation function
midl_user_allocate and the memory-free function midl_user_free. This sample application doesn't
have complex memory-management requirements, so the functions are simply implemented in terms
of the C-library functions malloc and free:

void __RPC_FAR * __RPC_USER midl_user_allocate(size_t len)
{
 return(malloc(len));
}

void __RPC_USER midl_user_free(void __RPC_FAR * ptr)
{
 free(ptr);
}

 Calling the Client Functions

RPC supports two types of binding: automatic binding and application-managed binding. When you
use automatic binding, you don't have to define a binding handle or make any calls to client run-time
functions to validate the binding handle. When your application manages the handle, it must make
these definitions and calls. Binding-Handle Types, explains these types in more detail.

In this tutorial, the client manages its connection to the server. The client must call run-time functions to
bind to the server before calling the remote procedure and must unbind after all remote procedure calls
are complete. The structure of a client application that manages its own connection to the server is
described in the following code fragment. The remote procedure calls are sandwiched between calls to
these client run-time library functions:

/* file: helloc.c (fragment) */

#include "hello.h" // header file generated by the MIDL compiler

void main(void)
{
 RpcStringBindingCompose(...);
 RpcBindingFromStringBinding(...);

 HelloProc(pszString); // make remote calls

 RpcStringFree(...);
 RpcBindingFree(...);
}

The first two run-time API calls establish the valid handle to the server. This handle is then used to
make the remote procedure call. The final two run-time API calls clean up.

The Microsoft RPC functions use data structures that represent the binding, interface, protocol
sequence, and endpoint. The binding is the connection between the client and server; the interface is
the collection of data types and procedures made available by the server; the protocol sequence is the
underlying network transport to be used for network data transfer, and the endpoint is a network name
that is specific to the protocol sequence. This example uses named pipes as the protocol sequence,
and the endpoint is named \pipe\hello.

In the following code illustration, the RpcStringBindingCompose function combines the protocol
sequence, the network address (server name), the endpoint (pipe name), and other string elements
into the form required by the next function, RpcBindingFromStringBinding.
RpcStringBindingCompose also allocates memory for a character string that is large enough to hold
the data. RpcBindingFromStringBinding uses the string to generate a handle that represents the
binding between the client and the server.

After the remote procedure calls are complete, RpcStringFree frees memory that was allocated by
RpcStringBindingCompose for the string-binding data structure. RpcBindingFree releases the
handle.

The complete client application, with some code added to handle command-line input, appears as
follows:

#include <stdlib.h>
#include <stdio.h>
#include <ctype.h>
#include "hello.h" // header file generated by the MIDL compiler

void Usage(char * pszProgramName)

{
 fprintf(stderr, "Usage: %s\n", pszProgramName);
 fprintf(stderr, " -p protocol_sequence\n");
 fprintf(stderr, " -n network_address\n");
 fprintf(stderr, " -e endpoint\n");
 fprintf(stderr, " -o options\n");
 fprintf(stderr, " -s string\n");
 exit(1);
}

void main(int argc, char **argv)
{
 RPC_STATUS status;
 unsigned char * pszUuid = NULL;
 unsigned char * pszProtocolSequence = "ncacn_np";
 unsigned char * pszNetworkAddress = NULL;
 unsigned char * pszEndpoint = "\\pipe\\hello";
 unsigned char * pszOptions = NULL;
 unsigned char * pszStringBinding = NULL;
 unsigned char * pszString = "Hello, world";
 unsigned long ulCode;
 int i;

 /* Allow the user to override settings with command line switches */
 for (i = 1; i < argc; i++) {
 if ((*argv[i] == '-') || (*argv[i] == '/')) {

 switch (tolower(*(argv[i]+1))) {
 case 'p': // protocol sequence
 pszProtocolSequence = argv[++i];
 break;
 case 'n': // network address
 pszNetworkAddress = argv[++i];
 break;
 case 'e': // endpoint
 pszEndpoint = argv[++i];
 break;
 case 'o': // options
 pszOptions = argv[++i];
 break;
 case 's': // string
 pszString = argv[++i];
 break;
 case 'h':
 case '?':
 default:
 Usage(argv[0]);
 }
 }
 else
 Usage(argv[0]);
}

 /* Use a convenience function to concatenate the elements of */
 /* the string binding into the proper sequence */

 status = RpcStringBindingCompose(
 pszUuid,
 pszProtocolSequence,
 pszNetworkAddress,
 pszEndpoint,
 pszOptions,
 &pszStringBinding);

 printf("RpcStringBindingCompose returned 0x%x\n", status);
 printf("pszStringBinding = %s\n", pszStringBinding);
 if (status)
 exit(status);

 /* Set the binding handle that will */
 /* be used to bind to the server */
 status = RpcBindingFromStringBinding(

 pszStringBinding,
 &hello_IfHandle);

 printf("RpcBindingFromStringBinding returned 0x%x\n", status);
 if (status)

exit(status);

 printf("Calling the remote procedure 'HelloProc'\n");
 printf("Print the string '%s' on the server\n", pszString);

 RpcTryExcept {
 HelloProc(pszString); // make call with user message
 printf("Calling the remote procedure 'Shutdown'\n");
 Shutdown(); // shut down the server side
 }
 RpcExcept(1) {
 ulCode = RpcExceptionCode();
 printf("Runtime reported exception 0x%lx \n", ulCode);
 }
 RpcEndExcept

 /* The calls to the remote procedures are complete. */
 /* Free the string and the binding handle */
 status = RpcStringFree(&pszStringBinding);
 printf("RpcStringFree returned 0x%x\n", status);
 if (status) {
 exit(status);
 }

 status = RpcBindingFree(&hello_IfHandle);
 printf("RpcBindingFree returned 0x%x\n", status);
 if (status)
 exit(status);

 exit(0);

}

 Building the Client Application

A distributed application requires that you take an extra preliminary step before compiling and linking
the C source code: compiling the IDL and ACF files using the MIDL compiler.

You must take care to identify the operating system that will build the application, the operating
system(s) that will run the client and server applications, and the network protocol sequence that will be
used. These choices determine the versions of the MIDL and C compilers to use, the versions of
header files to include in your applications, and the versions of the RPC run-time libraries to link with
your applications.

For simplicity, we will assume that this first example will use the same operating system ¾ Microsoft
Windows NT ¾ for the build, client, and server platforms, and that the example will use named pipes as
the protocol sequence.

 MIDL Compilation

The IDL file HELLO.IDL and the application configuration file HELLO.ACF are compiled using the MIDL
compiler:

makefile fragment
midl hello.idl

{ewc msdncd, EWGraphic, group10520 0 /a "SDK_a13.bmp"}

The MIDL compiler generates the header file HELLO.H and the C-language client stub file
HELLO_C.C. (The MIDL compiler also produces the server stub file HELLO_S.C, but ignore this file for
now.)

 C Compilation

The rest of the development process is familiar: you compile the C-language sources and link them
with the RPC run-time libraries for the target platform and any other libraries required by the
application. The following commands compile the sample client application:

makefile fragment
CC refers to the C compiler
CFLAGS refers to C compiler switches
CVARS refers to variables that control #ifdef directives
#
$(CC) $(CFLAGS) $(CVARS) helloc.c
$(CC) $(CFLAGS) $(CVARS) hello_c.c

Note The compiler commands provided in this topic and in the sample applications are used with a
specific software configuration that consists of the nmake utility, the Microsoft C compiler, and the
Microsoft Windows NT operating system. See your compiler documentation for specific information.

 Linking

The client sources are then linked with the client run-time library, the network data representation
library, and the standard C run-time libraries for this platform. For a list of libraries for all platforms, see
Building RPC Applications.

makefile fragment
LINK refers to the linker
CONFLAGS refers to flags for console apps
CONLIBS refers to libraries for console apps
#
client.exe : helloc.obj hello_c.obj
$(LINK) $(CONFLAGS) -out:client.exe helloc.obj hello_c.obj \
 $(CONLIBS) rpcrt4.lib

Note The linker commands and arguments may vary for your computer configuration. See your
compiler documentation for more information.

 Client Build Summary

The following fragment from the nmake utility MAKEFILE shows dependencies among the files that are
used to build the client application.

makefile fragment

client.exe : helloc.obj hello_c.obj
 ...
hello.h hello_c.c : hello.idl hello.acf
 ...
helloc.obj : helloc.c hello.h
 ...
hello_c.obj : hello_c.c hello.h
 ...

The preceding example used the default filenames that are produced by the MIDL compiler. The
default name for the client stub file is formed from the name of the IDL file (without extension) and the
characters _C.C. If the name (without extension) is longer than six characters, some file systems may
not accept the stub file name.

The stub files do not have to use the default names. You can customize the names of the client stub
using the MIDL compiler switch /cstub:

midl hello.idl -cstub mystub.c

If you specify your own filenames on the MIDL compiler command line, you should use these names in
subsequent compile and link commands.

 The Server Application

The server side of the distributed application informs the system that its services are available, then
waits for client requests.

Depending on the size of your application and your coding standards, you can choose to implement the
remote procedures in one or more separate files. In this example, the main routine appears in the
source file HELLOS.C, and the remote procedure is provided in a separate file named HELLOP.C.

The benefit to organizing the remote procedures in separate filesis that the procedures can be linked
with a stand-alone program to debug the code before it is converted to a distributed application. After
the program works as a stand-alone program, the same source files can be compiled and linked with
the server application.

Like the client-application source file, the server-application source file should include the HELLO.H
header file to obtain definitions for the RPC data and functions and for the interface-specific data and
functions.

 Calling the Server Functions

In the following example, the server calls the functions RpcServerUseProtseqEp and
RpcServerRegisterIf to make binding information available to the client. The server then calls the
RpcServerListen function to indicate that it is waiting for client requests:

/* file: hellos.c (fragment) */

#include "hello.h" // header file generated by the MIDL compiler

void main(void)
{
 RpcServerUseProtseqEp(...);
 RpcServerRegisterIf(...);
 RpcServerListen(...);
}

RpcServerUseProtseqEp identifies the server endpoint and the network protocol sequence.
RpcServerRegisterIf registers the interface, and RpcServerListen instructs the server to start
listening for client requests. The endpoint, interface, and other data structures related to binding are
described in more detail in Binding and Handles.

The server application must also include two functions called by the server stubs, midl_user_allocate
and midl_user_free. These functions allocate and free memory on the server when a remote
procedure must pass parameters to the server. In the following example, midl_user_allocate and
midl_user_free are implemented using the C-library functions malloc and free:

void __RPC_FAR * __RPC_API midl_user_allocate(size_t len)
{
 return(malloc(len));
}

void __RPC_API midl_user_free(void __RPC_FAR * ptr)
{
 free(ptr);
}

The complete code for HELLOS.C appears as follows:

#include <stdlib.h>
#include <stdio.h>
#include <ctype.h>
#include "hello.h" // header file generated by the MIDL compiler

#define PURPOSE \
"This Microsoft RPC sample program demonstrates\n\
the use of the [string] attribute. For more information\n\
about the attributes and the RPC Functions, see the\n\
RPC Programmer's Guide and Reference.\n\n"

void Usage(char * pszProgramName)
{
 fprintf(stderr, "%s", PURPOSE);
 fprintf(stderr, "Usage: %s\n", pszProgramName);

 fprintf(stderr, " -p protocol_sequence\n");
 fprintf(stderr, " -e endpoint\n");
 fprintf(stderr, " -m maxcalls\n");
 fprintf(stderr, " -n mincalls\n");
 fprintf(stderr, " -f flag_wait_op\n");
 exit(1);
}

void main(int argc, char * argv[])
{
 RPC_STATUS status;
 unsigned char * pszProtocolSequence = "ncacn_np";
 unsigned char * pszSecurity = NULL;
 unsigned char * pszEndpoint = "\\pipe\\hello";
 unsigned int cMinCalls = 1;
 unsigned int cMaxCalls = 20;
 unsigned int fDontWait = FALSE;
 int i;

/* Allow the user to override settings with command line switches */
for (i = 1; i < argc; i++) {
 if ((*argv[i] == '-') || (*argv[i] == '/')) {
 switch (tolower(*(argv[i]+1))) {
 case 'p': // protocol sequence
 pszProtocolSequence = argv[++i];
 break;
 case 'e': // endpoint
 pszEndpoint = argv[++i];
 break;
 case 'm': // max concurrent calls
 cMaxCalls = (unsigned int) atoi(argv[++i]);
 break;
 case 'n': // min concurrent calls
 cMinCalls = (unsigned int) atoi(argv[++i]);
 break;
 case 'f': // flag
 fDontWait = (unsigned int) atoi(argv[++i]);
 break;
 case 'h':
 case '?':
 default:
 Usage(argv[0]);
 }
}
else
 Usage(argv[0]);
}

 status = RpcServerUseProtseqEp(
 pszProtocolSequence,
 cMaxCalls,
 pszEndpoint,
 pszSecurity); // Security descriptor

 printf("RpcServerUseProtseqEp returned 0x%x\n", status);
 if (status)

exit(status);

 status = RpcServerRegisterIf(
 hello_ServerIfHandle,
 NULL, // MgrTypeUuid
 NULL); // MgrEpv; null means use default

 printf("RpcServerRegisterIf returned 0x%x\n", status);
 if (status)

exit(status);

 printf("Calling RpcServerListen\n");
 status = RpcServerListen(

 cMinCalls,
 cMaxCalls,
 fDontWait);

 printf("RpcServerListen returned: 0x%x\n", status);
 if (status)

exit(status);

 if (fDontWait) {
printf("Calling RpcMgmtWaitServerListen\n");
status = RpcMgmtWaitServerListen(); // wait operation
printf("RpcMgmtWaitServerListen returned: 0x%x\n", status);

if (status)
 exit(status);

 }

}

/* MIDL allocate and free */

void __RPC_FAR * __RPC_API midl_user_allocate(size_t len)
{
 return(malloc(len));
}

void __RPC_API midl_user_free(void __RPC_FAR * ptr)
{
 free(ptr);
}

 Building the Server Application

Building the server application is very similar to building the client application.

MIDL Compilation
Assume that the server stub source file was generated with the client stub file and the header file. The
MIDL compiler produces all three of these files at the same time. In the following example, it's not
necessary to call the MIDL compiler twice. The MIDL compiler command line appears as follows:

makefile fragment
midl hello.idl

C Compilation
The C source files that contain the server RPC function calls and the remote procedures are compiled
with the stub source file generated by the MIDL compiler:

$(CC) $(CFLAGS) $(CVARS) hellos.c
$(CC) $(CFLAGS) $(CVARS) hellop.c
$(CC) $(CFLAGS) $(CVARS) hello_s.c

Note The compiler commands provided in this topic and in the sample applications are used with a
specific software configuration that consists of the nmake utility, the Microsoft C compiler, and the
Microsoft Windows NT operating system. See your compiler documentation for specific information.

Linking
Once the C source files are compiled, the server sources are linked with the server run-time libraries
and the standard C run-time libraries for the specified platform, protocol sequence (named pipes), and
memory model:

makefile fragment
LINK refers to the linker
CONFLAGS refers to flags for console apps
CONLIBS refers to libraries for console apps
#
server.exe : hellos.obj hellop.obj hello_s.obj
$(LINK) $(CONFLAGS) -out:server.exe hellos.obj hellop.obj
 hello_s.obj $(CONLIBS) rpcrt4.lib

Note The linker commands and arguments may vary for your computer configuration. See your
compiler documentation for more information.

 Server Build Summary

The following fragment from the nmake utility MAKEFILE shows dependencies among the files used to
build the server application. The executable relies on the server source and the server stub files. All
server sources rely on the header file HELLO.H:

makefile fragment

server.exe : hellos.obj hellop.obj hello_s.obj
 ...
hello.h hello_s.c : hello.idl hello.acf
 ...
hellos.obj : hellos.c hello.h
 ...
hellop.obj : hellop.c hello.h
 ...
hello_s.obj : hello_s.c hello.h
 ...

 Stopping the Server Application

A robust server application should stop listening for clients and remove the interface from the registry
shut down gracefully. The two core server functions that accomplish these goals are
RpcMgmtStopServerListening and RpcServerUnregisterIf.

The server function RpcServerListen does not return to the calling program until an exception occurs
or until the server calls RpcMgmtStopServerListening. In Microsoft RPC, the client cannot directly
call this stop-listening function. However, you can design the server application so that the user
controls the server application as a service and directs another thread of the server application to call
RpcMgmtStopServerListening. Or you can allow the client application to shut down the server
application by making a remote procedure call to a function on the server that calls
RpcMgmtStopServerListening. The following example uses the latter approach. The new remote
function Shutdown is added to HELLOP.C:

/* hellop.c fragment */

#include "hello.h" //header file generated by the MIDL compiler

void Shutdown(void)
{
 RPC_STATUS status;

 status = RpcMgmtStopServerListening(NULL);
 ...
 status = RPCServerUnregisterIf(NULL, NULL, FALSE);
 ...
}

The single null parameter to RpcMgmtStopServerListening indicates that the local application should
stop listening for remote procedure calls. The two null parameters to RpcServerUnregisterIf indicate
that no interfaces are registered. The FALSE parameter indicates that the interface should be removed
from the registry immediately.

Because it is a remote procedure, Shutdown must also be added to the interface body section of the
IDL file:

/* file: hello.idl */

[uuid (6B29FC40-CA47-1067-B31D-00DD010662DA),
 version(1.0)
]
interface hello
{
void HelloProc([in, string] char * pszString);
void Shutdown(void);
}

Finally, the client application must add the call to the Shutdown function:

/* helloc.c (fragment) */

#include "hello.h" // header file generated by the MIDL compiler

void main(void)
{
 char * pszString = "Hello, world";

 RpcStringBindingCompose(...);
 RpcBindingFromStringBinding(...);

 HelloProc(pszString);
 Shutdown();

 RpcStringFree(...);
 RpcBindingFree(...);
}

 Summary: Basic Steps in RPC Development

A distributed application consists of client-side executables and server-side executables.

The RPC development process includes two more steps than the standard development process. You
must specify the interface for the remote procedure call in the IDL and ACF files, which are compiled
using the MIDL compiler. The MIDL compiler produces C source files and the stub files. The
development process is then the same as for any application: compile the C-language files and link the
objects with libraries to create the executables.

For the "Hello, world" distributed application, the developer creates the following source files:

· HELLOC.C
· HELLOS.C
· HELLOP.C
· HELLO.IDL
· HELLO.ACF

The MIDL compiler uses the HELLO.IDL and HELLO.ACF files to generate the client stub source file
HELLO_C.C, the server stub source file HELLO_S.C, and the header file HELLO.H, which includes the
RPC.H header file.

The client executable is built from the client run-time library and the following C-language header and
source files:

· HELLO.H
· HELLOC.C
· HELLO_C.C (stub)

The server executable is built from the server run-time library and the following C-language header and
source files:

· HELLO.H
· HELLOS.C
· HELLOP.C
· HELLO_S.C (stub)

The following figure illustrates the typical application-development cycle and the extra steps required
by the RPC development cycle:

{ewc msdncd, EWGraphic, group10520 1 /a "SDK_a10.bmp"}

The following list summarizes the tasks in the development process when you use Microsoft RPC:

1. Create the Interface Definition Language file that specifies interface identification and the data types
and function prototypes for the remote procedures.

2. Create the application configuration file.
3. Compile the interface definition using the MIDL compiler. The MIDL compiler generates C-language

stub files and the header file for client and server.
4. Include the header file generated by the MIDL compiler in the client and server applications.
5. Create a server source program that calls RPC functions to make binding information available to

the client, then calls RpcServerListen to start listening for client requests. Provide a method to shut
down the server.

6. Link the client with the client stub file and the RPC client run-time libraries.
7. Link the server with the server stub file, the remote procedures, and the RPC server run-time library.

 Data and Language Features

The Microsoft Interface Definition Language (MIDL) provides the set of features that extend the C
programming language to support remote procedure calls. MIDL is not a flavor of C; MIDL is a strongly
typed formal language that allows you to control the data transmitted over the network. MIDL is
designed to be similar to C so that developers familiar with C can learn it quickly.

This topic discusses three language features: strong typing, directional attributes, and data
transmission.

MIDL enforces strong typing by mandating the use of keywords that unambiguously define the size and
type of data. The most visible effect of strong typing is that MIDL does not allow variables of the types
int and void *.

Directional attributes describe whether the data is transmitted from client to server, server to client, or
both.

The transmit_as attribute lets you convert one data type to another data type for transmission over the
network. The represent_as attribute lets you control the way data is presented to the application.

 Strong Typing

C is a weakly typed language. In a weakly typed language, the compiler allows operations such as
assignment and comparison among variables of different types. For example, C allows the value of a
variable to be cast to another type. The ability to use variables of different types in the same expression
promotes flexibility as well as efficiency.

A strongly typed language imposes restrictions on operations among variables of different types. In
these cases, the compiler issues an error prohibiting the operation. These strict guidelines regarding
data types are designed to avoid potential errors.

The difficulty with using a weakly typed language such as C for remote procedure calls is that
distributed applications can run on several different computers with different C compilers and different
architectures.

When an application runs on only one computer, you don't have to be concerned with the internal data
format because the data is handled in a consistent manner. But in a distributed computing
environment, different computers can use different definitions for their base data types. For example,
some computers define the int type so that its internal representation is 16 bits, while other computers
use 32 bits. One computer architecture, known as "little endian," assigns the least significant byte of
data in the lowest memory address and the most significant byte in the highest address. Another
architecture assigns the least significant byte in the highest memory address associated with that data
and is known as "big endian."

Remote procedure calls require strict control over parameter types. To handle data transmission and
conversion over the network, MIDL strictly enforces type restrictions for data transferred over the
network. For this reason, MIDL includes a set of well-defined base types.

 Base Types

To prevent the problems that implementation-dependent data types can cause on varying computer
architectures, MIDL defines its own base data types:

Base type Description
boolean Data item that can have the value TRUE or FALSE
byte 8-bit data item guaranteed to be transmitted without

any change
char 8-bit unsigned character data item
double 64-bit floating-point number
float 32-bit floating-point number
handle_t Primitive handle that can be used for RPC binding

or data serializing
hyper 64-bit integer that can be declared as either signed

or unsigned. (Can also be referred to as _int64.)
long 32-bit integer that can be declared as either signed

or unsigned
short 16-bit integer that can be declared as either signed

or unsigned
small 8-bit integer that can be declared as either signed or

unsigned
wchar_t Wide-character type that is supported as a Microsoft

extension to IDL. (To use wchar_t, you must specify
the
/ms_ext switch when compiling the IDL file.)

The header file RPCNDR.H provides definitions for most of these base data types. MIDL does not
recognize the keyword int for remotable objects unless it is accompanied by one of the modifiers that
specify the integer's length: hyper, long, short, or small. The int keyword is optional and can be
omitted.

Although void * is recognized as a generic pointer type by the ANSI C standard, MIDL restricts its
usage. Each pointer used in a remote or serializing operation must point to either base types or types
constructed from base types. (There is an exception: context handles are defined as void * types. For
more information see Context Handles.)

 Signed and Unsigned Types

Compilers that use different defaults for signed and unsigned types can cause software errors in your
distributed application.

You can avoid these problems by explicitly declaring your character types as signed or unsigned.

MIDL defines the small type to take the same default sign as the char type in the target C compiler. If
the compiler assumes that char is unsigned, small will also be defined as unsigned. Many C compilers
let you change the default as a command-line option. For example, the Microsoft C compiler /J
command-line option changes the default sign of char from signed to unsigned.

You can also control the sign of variables of type char and small with the MIDL compiler command-line
switch /char. This switch allows you to specify the default sign used by your compiler. The MIDL
compiler explicitly declares the sign of all char types that do not match your C-compiler default type in
the generated header file.

 Wide-Character Types

Microsoft RPC supports the wide-character type wchar_t. The wide-character type uses 2 bytes for
each character. The ANSI C-language definition allows you to initialize long characters and long strings
as follows:

wchar_t wcInitial = L'a';
wchar_t * pwszString = L"Hello, world";

This support is offered only as an extension to MIDL. To enable the use of wchar_t in remote
operations, you must specify the /ms_ext switch when you compile the IDL file.

 Unions

Some features of the C language, such as unions, require special MIDL keywords to support their use
in remote procedure calls.

A union in the C language is a variable that holds objects of different types and sizes. The developer
usually creates a variable to keep track of the types stored in the union. To operate correctly in a
distributed environment, the variable that indicates the type of the union, or the "discriminant," must
also be available to the remote computer. MIDL provides the switch_type and switch_is keywords to
identify the discriminant type and name.

MIDL requires that the discriminant be transmitted with the union in one of two ways:

· The union and the discriminant must be provided as parameters.
· The union and the discriminant must be packaged in a structure.

The following example demonstrates how to provide the union and discriminant as parameters:

typedef [switch_type(short)] union {
 [case(0)] short sVal;
 [case(1)] float fVal;
 [case(2)] char chVal;
 [default] ;
} DISCRIM_UNION_PARAM_TYPE;

short UnionParamProc(
 [in, switch_is(sUtype)] DISCRIM_UNION_PARAM_TYPE Union,
 [in] short sUtype);

The union in the preceding example can contain a single value: either short, float, or char. The type
definition for the union includes the MIDL switch_type attribute, which specifies the type of the
discriminant. Here, [switch_type(short)] specifies that the discriminant is of type short. The switch must
be an integer type, but as in other type definitions, int is not recognized as a valid type unless it is
accompanied by a modifier such as long, small, or short.

If the union is a member of a structure, then the discriminant must be a member of the same structure.
If the union is a parameter, then the discriminant must be another parameter. The prototype for the
function UnionParamProc shows the discriminant sUtype as the last parameter of the call. (The
discriminant can appear in any position in the call.) The type of the parameter specified in the
switch_is attribute must match the type specified in the switch_type attribute.

The following example demonstrates the use of a single structure that packages the discriminant with
the union:

typedef struct {
 short utype; /* discriminant can precede or follow union */
 [switch_is(utype)] union {
 [case(0)] short sVal;
 [case(1)] float fVal;
 [case(2)] char chVal;
 [default] ;
 } u;
} DISCRIM_UNION_STRUCT_TYPE;

short UnionStructProc(
 [in] DISCRIM_UNION_STRUCT_TYPE u1);

 Directional Attributes

All parameters in the function prototype must be associated with directional attributes. The three
possible combinations of directional attributes are: (1) in, (2) out, and (3) in, out. They describe the
way parameters are passed between calling and called procedures. Directional attributes can be
omitted for Microsoft extensions mode (/ms_ext) and C-language extensions mode (/c_ext). If no
directional attribute is provided for a parameter, the MIDL compiler assumes a default value of in.

Use the following example to convert the following ANSI C function prototype to a remote procedure:

void MyFunction(int i);

MIDL requires that a directional attribute be associated with the parameter in the function prototype. In
addition, int is not a valid MIDL type, so the type of the argument must be changed to the specific
integer type. The converted function appears in the IDL file as a remote procedure call prototype:

void MyFunction([in] short i);

An out parameter must be a pointer. In fact, the out attribute is not meaningful when applied to
parameters that do not act as pointers because C function parameters are passed by value. In C, the
called function receives a private copy of the parameter value; it cannot change the calling function's
value for that parameter. If the parameter acts as a pointer, however, it can be used to access and
modify memory. The out attribute indicates that the server function should return the value to the
client's calling function, and that memory associated with the pointer should be returned in accordance
with the attributes assigned to the pointer.

The following interface demonstrates the three possible combinations of directional attributes that can
be applied to a parameter. The function InOutProc is defined in the IDL file as follows:

void InOutProc ([in] short s1,
 [in, out] short * ps2,
 [out] float * pf3);

The first parameter, s1, is in only. Its value is transmitted to the remote computer but is not returned to
the calling procedure. Although the server application can change its value for s1, the value of s1 on
the client is the same before and after the call.

The second parameter, ps2, is defined in the function prototype as a pointer with both in and out
attributes. The in attribute indicates that the value of the parameter is passed from the client to the
server; the out attribute indicates that the value pointed to by ps2 is returned to the client.

The third parameter is out only. Space is allocated for the parameter on the server but the value is
undefined on entry. As mentioned above, all out parameters must be pointers.

The remote procedure changes the value of all three parameters, but only the new values of the out
and in, out parameters are available to the client.

#define MAX 257

void InOutProc(short s1,
 short * ps2,
 float * pf3)
{
 *pf3 = (float) s1 / (float) *ps2;
 *ps2 = (short) MAX - s1;
 s1++; // in only; not changed on the client side
 return;
}

On return from the call to InOutProc, the second and third parameters are modified. The first
parameter, which is in only, is unchanged.

{ewc msdncd, EWGraphic, group10521 0 /a "SDK_a22.bmp"}

{ewc msdncd, EWGraphic, group10521 1 /a "SDK_a23.bmp"}

{ewc msdncd, EWGraphic, group10521 2 /a "SDK_a21.bmp"}

 The transmit_as Attribute

The transmit_as attribute allows you to specify a data type that will be used for transmission instead of
using the data type provided. You supply routines that convert the data type to and from the type that is
used for transmission. You must also supply routines to free the memory used for the data type and the
transmitted type. For example, the following defines xmit_type as the transmitted data type for an
application-presented type specified as type_spec:

typedef [transmit_as (xmit_type)] type_spec type;

The following table describes the four user-supplied routine names. Type is the data type known to the
application, and xmit_type is the data type used for transmission:

Routine Description
type _to_xmit Allocates an object of the transmitted type and

converts from presented type to transmitted type
(caller and callee)

type _from_xmit Converts from transmitted type to presented type
(caller and callee)

type _free_inst Frees resources used by the presented type
(callee only)

type _free_xmit Frees storage returned by the type_to_xmit
routine (caller and callee)

Other than by these four user-supplied functions, the transmitted type is not manipulated by the
application. The transmitted type is defined only to move data over the network. After the data is
converted to the type used by the application, the memory used by the transmitted type is freed.

These user-supplied routines are provided by either the client or the server application based on the
directional attributes.

If the parameter is in only, the client transmits to the server. The client needs the type_to_xmit and
type_free_xmit functions. The server needs the type_from_xmit and type_free_inst functions.

For an out-only parameter, the server transmits to the client. The server needs the type_to_xmit and
type_free_xmit functions, while the client needs the type_from_xmit function.

For the temporary xmit_type objects, the stub will call type_free_xmit to free any memory allocated by
a call to type_to_xmit.

Certain guidelines apply to the presented type instance. If the presented type is a pointer or contains a
pointer, then the type_from_xmit routine must allocate pointees of the pointers (the presented type
object itself is manipulated by the stub in the usual way). For out and in, out parameters, or one of
their components, of a type that contains the transmit_as attribute, the type_free_inst routine is
automatically called for the data objects that have the attribute. For in parameters, the type_free_inst
routine is called only if the transmit_as attribute has been applied to the parameter. If the attribute has
been applied to the components of the parameter, the type_free_inst routine is not called. There are
no freeing calls for the embedded data and at-most-one call (related to the top-level attribute) for an in
only parameter.

For MIDL 2.0, both client and server must supply all four functions.

For example, a linked list can be transmitted as a sized array. The type_to_xmit routine walks the
linked list and copies the ordered data into an array. The array elements are ordered, so the many
pointers associated with the list data structure do not have to be transmitted. The type_from_xmit
routine reads the array and puts its elements into a linked-list data structure.

The double-linked list DOUBLE_LINK_LIST includes data and pointers to the previous and next list
elements:

typedef struct _DOUBLE_LINK_LIST {
 short sNumber;
 struct _DOUBLE_LINK_LIST * pNext;
 struct _DOUBLE_LINK_LIST * pPrevious;
} DOUBLE_LINK_LIST;

Rather than shipping the complex data structure, the transmit_as attribute can be used to send it over
the network as an array. The sequence of items in the array retains the ordering of the elements in the
list at a lower cost:

typedef struct _DOUBLE_XMIT_TYPE {
 short sSize;
 [size_is(sSize)] short asNumber[];
} DOUBLE_XMIT_TYPE;

The transmit_as attribute appears in the IDL file:

typedef [transmit_as(DOUBLE_XMIT_TYPE)]    DOUBLE_LINK_LIST
  DOUBLE_LINK_TYPE;

In the following example, ModifyListProc defines the parameter of type DOUBLE_LINK_TYPE as an
in, out parameter:

void ModifyListProc([in, out] DOUBLE_LINK_TYPE * pHead)

The four user-defined functions use the name of the type in the function names and use the presented
and transmitted types as parameter types, as required:

void __RPC_USER DOUBLE_LINK_TYPE_to_xmit (
 DOUBLE_LINK_TYPE __RPC_FAR * pList,
 DOUBLE_XMIT_TYPE __RPC_FAR * __RPC_FAR * ppArray);

void __RPC_USER DOUBLE_LINK_TYPE_from_xmit (
 DOUBLE_XMIT_TYPE __RPC_FAR * pArray,
 DOUBLE_LINK_TYPE __RPC_FAR * pList);

void __RPC_USER DOUBLE_LINK_TYPE_free_inst (
 DOUBLE_LINK_TYPE __RPC_FAR * pList);

void __RPC_USER DOUBLE_LINK_TYPE_free_xmit (
 DOUBLE_XMIT_TYPE __RPC_FAR * pArray);

 The type_to_xmit Function

The stubs call the type_to_xmit function to convert the type that is presented by the application to the
transmitted type. The function is defined as follows:

void __RPC_USER <type>_to_xmit (
 <type> __RPC_FAR *, <xmit_type> __RPC_FAR * __RPC_FAR *);

The first parameter is a pointer to the presented data. The second parameter is set by the function to
point to the transmitted data. The function must allocate memory for the transmitted type.

In the following example, the client calls the remote procedure that has an in, out parameter of type
DOUBLE_LINK_TYPE. The client stub calls the type_to_xmit function, here named
DOUBLE_LINK_TYPE_to_xmit, to convert double-linked list data to a sized array.

The function determines the number of elements in the list, allocates an array large enough to hold
those elements, then copies the list elements into the array. Before the function returns, the second
parameter, ppArray, is set to point to the newly allocated data structure.

void __RPC_USER DOUBLE_LINK_TYPE_to_xmit (
 DOUBLE_LINK_TYPE __RPC_FAR * pList,
 DOUBLE_XMIT_TYPE __RPC_FAR * __RPC_FAR * ppArray)
{
 short cCount = 0;
 DOUBLE_LINK_TYPE * pHead = pList; // save pointer to start
 DOUBLE_XMIT_TYPE * pArray;

 /* count the number of elements to allocate memory */
 for (; pList != NULL; pList = pList->pNext)
 cCount++;

 /* allocate the memory for the array */
 pArray = (DOUBLE_XMIT_TYPE *) MIDL_user_allocate

 (sizeof(DOUBLE_XMIT_TYPE) + (cCount * sizeof(short)));
 pArray->sSize = cCount;

 /* copy the linked list contents into the array */
 cCount = 0;
 for (i = 0, pList = pHead; pList != NULL; pList = pList->pNext)
 pArray->asNumber[cCount++] = pList->sNumber;

 /* return the address of the pointer to the array */
 *ppArray = pArray;
}

 The type_from_xmit Function

The stubs call the type_from_xmit function to convert data from its transmitted type to the type that is
presented to the application. The function is defined as follows:

void __RPC_USER <type>_from_xmit (
 <xmit_type> __RPC_FAR *,
 <type> __RPC_FAR *);

The first parameter is a pointer to the transmitted data. The function sets the second parameter to point
to the presented data.

The type_from_xmit function must manage memory for the presented type. The function must allocate
memory for the entire data structure that starts at the address indicated by the second parameter,
except for the parameter itself (the stub allocates memory for the root node and passes it to the
function). The value of the second parameter cannot change during the call. The function can change
the contents at that address.

In this example, the function DOUBLE_LINK_TYPE_from_xmit converts the sized array to a double-
linked list. The function retains the valid pointer to the beginning of the list, frees memory associated
with the rest of the list, then creates a new list that starts at the same pointer. The function uses a utility
function, InsertNewNode, to append a list node to the end of the list and to assign the pNext and
pPrevious pointers to appropriate values.

void __RPC_USER DOUBLE_LINK_TYPE_from_xmit(
 DOUBLE_XMIT_TYPE __RPC_FAR * pArray,
 DOUBLE_LINK_TYPE __RPC_FAR * pList)
{
 DOUBLE_LINK_TYPE *pCurrent;
 int i;

 if (pArray->sSize <= 0) { // error checking
 return;
 }

 if (pList == NULL) // if invalid, create the list head
 pList = InsertNewNode(pArray->asNumber[0], NULL);
 else {
 DOUBLE_LINK_TYPE_free_inst(pList); // free all other nodes
 pList->sNumber = pArray->asNumber[0];
 pList->pNext = NULL;
 }

 pCurrent = pList;
 for (i = 1; i < pArray->sSize; i++)
 pCurrent = InsertNewNode(pArray->asNumber[i], pCurrent);

 return;
}

 The type_free_xmit Function

The stubs call the type_free_xmit function to free memory associated with the transmitted data. After
the type _from_xmit function converts the transmitted data to its presented type, the memory is no
longer needed. The function is defined as follows:

void __RPC_USER <type>_free_xmit(<xmit_type> __RPC_FAR *);

The parameter is a pointer to the memory that contains the transmitted type.

In this example, the memory contains an array that is in a single structure. The function
DOUBLE_LINK_TYPE_free_xmit uses the user-supplied function midl_user_free to free the
memory:

void __RPC_USER DOUBLE_LINK_TYPE_free_xmit(
 DOUBLE_XMIT_TYPE __RPC_FAR * pArray)
{
 midl_user_free(pArray);
}

 The type_free_inst Function

The stubs call the type_free_inst function to free memory associated with the presented type. The
function is defined as follows:

void __RPC_USER <type>_free_inst(<type> __RPC_FAR *)

The parameter points to the presented type instance. This object should not be freed. For a discussion
of when to call the function, see the transmit_as Attribute.

In the following example, the double-linked list is freed by walking the list to its end, then backing up
and freeing each element of the list.

void __RPC_USER DOUBLE_LINK_TYPE_free_inst(
 DOUBLE_LINK_TYPE __RPC_FAR * pList)
{
 while (pList->pNext != NULL) // go to end of the list
 pList = pList->pNext;

 pList = pList->pPrevious;
 while (pList != NULL) { // back through the list
 midl_user_free(pList->pNext);
 pList = pList->pPrevious;
 }
}

 Summary of transmit_as Attribute

The transmit_as attribute offers a way to control data marshalling without worrying about marshalling
data at a low level ¾ that is, without worrying about data sizes or byte-swapping in a heterogeneous
environment. By allowing you to reduce the amount of data transmitted over the network, the
transmit_as attribute can make your application more efficient.

 The represent_as Attribute

The represent_as attribute allows you to specify how a particular remotable data type is represented
for the application. Specify the name of the represented type for a known transmittable type, and
supply the routines to convert the data type to and from the other data type. You must also supply the
routines to free the memory used by the data type objects.

The represent_as attribute is similar to the transmit_as attribute. However, while transmit_as
enables you to specify a data type that will be used for transmission, represent_as allows you to
specify how a data type is represented for the application. The represented type need not be defined in
the MIDL processed files; it can be defined at the time the stubs are compiled with the C compiler. Use
the include directive in the ACF to compile the appropriate header file. For example, the following ACF
defines a local represented repr_type for the given transmittable named_type:

typedef [represent_as(repr_type) [, type_attribute_list] named_type;

The following table describes the four user-supplied routines:

Routine Description
named_type_from_lo
cal

Allocates an instance of the network type and
converts from the local type to the network type

named_type_to_local Converts from the network type to the local type
named_type_free_loc
al

Frees memory allocated by a call to the
named_type_to_local routine, but not the type
itself

named_type_free_inst Frees storage for the network type (both sides)

Other than by these four user-supplied routines, the named type is not manipulated by the application
and the only type visible to the application is the represented type. The represented type name is used
instead of the named type name in the prototypes and stubs generated by the compiler. You must
supply the set of routines for both sides.

For temporary named_type objects, the stub will call named_type_free_inst to free any memory
allocated by a call to named_type_from_local.

If the represented type is a pointer or contains a pointer, the named_type_to_local routine must
allocate pointees of the pointers (the represented type object itself is manipulated by the stub in the
usual way). For out and in, out parameters of a type that contain represent_as or one of its
components, the named_type_free_local routine is automatically called for the data objects that
contain the attribute. For in parameters, the named_type_free_local routine is only called if the
represent_as attribute has been applied to the parameter. If the attribute has been applied to the
components of the parameter, the *_free_local routine is not called. Freeing routines are not called for
the embedded data and at-most-once call (related to the top-level attribute) for an in only parameter.

Note It is possible to apply both the transmit_as and represent_as attributes to the same type.
When marshalling data, the represent_as type conversion is applied first, and then the transmit_as
conversion is applied. The order is reversed when unmarshalling data. Thus, when marshalling,
*_from_local allocates an instance of a named type and translates it from a local type object to the
temporary named type object. This object is the presented type object used for the *_to_xmit routine.
The *_to_xmit routine then allocates a transmitted type object and translates it from the presented
(named) object to the transmitted object.

An array of long integers can be used to represent a linked list. In this way, the application manipulates
the list and the transmission uses an array of long integers when a list of this type is transmitted. You
can begin with an array, but using a construct with an open array of long integers is more convenient.
The following example shows how to do this:

/* IDL definitions */

typedef struct_lbox {
long data;
struct_lbox * pNext

} LOC_BOX, * PLOC_BOX;

/* The definition of the local type visible to the application, as shown
above, can be omitted in the IDL file. See the include in the ACF file. */

typedef struct_xmit_lbox {
short Size;
[size_is(Size)] long DaraArr[];

} LONGARR;

void
WireTheList([in,out] LONGARR * pData);

/* ACF definitions */

/* If the IDL file does not have a definition for PLOC_BOX, you can still
ready it for C compilation with the following include statement (notice that
this is not a C include):

include "local.h";
*/

typedef [represent_as(PLOC_BOX)] LONGARR;

Note that the prototypes of the routines that use the LONGARR type are actually displayed in the
STUB.H files as PLOC_BOX in place of the LONGARR type. The same is true of the appropriate stubs
in the STUB_C.C file.

You must supply the folllowing four functions:

void __RPC_USER
LONGARR_from_local(

PLOC_BOX __RPC_FAR * pList,
LONGARR __RPC_FAR * _RPC_FAR * ppDataArr);

void __RPC_USER
LONGARR_to_local(

LONGARR __RPC_FAR * _RPC_FAR * ppDataArr,
PLOC_BOX __RPC_FAR * pList);

void __RPC_USER
LONGARR_free_inst(

LONGARR __RPC_FAR * pDataArr);

void __RPC_USER
LONGARR_free_local(

PLOC_BOX __RPC_FAR * pList);

The routines shown above do the following:

· The LONGARR_from_local routine counts the nodes of the list, allocates a LONGARR object with

the size sizeof(LONGARR) + Count*sizeof(long), sets the Size field to Count, and copies the data
to the DataArr field.

· The LONGARR_to_local routine creates a list with Size nodes and transfers the array to the
appropriate nodes.

· The LONGARR_free_inst routine frees nothing in this case.
· The LONGARR_free_local routine frees all the nodes of the list.

 Summary of represent_as Attribute

The represent_as attribute offers a way to present an application with a different and perhaps non-
remotable data type, rather than the type that is actually transmitted between the client and server.
Also, the type the application manipulates can be unknown at the time of MIDL compilation. When you
choose a well-defined transmittable type, you need not be concerned about data representation in the
heterogenic environment. The represent_as attribute can make your application more efficient by
reducing the amount of data transmitted over the network.

 Summary of Data and Attributes

MIDL was designed to solve the problem of transmitting data not only between different computers but
between different computer architectures.

MIDL provides well-defined base types, replacing the implementation-dependent int type with the
specific types small, short, long, and hyper. MIDL also supports the float, double, and handle_t
base types.

MIDL assumes that char types are unsigned. If your C compiler assumes the use of signed char, use
the MIDL compiler command-line switch /char to ensure that the header file explicitly declares all
characters as unsigned.

MIDL enforces strong typing; the ANSI C generic pointer type void * is not supported, requiring the
application to supply a pointer to a specific type.

MIDL also forces the parameters related to a union to be either defined as related parameters or
included in the same structure.

You control the way data is transmitted over the network with the transmit_as attribute , and the way
data is presented to the application with the represent_as attribute .

 Arrays and Pointers

Because RPC is designed to be transparent, you can expect a remote procedure call to behave just
like a local procedure call. When a pointer is a parameter, the remote procedure can access the data
object the pointer refers to the same way a local procedure accesses it.

To achieve this transparency, the client stub transmits to the server both the pointer and the data object
that it points to. If the remote procedure changes the data, the server must transmit the new data back
to the client so the client can copy the new data over the original data.

The number of MIDL attributes relating to arrays and pointers reflects the flexibility that C affords. MIDL
offers several attributes that extend C arrays and pointers to the distributed environment.

 Array Attributes

There is a close relationship between arrays and pointers in the C language. When passed as a
parameter to a function, an array name is treated as a pointer to the first element of the array, as in the
following example:

/* fragment */
extern void f1(char * p1);

void main(void)
{
 char chArray[MAXSIZE];

 fLocal1(chArray);
}

In a local call, you can use the pointer parameter to march through memory and examine the contents
of other addresses:

/* dump memory (fragment) */
void fLocal1(char * pch1)
{
 int i;

 for (i = 0; i < MAXSIZE; i++)
 printf("%c ", *pch1++);
}

When a client passes a pointer to a remote procedure in C, the client stub transmits both the pointer
and the data it points to. Unless the pointer is restricted to its corresponding data, all the client's
memory must be transmitted with every remote call. By enforcing strong typing in the interface
definition, MIDL limits client stub processing to the data that corresponds with the specified pointer.

The size of the array and the range of array elements transmitted to the remote computer can be
constant or variable. When these values are variable, and thus determined at run time, you must use
attributes in the IDL file to tell the stubs how many array elements to transmit. The following MIDL
attributes support array bounds:

Attribute Description Default
first_is Index of the first array element

transmitted
0

last_is Index of the last array element
transmitted

-

length_is Total number of array elements
transmitted

-

max_is Highest valid array index value -
min_is Lowest valid array index value 0
size_is Total number of array elements allocated

for the array
-

Note The min_is attribute is not implemented in Microsoft RPC. The minimum array index is always
treated as zero.

 The size_is Attribute

The size_is attribute is associated with an integer constant, expression, or variable that specifies the
allocation size of the array. Consider a character array whose length is determined by user input:

/* IDL file */
[uuid(20B309B1-015C-101A-B308-02608C4C9B53),
 version(2.0)
]
interface arraytest
{
void fArray2([in] short sSize,
 [in, out, size_is(sSize)] char achArray[*]);
}

The asterisk (*) that marks the placeholder for the variable-array dimension is optional.

The server stub must allocate memory on the server that corresponds to the memory on the client for
that parameter. The variable that specifies the size must always be at least an in parameter. The in
directional attribute is required so that the size value is defined on entry to the server stub. The size
value provides information that the server stub requires to allocate the memory. The size parameter
can also be in, out.

 The length_is Attribute

The size_is attribute allows you to specify the maximum size of the array. When this is the only
attribute, all elements of the array are transmitted. Rather than sending all elements of the array, you
can specify the transmitted elements using the length_is attribute:

/* IDL file */
[uuid(20B309B1-015C-101A-B308-02608C4C9B53),
 version(3.0)
]
interface arraytest
{
void fArray3([in, out, size_is(sSize), length_is(sLen)] char achArray[],

 [in] short sSize,
 [in] short SLength);

}

Size describes allocation. Length describes transmission. The number of elements transmitted must
always be less than or equal to the number of elements allocated. The value associated with length_is
is always less than or equal to size_is.

 The first_is and last_is Attributes

You can determine the number of transmitted elements by specifying the first and last elements. Use
the first_is and last_is attributes:

/* IDL file */
[uuid(20B309B1-015C-101A-B308-02608C4C9B53),
 version(4.0)
]
interface arraytest
{

void fArray4([in, out,
 size_is(sSize),
 first_is(sFirst),
 last_is(sLast)] char achArray[],
 [in] short sSize,
 [in] short sLast,
 [in] short sFirst) ;
}

 The max_is Attribute

You can specify the valid bounds of the array using the max_is attribute.

/* IDL file */
[uuid(20B309B1-015C-101A-B308-02608C4C9B53),
 version(5.0)
]
interface arraytest
{
void fArray5([in] short sMax,
 [in, out, max_is(sMax)] char achArray[]);
}

Field attributes can be supplied in various combinations, as long as the stub can use the information to
determine the size of the array and the number of bytes to transmit to the server. The relationships
between the attributes are defined using the following formulas:

size_is = max_is + 1;
length_is = last_is - first_is + 1;

The values associated with the attributes must obey several common-sense rules based on those
formulas:

· The first_is index value cannot be smaller than zero; last_is cannot be greater than max_is.
· Don't specify a negative size for an array. Define the first and last elements so they result in a length

value of zero or greater. Define the max_is value so that the size is zero or greater. If MIDL was
invoked with the _error bounds_check flag, then the stub raises an exception when the size is less
than 0, or the transmitted length is less than 0.

· You can't use the length_is and last_is attributes at the same time. You can't use the size_is and
max_is attributes at the same time.

Because of the close relationship in C between arrays and pointers, MIDL also permits you to declare
arrays in parameter lists using pointer notation. MIDL treats a parameter that is a pointer to a type as
an array of that type if the parameter has any of the attributes commonly associated with arrays.

/* IDL file */
[uuid(20B309B1-015C-101A-B308-02608C4C9B53)
 version(6.0)
]
interface arraytest
{
void fArray6([in, out, size_is(sSize)] char * p1,
 [in] short sSize);
void fArray7([in, out, size_is(sSize)] char achArray[],
 [in] short sSize);
}

In the preceding example, the array and pointer parameters in the functions fArray6 and fArray7 are
equivalent.

 Strings

You can use the string attribute for one-dimensional-character, wide-character, and byte arrays that
represent text strings.

If you use the string attribute, the client stub uses the C-library functions strlen or wstrlen to count the
number of characters in the string. To avoid possible inconsistencies, MIDL does not let you use the
string attribute at the same time as the first_is, last_is, and size_is attributes.

As always with null-terminated strings in C, you must allow space for the null character at the end of
the string. When declaring a string that will hold up to 80 characters, for example, allocate 81
characters:

/* IDL file */
[uuid(20B309B1-015C-101A-B308-02608C4C9B53),
 version(8.0)
]
interface arraytest
{
void fArray8([in, out, string] char achArray[]);
}

 Multi-Dimensional Arrays

Array attributes can also be used with multi-dimensional arrays. However, be careful to ensure that
every dimension of the array has a corresponding attribute. For example:

/* IDL file */
[uuid(20B309B1-015C-101A-B308-02608C4C9B53),
 version(2.0)
]
void arr2d([in] short dlsize,

[in] short d2len,
[in,
 size_is(dlsize,),
 length_is (, d2len)] long array2d[*][30]) ;

The array shown above is a conformant array (of size dlsize) of 30 element arrays (with d2len elements
shipped for each).

The string attribute can also be used with multi-dimensional arrays. The attribute applies to the least-
significant dimension, such as a conformant array of strings. You can also use multi-dimensional
pointer attributes, but if you do so, the order of the attributes will be reserved because of the right-to-left
behavior associated with pointers. For example:

/* IDL file */
[uuid(20B309B1-015C-101A-B308-02608C4C9B53),
 version(2.0)
]
void arr2d([in] short d1len,

[in] short d2len,
 [in] size_is(d1len, d2len)] long ** ptr2d) ;

In the example above, the variable ptr2d is d1len pointers to d2len pointers to long.

Be sure that a multi-dimensional array is not equivalent to multiple levels of pointers. A multi-
dimensional array is a single large block of memory and should not be confused with an array of
pointers. Also, ANSI C syntax only allows the most significant (leftmost) array dimension to be
unspecified in a multi-dimensional array). Therefore, the following is a valid statement:

long a1[] [20]

Compare this to the following invalid statement:

long a1[20] []

 Pointers

It is very efficient to use pointers as C function parameters. The pointer costs only a few bytes and can
be used to access a large amount of memory. In a distributed application, however, the client and
server procedures can reside in different address spaces on different computers that may not have
access to the same memory.

When one of the remote procedure's parameters is a pointer to an object, the client must transmit a
copy of that object and its pointer to the server. If the remote procedure modifies the object through its
pointer, the server returns the pointer and its modified copy.

MIDL offers pointer attributes to minimize the amount of required overhead and the size of your
application.

For example, you can specify a binary tree using the following definition:

typedef struct _treetype {
 long lValue;
 struct _treetype * left;
 struct _treetype * right;
} TREETYPE;

TREETYPE * troot;

The contents of a tree node can be accessed by more than one pointer, making it more complicated for
the RPC support code to manage the data and the pointers. The underlying stub code must resolve the
various pointers to the addresses and determine whose copy of the data represents the latest and
greatest version.

The amount of processing can be reduced if you guarantee that your pointer is the only way the
application can access that area of memory. The pointer can still have many of the features of a C
pointer. It can change between null and non-null values or stay the same. But as long as the data
referenced by the pointer is unique to the pointer, you can reduce the amount of processing by the
stubs. Designate such a pointer using the unique attribute.

You can further reduce the complexity if you specify that the non-null pointer to an address of valid
memory will not change during the remote call. The contents of memory can change and the data
returned from the server will be written into this area on the client. Designate such a pointer, known as
a reference pointer, using the ref attribute.

 Reference Pointers

Reference pointers are the simplest pointers and require the least amount of processing by the client
stub. Reference pointers are mainly used to implement reference semantics and allow for out
parameters in C.

In the example below, the value of the pointer does not change during the call. The contents of the data
at the address indicated by the pointer can change.

{ewc msdncd, EWGraphic, group10522 0 /a "SDK_a07.bmp"}

A reference pointer has the following characteristics:

· It always points to valid storage and never has the value NULL.
· It never changes during a call and always points to the same storage before and after the call.
· Data returned from the callee is written into the existing storage.
· The storage pointed to by a reference pointer can't be accessed by any other pointer or any other

name in the function.

 Unique Pointers

Unique pointers can change in value, but like reference pointers, they do not cause aliasing of data ¾
that is, the data that is accessible through the pointer is not accessible through any other name in the
remote operation. This constraint saves a significant amount of processing.

The pointer itself can change from a null to a non-null value or from a non-null to a null value during the
call. In the following example, the pointer is null before the call and points to a valid string after the call:

{ewc msdncd, EWGraphic, group10522 1 /a "SDK_a01.bmp"}

By default, the unique pointer attribute is applied to all pointers that are not parameters. In
Microsoft-extensions mode, this default setting can be changed with the pointer_default attribute.

A unique pointer has the following characteristics:

· It can have the value NULL.
· It can change from null to non-null during the call. When the value changes to non-null, new memory

is allocated on return.
· It can change from non-null to null during the call. When the value changes to NULL, the application

is responsible for freeing the memory.
· If the value changes from one non-null value to another non-null value, the change is ignored.
· The storage a unique pointer points to can't be accessed by any other pointer or any other name in

the operation.
· Return data is written into existing storage if the pointer does not have the value NULL.

 Full Pointers

Full pointers have all the properties of unique pointers. In addition, full pointers support aliasing, which
means that multiple pointers can refer to the same data, as shown in the following figure:

{ewc msdncd, EWGraphic, group10522 2 /a "SDK_a02.bmp"}

 Pointers and Memory Allocation

The ability to change memory through pointers often requires that the server and the client allocate
enough memory for the elements in the array.

Whenever a stub must allocate or free memory, it calls run-time library functions that in turn call the
functions midl_user_allocate and midl_user_free. These functions are not provided as part of the
run-time library. You must write your own versions of these functions and link them with your
application. This design lets you decide how to manage memory.

You must write these functions to the following prototypes:

void __RPC_FAR * __RPC_API midl_user_allocate(size_t len)

void __RPC_API midl_user_free(void __RPC_FAR * ptr)

For example, the versions of these functions for an application can simply call standard library
functions:

void __RPC_FAR * __RPC_API midl_user_allocate(size_t len)
{
 return(malloc(len));
}

void __RPC_API midl_user_free(void __RPC_FAR * ptr)
{
 free(ptr);
}

 Program Efficiency Using Pointer Parameters

The in, out, and in, out directional attributes significantly affect the amount of stub code when they are
applied to pointer parameters.

 Default Pointer Types for Pointers

The MIDL compiler offers three different default cases for pointers that do not have pointer attributes at
definition time:

· Function parameters that are top-level pointers default to ref pointers.
· Pointers embedded in structures and pointers to other pointers (non-top-level pointers) default to the

type specified by the pointer_default attribute.
· When no pointer_default attribute is supplied, non-top-level pointers default to unique pointers in

Microsoft-extensions mode and to ptr in DCE-compatible mode.

A pointer returned by a function must be a unique or full pointer. The MIDL compiler reports an error if a
function result is, either explicitly or by default, a reference pointer. The returned pointer always
indicates new storage because there is not enough information for the stubs to determine whether
there is existing storage in the caller address space for pointer-valued function results.

Functions that return a pointer value can specify a pointer attribute as a function attribute. If a pointer
attribute is not present, the function return pointer uses the value provided by the pointer_default
attribute.

Note To ensure unambiguous pointer-attribute behavior, always use explicit pointer attributes when
defining a pointer.

 Using Arrays, Strings, and Pointers

The Doctor program is a good example of an application that demonstrates the design tradeoffs
involved with array and string attributes. The Doctor program is a small sample version of a better-
known program, Eliza, developed by artificial intelligence researcher Joseph Weizenbaum at MIT in the
1960s. The program mimics a therapist by using simple pattern-matching to respond to natural
language input.

The Eliza program recorded the following session:

User Eliza
Men are all alike. In what way?
They're always bugging us about
something or other.

Can you think of a specific example?

Well, my boyfriend made me
come here.

Your boyfriend made you come here.

He says I'm depressed much of
the time.

I am sorry to hear that you are
depressed.

It's true, I am unhappy. Do you think coming here will help you
not to be unhappy?

I need some help; that much
seems certain.

What would it mean to you if you got
some help?

Perhaps I could learn to get along
with my mother.

Tell me more about your family.

My mother takes care of me. Who else in your family takes care of
you?

My father. Your father.
You are like my father in some
ways.

What resemblance do you see?

The Doctor program can be split into client-side and server-side applications. The client side prompts
the patient for input and displays the doctor's response. The server side processes the patient input
and generates the doctor's response. This is a classic example of a client-server application: the client
is responsible for user interaction, while the server handles the extensive computational load. Not
much data is passed to and returned by the function, but the data can require a significant amount of
processing so it is processed by the server.

The Doctor program uses a character array for input and returns another character array as output. We
will examine the design tradeoffs of several alternative interfaces that manage these parameters.

Each section contains a short review of the attributes or the effects of combining the attributes.

Approach Attributes or functions
Counted character
arrays

size_is, length_is, ref

Stub-managed strings string, ref, midl_user_allocate on server
Stub-managed strings string, unique, midl_user_allocate on client

and server
Function that returns a
string

unique

Knowing the constraints associated with these combinations of attributes, we can examine several
alternative ways to send one character array from client to server and to return another character array
from server to client.

 Counted Character Arrays

The size_is attribute indicates the upper bound of the array. The length_is attribute indicates the
number of array elements to transmit. In addition to the array, the remote procedure prototype must
include any variables representing length or size that determine the transmitted array elements (they
can be separate parameters or bundled with the string in a structure). These attributes can be used
with wide, byte, or character arrays just as they would be with arrays of other types.

 in, out, size_is

The following function prototype uses a single-counted character array that is passed both ways: from
client to server, and from server to client:

#define STRSIZE 500 //maximum string length

void Analyze(
 [in, out, length_is(*pcbSize), size_is(STRSIZE)] char achInOut[],
 [in, out] long *pcbSize);

As an in parameter, achInOut must point to valid storage on the client side. The developer allocates
memory associated with the array on the client side before making the remote procedure call.

The stubs use the size_is parameter STRSIZE to allocate memory on the server, then use the
length_is parameter pcbSize to transmit the array elements into this memory. The developer must
make sure that the client code sets the length_is variable before calling the remote procedure:

/* client */
char achInOut[STRSIZE];
long cbSize;
...
gets(achInOut); // get patient input
cbSize = strlen(achInOut) + 1; // transmit '\0' too
Analyze(achInOut, &cbSize);

In the previous example, the character array achInOut is also used as an out parameter. In C, the
name of the array is equivalent to the use of a pointer; by default, all pointers are reference pointers,
which do not change in value and which point to the same area of memory on the client before and
after the call. All memory accessed by the remote procedure must fit the size specified on the client
before the call or the stubs will generate an exception.

Before returning, the Analyze function on the server must reset the pcbSize variable to indicate the
number of elements that the server will transmit to the client:

/* server */
Analyze(char * str, long * pcbSize)
{
 ...
 *pcbSize = strlen(str) + 1; // transmit '\0' too
 return;
}

Rather than using a single string for both input and output, you may find it more efficient and flexible to
use separate parameters.

 in, size_is and out, size_is

The following function prototype uses two counted strings. The developer must write code on both
client and server to keep track of the character array lengths and pass parameters that tell the stubs
how many array elements to transmit.

void Analyze(
 [in, length_is(cbIn), size_is(STRSIZE)] char achIn[],
 [in] long cbIn,
 [out, length_is(*pcbOut), size_is(STRSIZE)] char achOut[],
 [out] long *pcbOut);

Note that the parameters that describe the array length are transmitted in the same direction as the
arrays: cbIn and achIn are in parameters, while pcbOut and achOut are out parameters. As an out
parameter, the parameter pcbOut must follow C convention and be declared as a pointer.

The client code counts the number of characters in the string, including the trailing zero, before calling
the remote procedure:

/* client */
char achIn[STRSIZE], achOut[STRSIZE];
long cbIn, cbOut;
...
gets(achIn); // get patient input
cbIn = strlen(achIn) + 1; // transmitted elements
Analyze(achIn, cbIn, achOut, &cbOut);

The remote procedure on the server supplies the length of the return buffer in cbOut:

/* server */
void Analyze(char *pchIn,
 long cbIn,
 char *pchOut,
 long *pcbOut)
{
 ...
 *pcbOut = strlen(pchOut) + 1; // transmitted elements
 return;
}

Knowing that the parameter is a string allows us to use the string attribute. The string attribute directs
the stub to calculate the string size, eliminating the overhead associated with the size_is parameters.

 Strings

The string attribute indicates that the parameter is a pointer to an array of type char, byte, or w_char.
Like a conformant array, the size of a string parameter is determined at run time. Unlike a conformant
array, the developer does not have to provide the length associated with the array. The string attribute
tells the stub to determine the array size by calling strlen.

A string attribute cannot be used at the same time as the length_is or last_is attributes.

The in, string attribute combination directs the stub to pass the string from client to server only. The
amount of memory allocated on the server is the same as the transmitted string size plus one.

The out, string attributes direct the stub to pass the string from server to client only. The call-by-value
design of the C language insists that all out parameters must be pointers. (The key idea is that by
passing the value of the address, the function can indirectly change the value stored at that address. If
the value itself was passed, the function would only be able to modify its local copy of the value. For a
more extensive explanation of the difference between call by value and call by reference, see any C-
language programming book published by Microsoft Press.)

The out parameter must be a pointer, and by default, all pointer parameters are reference pointers.
The reference pointer does not change during the call. It points to the same memory as before the call.
For string pointers, the additional constraint of the reference pointer means that the client must allocate
sufficient valid memory before making the remote procedure call. The stubs transmit the string
indicated by the out, string attributes into the memory already allocated on the client side.

 in, out, string

The following function prototype uses a single in, out, string parameter for both the input and output
strings. The string first contains patient input and is then overwritten with the doctor response.

void Analyze([in, out, string, size_is(STRSIZE)] char achInOut[]);

This example is similar to the one that employed a single-counted string for both input and output. Like
that example, the size_is attribute determines the number of elements allocated on the server. The
string attribute directs the stub to call strlen to determine the number of transmitted elements.

The client allocates all memory before the call:

/* client */
char achInOut[STRSIZE];
...
gets(achInOut); // get patient input
Analyze(achInOut);
printf("%s\n", achInOut); // display doctor response

Note that the Analyze function no longer must calculate the length of the return string, as it did in the
counted-string example where the string attribute was not used. Now the length is calculated by the
stubs:

/* server */
void Analyze(char *pchInOut)
{
 ...
 Respond(response, pchInOut); // don't need to call strlen
 return; // stubs handle size
}

 in, string and out, string

The following function prototype uses two parameters: an in, string parameter and an out, string
parameter.

void Analyze(
 [in, string] *pszInput,
 [out, string, size_is(STRSIZE)] *pszOutput);

The first parameter is in only. This input string is only transmitted from the client to the server and is
used as the basis for further processing by the server. The string is not modified and is not required
again by the client, so it does not have to be returned to the client.

The second parameter, representing the doctor's response, is out only. This response string is only
transmitted from the server to the client. The allocation size is provided so that the server stubs can
allocate memory for it. Because pszOutput is a ref pointer, the client must have sufficient memory
allocated for the string before the call. The response string is written into this area of memory when the
remote procedure returns.

 Multiple Levels of Pointers

You can use multiple pointers, such as a ref pointer to another ref pointer that points to the character
array.

void Analyze(
 [in, string] char *pszInput,
 [out, string, size_is(STRSIZE)] char **ppszOutput);

When there are multiple levels of pointers, the attributes are associated with the pointer closest to the
variable name. The client is still responsible for allocating any memory associated with the response.

 Summary of Arrays and Pointers

MIDL defines three attributes that can be applied to pointers: full, unique, and reference. The different
classifications help minimize the amount of processing by the stubs and make your distributed program
as efficient as possible.

 Binding and Handles

Binding is the process of creating a logical connection between a client and a server that the client
uses to make remote procedure calls to that server. The binding between client and server is
represented by a data structure called a binding handle.

A binding handle is analogous to a file handle returned by the fopen C run-time library function or a
window handle returned by the function CreateWindow. Like these handles, the binding handle is
opaque; your application cannot use it to directly access and manipulate data about that binding. The
binding handle is a pointer or index into a data structure that is available only to the RPC run-time
libraries. You provide the handle, and the run-time libraries access the appropriate data.

The client obtains a handle by calling RPC run-time functions that bind to the server, or by supplying a
name or UUID to a service that provides the corresponding handle.

This section defines some characteristics of RPC binding handles and demonstrates their use in
sample applications.

Note In addition to binding handles, Microsoft RPC also supports serialization handles used to
encode or decode data. These are used for serialization on a local computer and do not involve remote
binding. For additional information on serialization handles, see Using Encoding Services.

 Binding-Handle Types

MIDL provides several types of handles so you can select the handle type that is best suited for your
application. See Using Encoding Services for additional information on using a primitive handle as a
serializing handle.

· Handles can be parameters that are passed to the remote procedure, or they can be global data
structures that don't appear in the remote function prototype.

· You can declare handles of the primitive handle type handle_t, or you can declare a handle type
packaged in structures with other data.

· Some handles are invisible to the client application and completely managed by the stubs, while
others are declared, defined, and managed by the application.

· A special type of handle, the context handle, allows you to maintain state information on the server
in addition to acting as a binding handle.

The following table summarizes MIDL handle types:

Handle type Characteristics
Primitive A handle of the predefined type handle_t. Note that

serializing handles (which are not binding handles) are
also of the type handle_t. See Serialization Handles
for more information.

Explicit A handle used as a parameter to the remote
procedure. The explicit handle usually appears as the
first parameter for compatibility with DCE.

Implicit A handle defined in the generated header file as a
global variable that is available to the stubs. The
developer defines the handle in the ACF only and
does not include the handle as a parameter to the
remote procedure call.

User-defined A handle of the primitive type handle_t that is created
by a user-supplied function that converts the user-
defined data to the handle.

Auto A handle that is automatically generated by the MIDL
compiler and managed by the client run-time library.
The client stub manages the binding and the handle;
the client application does not require any explicit code
to manage the binding or the handle.

Context A handle that includes information about the state of
the server. The context handle is automatically
associated with specific user-defined functions on the
server.

Handle characteristics can be combined in several ways, producing such types as explicit primitive,
explicit user-defined, implicit primitive, and implicit user-defined handles. You can select the handle
type that is best suited for your application.

 Binding

The server registers its interface, then listens for requests from clients. Clients bind to the server by
making calls to the RPC run-time functions. The most significant distinction between handle types is
whether the application or the stub makes the calls to the RPC run-time functions to manage the
binding handle. This leads to a discussion of two principal types of binding:

· Auto binding
· Application-managed binding

When you use auto binding and auto handles, the stubs automatically call the correct sequence of
functions, and the application can't access the handle at all.

When you use application-managed binding, the client application explicitly calls a sequence of run-
time functions to obtain a valid handle. The application-managed binding category includes all other
types of handles besides auto handles: primitive, user-defined, and context handles.

The following figure shows this categorization of binding handles:

{ewc msdncd, EWGraphic, group10523 0 /a "SDK_a03.bmp"}

 Auto Handles

Auto handles are useful when the application does not require a specific server and when it does not
need to maintain any state information between the client and server. When you use an auto handle,
you don't have to write any client application code to deal with binding and handles. You simply specify
the use of the auto handle in the ACF. The stub then defines the handle and manages the binding.

For example, a time-stamp operation can be implemented using an auto handle. It makes no difference
to the client application which server provides it with the time stamp. It can accept the time from any
available server.

You specify the use of auto handles by including the auto_handle attribute in the ACF. The time-stamp
example uses the following ACF:

/* ACF file */
[auto_handle]
interface autoh
{
}

Note Auto handles are not supported for the Macintosh platform.

The auto handle is used by default when the ACF does not include any other handle attribute and when
the remote procedures do not use explicit handles. The auto handle is also used by default when the
ACF is not present.

The remote procedures are specified in the IDL file. The auto handle must not appear as an argument
to the remote procedure:

/* IDL file */
[uuid (6B29FC40-CA47-1067-B31D-00DD010662DA),
 version(1.0),
 pointer_default(unique)
]
interface autoh
{
void GetTime([out] long * time);
void Shutdown(void);
}

The benefit of the auto handle is that the developer does not have to write any code to manage the
handle; the stubs manage the binding automatically. This is significantly different from the Hello, World
example, where the client manages the implicit primitive handle defined in the ACF and must call
several run-time functions to establish the binding handle.

Here, the stubs do all the work and the client need only include the generated header file AUTO.H to
obtain the function prototypes for the remote procedures. The client application calls to the remote
procedures appear just as if they were calls to local procedures:

/* auto handle client application (fragment) */

#include <stdio.h>
#include <time.h>
#include "auto.h" // header file generated by the MIDL compiler

void main(int argc, char **argv)

{
 time_t t1;
 time_t t2;
 char * pszTime;
 ...

 RpcTryExcept {
GetTime(&t1); // GetTime is a remote procedure
GetTime(&t2);

pszTime = ctime(&t1);
printf("time 1= %s\n", pszTime);

pszTime = ctime(&t2);
printf("time 2= %s\n", pszTime);

Shutdown(); // Shutdown is a remote procedure
}
RPCExcept(1) {
...
}
RPCEndExcept

 exit(0);
}

The client application does not have to make any explicit calls to the client run-time functions. Those
calls are managed by the client stub.

The server side of the application that uses auto handles must call the function RpcNsBindingExport
to make binding information about the server available to clients. The auto handle requires a location
service running on a server that is accessible to the client. The Microsoft implementation of the name
service, the Microsoft Locator, manages auto handles. The server calls the following run-time functions:

/* auto handle server application (fragment) */

#include "auto.h" //header file generated by the MIDL compiler

void main(void)
{
 RpcUseProtseqEp(...);
 RpcServerRegisterIf(...);
 RpcServerInqBindings(...);
 RpcNsBindingExport(...);
 ...
}

The calls to the first two functions are similar to the Hello, World example; these functions make
information about the binding available to the client. The calls to the RpcServerInqBindings and
RpcNsBindingExport functions put the information in the name-service database. The call to
RpcServerInqBindings fills the vector with valid data before the call to the export function. After the
data has been exported to the database, the client (or client stubs) can call
RpcNsBindingImportBegin and RpcNsBindingImportNext to obtain this information.

The calls to RpcServerInqBindings and RpcNsBindingExport and their associated data structures
appear as follows:

RPC_BINDING_VECTOR * pBindingVector;
RPCSTATUS status;

status = RpcServerInqBindings(&pBindingVector);

status = RpcNsBindingExport(
fNameSyntaxType, // name syntax type
pszAutoEntryName, // nsi entry name
autoh_ServerIfHandle, // if server handle
pBindingVector, // set in previous call
NULL); // UUID vector

Note that the RpcServerInqBindings parameter &pBindingVector is a pointer to a pointer to
RPC_BINDING_VECTOR.

The previous example demonstrates the parameters to the RpcNsBindingExport function that should
be used with the Microsoft Locator, which is the Microsoft implementation of the name-service
functions provided with Microsoft RPC.

For more information about the Microsoft Locator, see Run-time RPC Functions.

To remove the exported interface from the name-service database completely, the server calls
RpcNsBindingUnexport:

status = RpcNsBindingUnexport(
 fNameSyntaxType,
 pszAutoEntryName,
 auto_ServerIfHandle,
 NULL); // unexport handles only

The unexport function should be used only when the service is being permanently removed. It should
not be used when the service is temporarily disabled, such as when the server is shut down for
maintenance. A service can be registered with the name-service database but be unavailable because
the server is temporarily off line. The client application should contain exception-handling code for such
a condition. The calls to the remote procedures are surrounded by the exception-handling code.

For more information about exception handling, see Run-time RPC Functions.

 Application-Initiated Binding

Applications bind to the server and obtain a handle that is used by the stubs to make remote procedure
calls. When the client is finished making remote calls, the application can unbind from the server and
invalidate the handle. A client application that manages its own binding and handles can obtain a
handle in two ways:

· Call RpcBindingFromStringBinding
· Call the name-service functions RpcNsBindingImportBegin, RpcNsBindingImportNext, and

RpcNsBindingImportDone

When the client explicitly calls RpcBindingFromStringBinding, the client must supply certain
information to identify the server:

· The globally unique identifier (GUID) or UUID of the object
· The transport type over which to communicate, such as named pipes or TCP/IP
· The network address, which for the named-pipe transport type is the server name
· The endpoint, which for the named-pipe transport contains the pipe name

The object UUID and the endpoint information are optional.

The client or client stub communicates this identifying information to the RPC run-time library by means
of a data structure called the string binding, which combines these elements using a specified syntax.

In the following examples, the pszNetworkAddress parameter and other parameters that include
embedded backslashes can appear strange at first glance. In the C programming language, the
backslash is an escape character, so two backslashes are needed to represent each single literal
backslash character. The string-binding data structure must contain four backslash characters to
represent the two literal backslash characters that precede the server name. The following example
shows eight backslashes so that four literal backslash characters will appear in the string-binding data
structure after processing by the sprintf function.

/* client application */

char * pszUuid = "6B29FC40-CA47-1067-B31D-00DD010662DA";
char * pszProtocol = "ncacn_np";
char * pszNetworkAddress = "\\\\\\\\servername";
char * pszEndpoint = "\\\\pipe\\\\pipename";
char * pszString;

int len = 0;

len = sprintf(pszString, "%s", pszUuid);
len += sprintf(pszString + len, "@%s:", pszProtocolSequence);
if (pszNetworkAddress != NULL)
 len += sprintf(pszString + len, "%s", pszNetworkAddress);
len += sprintf(pszString + len, "[%s]", pszEndpoint);

In the following example, the string binding appears as follows:

6B29FC40-CA47-1067-B31D-00DD010662DA@ncacn_np:\\\\servername[\\pipe\\
pipename]

The client then obtains the binding handle by calling RpcBindingFromStringBinding:

RPC_BINDING_HANDLE hBinding;

status = RpcBindingFromStringBinding(pszString, &hBinding);
...

A convenience function, RpcStringBindingCompose, assembles the object UUID, protocol sequence,
network address, and endpoint into the correct syntax for the call to RpcBindingFromStringBinding.
You don't have to worry about putting the ampersand and colon and the various components for each
protocol sequence in the right place; you just supply the strings as parameters to the function. The run-
time library even allocates the memory needed for the string binding.

char * pszNetworkAddress = "\\\\server";
char * pszEndpoint = "\\pipe\\pipename";
status = RpcStringBindingCompose(
 pszUuid,
 pszProtocolSequence,
 pszNetworkAddress,
 pszEndpoint,
 pszOptions,
 &pszString);
...
status = RpcBindingFromStringBinding(
 pszString,
 &hBinding);
...

Another convenience function, RpcBindingToStringBinding, takes a binding handle as input and
produces the corresponding string binding.

 Handles Managed by the Application

The handles managed by an application can be classified into two broad categories: context handles
and binding handles. Context handles are used to maintain state information, while binding handles
contain only information about the binding. Note that a serialization application also manages
serialization handles, however, these are not binding handles. See Using Encoding Services for
additional information on serialization handles.

 Context Handles

A context handle contains context information created and returned by the server. Every application
that uses a context handle must also specify an alternate method of binding, since an initial binding
must be used before the server can return a context handle.

You create a context handle by specifying the context_handle attribute on a data-type definition in the
IDL file. A context handle can also be associated with a special function called the context rundown
routine, which is called by the server run-time library whenever an active binding to a client is broken
unexpectedly.

In an interface that uses a context handle, if you do not also specify a primary implicit handle to contain
the initial binding, the MIDL compiler generates an auto handle for you. It also generates the code in
the client stub to perform auto binding.

For example, a file handle represents state information; it keeps track of the current location in the file.
The file-handle parameter to a remote procedure call is packaged as a context handle. First, we define
a structure that contains the file name and the file handle, as follows:

/* cxhndlp.c (fragment) */
typedef struct {
 FILE * hFile;
 char achFile[256];
} FILE_CONTEXT_TYPE;

The IDL file defines the handle as a void * type and casts it to the required type on the server:

/* cxhndl.idl (fragment) */
typedef [context_handle] void * PCONTEXT_HANDLE_TYPE;
typedef [ref] PCONTEXT_HANDLE_TYPE * PPCONTEXT_HANDLE_TYPE;

The first remote procedure call initializes the handle and sets it to a non-null value. You must define the
context with an out directional attribute in the IDL file:

/* cxhndl.idl (fragment) */
short RemoteOpen([out] PPCONTEXT_HANDLE_TYPE pphContext,
 [in, string] unsigned char * pszFile);

The remote procedure RemoteOpen opens a file on the server:

/* cxhndlp.c (fragment)*/
short RemoteOpen(PPCONTEXT_HANDLE_TYPE pphContext,

 unsigned char *pszFileName)
{
 FILE *hFile;
 FILE_CONTEXT_TYPE *pFileContext;

 if ((hFile = fopen(pszFileName, "r")) == NULL) {
 *pphContext = (PCONTEXT_HANDLE_TYPE) NULL;

return(-1);
 }
 else {
 pFileContext = (FILE_CONTEXT_TYPE *)
 midl_user_allocate(sizeof(FILE_CONTEXT_TYPE));
 pFileContext->hFile = hFile;
 strcpy(pFileContext->achFile, pszFileName);
 *pphContext = (PCONTEXT_HANDLE_TYPE) pFileContext;

return(0);

 }
}

After the client calls RemoteOpen, the context handle contains valid data and is used as the binding
handle. The client can free the explicit handle used to launch the context handle:

/* cxhndlc.c (fragment)*/
printf("Calling the remote procedure RemoteOpen\n");
if (RemoteOpen(&phContext, pszFileName) < 0) {

printf("Unable to open %s\n", pszFileName);
Shutdown();
exit(2);

}

/* Now the context handle also manages the binding. */
status = RpcBindingFree(&hStarter);
printf("RpcBindingFree returned 0x%x\n", status);
if (status)

exit(status);

After the RemoteOpen function returns a valid, non-null context handle, subsequent calls use the
context handle as an in pointer:

/* cxhndl.idl (fragment)*/
short RemoteRead(

[in] PCONTEXT_HANDLE_TYPE phContext,
[out] unsigned char achBuf[BUFSIZE],
[out] short * pcbBuf);

short RemoteClose([in, out] PPCONTEXT_HANDLE_TYPE pphContext);

The client application reads the file until it encounters the end of the file; it then closes the file. The
context handle appears as a parameter in the RemoteRead and RemoteClose functions.

/* cxhndlc.c (fragment)*/
printf("Calling the remote procedure RemoteRead\n");
while (RemoteRead(phContext, pbBuf, &cbRead) > 0) {

for (i = 0; i < cbRead; i++)
 putchar(*(pbBuf+i));

}

printf("Calling the remote procedure RemoteClose\n");
if (RemoteClose(&phContext) < 0) {

printf("Close failed on %s\n", pszFileName);
exit(2);

}

You must supply a context rundown routine that can be invoked when the connection is lost. A context
handle will run down when the connection has closed and no RPC calls are in progress using the
context handle. The context rundown routine uses the following syntax:

void type_rundown(type)

type
Specifies the context-handle type.

In the following example, the context rundown routine cleans up by closing the file handle.

/* The rundown routine is associated with the contxt handle type. */

void __RPC_USER PCONTEXT_HANDLE_TYPE_rundown(PCONTEXT_HANDLE_TYPE phContext)
{
 FILE_CONTEXT_TYPE *pFileContext;

 printf("Context rundown routine\n");
 if (phContext)
 {
 pFileContext = (FILE_CONTEXT_TYPE *) phContext;
 if (pFileContext->hFile != NULL)
 fclose(pFileContext->hFile);
 midl_user_free (phContext);
 }
}

 Binding Handles

Every binding handle is either primitive or user defined, according to its data type. In addition to being
primitive or user defined, every handle is either implicit or explicit, according to the way your application
specifies the handle for each remote procedure call. These types combine to specify four kinds of
binding handles:

{ewc msdncd, EWGraphic, group10523 1 /a "SDK_a12.bmp"}

 Primitive Handles

A primitive handle is a handle with the data type handle_t. Ultimately, every handle is mapped to a
primitive handle by the stubs.

Like a file handle or a window handle, a primitive handle is opaque; it contains information that is
meaningful to the RPC run-time library but is not meaningful to your application.

The primitive handle is defined in the client source code as a handle of the base type handle_t using a
statement such as the following:

handle_t hMyHandle; // primitive handle

 User-Defined Handles

A user-defined handle, also called a customized or generic handle, is a handle of a user-defined data
type. You create a user-defined handle when you specify the handle attribute on a type definition in
your IDL file.

You must also supply bind and unbind routines that the client stub calls at the beginning and end of
each remote procedure call. The bind and unbind routines use the following function prototypes:

Function prototype Description
handle_t type_bind(type) Binding routine
void type_unbind(type, handle_t) Unbinding routine

The following example shows how the user-defined handle is defined in the IDL file:

/* usrdef.idl */
[uuid(20B309B1-015C-101A-B308-02608C4C9B53),
version(1.0),
pointer_default(unique)
]
interface usrdef
{
typedef struct _DATA_TYPE {
 unsigned char * pszUuid;
 unsigned char * pszProtocolSequence;
 unsigned char * pszNetworkAddress;
 unsigned char * pszEndpoint;
 unsigned char * pszOptions;
} DATA_TYPE;

typedef [handle] DATA_TYPE * DATA_HANDLE_TYPE;
void UsrdefProc(

[in] DATA_HANDLE_TYPE hBinding,
[in, string] unsigned char * pszString);

void Shutdown([in] DATA_HANDLE_TYPE hBinding);
}

The user-defined bind and unbind routines appear in the client application. In the following example,
the bind routine converts the string-binding information to a binding handle by calling
RpcBindingFromStringBinding. The unbind routine frees the binding handle by calling
RpcBindingFree.

The name of the user-defined binding handle, DATA_HANDLE_TYPE, appears as part of the name of
the functions and appears as the parameter type in the function parameters:

/* This _bind routine is called by the client stub at the */
/* beginning of each remote procedure call */

RPC_BINDING_HANDLE __RPC_USER DATA_HANDLE_TYPE_bind(DATA_HANDLE_TYPE dh1)
{
 RPC_BINDING_HANDLE hBinding;
 RPC_STATUS status;

unsigned char *pszStringBinding;

 status = RpcStringBindingCompose(
 dh1.pszUuid,
 dh1.pszProtocolSequence,
 dh1.pszNetworkAddress,
 dh1.pszEndpoint,
 dh1.pszOptions,
 &pszStringBinding);
 ...

 status = RpcBindingFromStringBinding(
 pszStringBinding,
 &hBinding);
 ...

 status = RpcStringFree(&pszStringBinding);
 ...

 return(hBinding);
}

/* This _unbind routine is called by the client stub at the end */
/* after each remote procedure call. */
void __RPC_USER DATA_HANDLE_TYPE_unbind(DATA_HANDLE_TYPE dh1,
 RPC_BINDING_HANDLE h1)
{
 RPC_STATUS status;
 status = RpcBindingFree(&h1);
 ...
}

 Implicit Handles

An implicit handle is a handle that is stored in a global variable. You usually initialize the handle, then
don't refer to it again until you destroy the binding. Each remote procedure call with an explicit binding-
handle parameter uses the implicit handle. You create an implicit handle by specifying the
implicit_handle attribute in the ACF for an interface:

/* ACF file (complete) */

[implicit_handle(handle_t hHello)
]
interface hello
{
}

The application uses the implicit handle only as a parameter to the RPC functions. The implicit handle
is not used as a parameter to the remote procedure call:

status = RpcBindingFromStringBinding(
 pszStringBinding,
 &hHello);
...
status = RpcBindingFree(hHello);
...

 Explicit Handles

An explicit handle is a handle that the client application specifies explicitly as a parameter to each
remote procedure call. To conform to the OSF standard, the handle must be specified as the first
parameter on each remote procedure. You create an explicit handle by declaring the handle as a
parameter to the remote operations in the IDL file. The Hello, World example can be redefined to use
an explicit handle as follows:

/* IDL file for explicit handles */

[uuid(20B309B1-015C-101A-B308-02608C4C9B53),
 version(1.0)
]
interface hello
{
void HelloProc([in] handle_t h1,
 [in, string] char * pszString);
}

 Summary of Binding and Handles

Binding is the process of making a logical connection from a client to a server. A handle is a data
structure that represents a binding. It is analogous to a file handle or a window handle.

There are two principal types of binding: automatic and application managed. Auto binding requires a
locator service on the server and does not maintain state information between client and server.
Application-managed binding is controlled using the string-binding data structure or the name service
to obtain a handle.

Context handles maintain state information on the server. The server can supply a context rundown
routine, which is called whenever an active binding to a client is broken unexpectedly.

If you use a context handle and do not specify a primary implicit handle, the MIDL compiler generates
an auto handle to be used for the initial binding. It also generates the code in the client stub to perform
auto binding.

Serialization handles are primitive handles used for data serialization. They cannot be used for binding.

 Memory Management

With RPC, a single conceptual execution thread can be processed by two or more processing threads.
These processing threads can run on the same computer or on different computers. RPC relies on the
ability to simulate the client thread's address space in the server thread's address space and to return
data, including new and changed data, from the server to the client memory.

Memory management in the context of RPC involves:

· How the memory needed to simulate a single conceptual address space is allocated and
deallocated in the different address spaces of the client and server's threads.

· Which software component is responsible for managing memory ¾ the application or the MIDL-
generated stub.

· MIDL attributes that affect memory management: directional attributes, pointer attributes, array
attributes, and the ACF attributes byte_count, allocate, and enable_allocate.

As a developer, you can choose among several methods for selecting the way that memory is allocated
and freed. Consider a complex data structure, such as a linked list or a tree, that consists of nodes
connected with pointers. You can apply attributes that select the following models:

· Node-by-node allocation and deallocation
· A single, linear buffer for the entire tree allocated by the stub
· A single, linear buffer for the entire tree allocated by the client application
· Persistent storage on the server

Each of these models is described in detail in this chapter.
This section does not describe the use of different Intel-architecture memory models. For information
about using different Intel-architecture memory models, see Building RPC Applications.

 How Memory Is Allocated and Deallocated

Typically, stub code generated by the MIDL compiler calls user-supplied functions to allocate and free
memory. These functions, named midl_user_allocate and midl_user_free, must be supplied by the
developer and linked with the application.

All applications must supply implementations of midl_user_allocate and midl_user_free, even though
the names of these functions might not appear explicitly in the stubs.

These user-supplied functions must match a specific defined function prototype but otherwise can be
implemented in any way that is convenient or useful for the application.

 midl_user_allocate

void __RPC_FAR * __RPC_USER midl_user_allocate (size_t cBytes);

cBytes
Specifies the count of bytes to allocate.

The midl_user_allocate function must be supplied by both client applications and server applications.
Applications and generated stubs call midl_user_allocate directly or indirectly to manage allocated
objects:

· The client and server applications should call midl_user_allocate to allocate memory for the
application ¾ for example, when creating a new node.

· The server stub calls midl_user_allocate when unmarshalling data into the server address space.
· The client stub calls midl_user_allocate when unmarshalling data from the server that is referenced

by an out pointer. Note that for in, out, unique pointers, the client stub calls midl_user_allocate
only if the unique pointer value was NULL on input and changes to a non-null value during the call.
If the unique pointer was non-null on input, the client stub writes the associated data into existing
memory.

If midl_user_allocate fails to allocate memory, it should return a null pointer or raise a user-defined
exception.

The midl_user_allocate function should return a pointer as follows:

· For Windows NT running on Intel platforms, the pointer is 4 bytes aligned.
· For Windows NT running on MIPS and Alpha platforms, the pointer is 8 bytes aligned.
· For Windows 3.x and MS-DOS platforms, the pointer is 2 bytes aligned.
For example, the sample programs provided with the Win32 SDK implement midl_user_allocate in
terms of the C function malloc:

void __RPC_FAR * __RPC_USER midl_user_allocate(size_t cBytes)
{
 return((void __RPC_FAR *) malloc(cBytes));
}

Note If the Rpcss package is enabled (for example, as the result of using the enable_allocate
attribute), RpcSmAllocate should be used to allocate memory on the server side. For additional
information on enable_allocate, see MIDL Reference.

 midl_user_free

void __RPC_USER midl_user_free(void __RPC_FAR * pBuffer);

pBuffer
Specifies a pointer to the memory that is to be freed.

The midl_user_free function must be supplied by both client applications and server applications. The
midl_user_free function must be able to free all storage allocated by midl_user_allocate.

Applications and stubs call midl_user_free when dealing with allocated objects:

· The server application should call midl_user_free to free memory allocated by the application ¾ for
example, when deleting a pointed-at node.

· The server stub calls midl_user_free to release memory on the server after marshalling all out
arguments, in, out arguments, and the function return value.

For example, the RPC Win32 sample program that displays "Hello, world" implements midl_user_free
in terms of the C function free:

void __RPC_USER midl_user_free(void __RPC_FAR * p)
{
 free(p);
}

Note If the Rpcss package is enabled (for example, as the result of using the enable_allocate
attribute), RpcSmFree can be used to free memory. For additional information on enable_allocate,
see MIDL Reference.

 Memory-Management Models

A developer can choose from among several methods that select how memory is allocated and freed.
Consider a complex data structure, such as a linked list or tree, that consists of nodes connected with
pointers. You can apply attributes that select the following models:

· Node-by-node allocation and deallocation
· A single linear buffer allocated by the stub for the entire tree
· A single linear buffer allocated by the client application for the entire tree
· Persistent storage on the server
· Rpcss Memory Management Model

Each of these models is described in detail in the following topics.

 Node-by-Node Allocation and Deallocation

Node-by-node allocation and deallocation by the stubs is the default method of memory management
for all parameters on both the client and the server. On the client side, the stub allocates each node
with a separate call to midl_user_allocate. On the server side, rather than calling
midl_user_allocate, private memory is used whenever posible. If midl_user_allocate is called, the
server stubs will call midl_user_free to free the data. In most cases, using node-by-node allocation
and deallocation instead of using allocate (all_nodes) will result in increased performance of the
server side stubs.

 Stub-Allocated Buffers

Rather than forcing a distinct call for each node of the tree or graph, you can direct the stubs to
compute the size of the data and to allocate and free memory by making a single call to
midl_user_allocate or midl_user_free. The ACF attribute allocate(all_nodes) directs the stubs to
allocate or free all nodes in a single call to the user-supplied memory-management functions.

For example, consider the following binary tree data structure:

/* IDL file fragment */
typedef struct _TREE_TYPE {
 short sNumber;
 struct _TREE_TYPE * pLeft;
 struct _TREE_TYPE * pRight;
} TREE_TYPE;

typedef TREE_TYPE * P_TREE_TYPE;

The ACF attribute allocate(all_nodes) applied to this data type appears in the typedef declaration in
the ACF as follows:

/* ACF file fragment */
typedef [allocate(all_nodes)] P_TREE_TYPE;

The allocate attribute can only be applied to pointer types. The allocate ACF attribute is a Microsoft
extension to DCE IDL and requires the use of the MIDL compiler switch /ms_ext at MIDL compilation
time.

When allocate(all_nodes) is applied to a pointer type, the stubs generated by the MIDL compiler
traverse the specified data structure to determine the allocation size. The stubs then make a single call
to allocate the entire amount of memory needed by the graph or tree. A client application can free
memory much more efficiently by making a single call to midl_user_free. However, server stub
performance is generally increased when using node-by-node memory allocation since the server
stubs can often use private memory that requires no allocations.

For additional information, see Node-by-Node Allocation and Deallocation.

 Application-Allocated Buffer

The ACF attribute byte_count directs the stubs to use a preallocated buffer that is not allocated or
freed by the client support routines. The byte_count attribute is applied to a pointer or array parameter
that points to the buffer. It requires a parameter that specifies the buffer size in bytes.

The client-allocated memory area can contain complex data structures with multiple pointers. Because
the memory area is contiguous, the application does not have to make many calls to individually free
each pointer and structure. Like the allocate(all_nodes) attribute, the memory area can be allocated
or freed with one call to the memory-allocation routine or the free routine. Unlike the
allocate(all_nodes) attribute, however, the buffer parameter is not managed by the client stub, but by
the client application.

The buffer must be an out-only parameter. The buffer length in bytes must be an in-only parameter.

The byte_count attribute can only be applied to pointer types. The byte_count ACF attribute is a
Microsoft extension to DCE IDL and requires the MIDL compiler switch /ms_ext at MIDL compilation
time.

In the following example, the parameter pRoot uses byte count:

/* function prototype in IDL file (fragment) */
void SortNames(
 [in] short cNames,
 [in, size_is(cNames)] STRINGTYPE pszArray[],
 [in] short cBytes,
 [out, ref] P_TREE_TYPE pRoot /* tree with sorted data */
);

The byte_count attribute appears in the ACF as follows:

/* ACF file (fragment) */
SortNames([byte_count(cBytes)] pRoot);

The client stub generated from these IDL and ACF files does not allocate or free the memory for this
buffer. The server stub allocates and frees the buffer in a single call using the provided size parameter.
If the data is too big for the specified buffer size, an exception is raised.

 Persistent Storage on the Server

You can optimize your application so that the server stub does not free memory on the server at the
conclusion of a remote procedure call. For example, when a context handle will be manipulated by
several remote procedures, you can use the ACF attribute allocate(dont_free) to retain the allocated
memory on the server.

The allocate(dont_free) attribute is added to the ACF typedef declaration in the ACF:

/* ACF file fragment */
typedef [allocate(all_nodes, dont_free)] P_TREE_TYPE;

When the allocate(dont_free) attribute is specified, the tree data structure is allocated, but not freed,
by the server stub. When you make the pointers to such persistent data areas available to other
routines ¾ for example, by copying the pointers to global variables ¾ the retained data is accessible to
other server functions. The allocate(dont_free) attribute is especially useful for maintaining persistent
pointer structures as part of the server state information associated with a context-handle type.

 Rpcss Memory Management Model

The Rpcss package is the recommended memory management model. It provides the best overall stub
performance for memory management. The default allocator/deallocator pair used by the stubs and
runtime when allocating memory on behalf of the application is midl_user_allocate/midl_user_free.
However, you can choose the Rpcss package instead of the default by using the ACF attribute
enable_allocate.

The Rpcss package is enabled for MIDL-generated stubs automatically whenever full pointers are
used, the arguments require memory allocation, or as a result of using the enable_allocate attribute.
In /ms_ext mode, the Rpcss package is enabled only when the enable_allocate attribute is used. The
enable_allocate attribute enables the Rpcss environment by the server side stubs. The client side is
not affected in default mode; in /ms_ext mode, the client side becomes alerted to the possibility that
the Rpcss package may be enabled.

When the Rpcss package is enabled, allocation of memory on the server side is accomplished with the
private Rpcss memory management allocator and deallocator pair. You can allocate memory using the
same mechanism by calling RpcSmAllocate (or RpcSsAllocate). Upon return from the server stub, all
the memory allocated by the Rpcss package is automatically freed. The following example shows how
to enable the Rpcss package:

/* ACF file fragment */

[implicit_handle(handle_t GlobalHandle),
enable_allocate

]
{
}

/*Server management routine fragment. Replaces p=midl_user_allocate(size);
*/

p=RpcSsAllocate(size); /*raises exception */
p=RpcSmAllocate(size, &status); /*returns error code */

You can also enable the memory management environment for your application by calling the
RpcSmEnableAllocate routine (and disable it by calling the RpcSmDisableAllocate routine). Once
enabled, application code can allocate and deallocate memory by calling functions from the RpcSs* or
RpcSm* package.

 Who Manages Memory?

Generally, the stubs are responsible for packaging and unpackaging data, allocating and freeing
memory, and transferring the data to and from memory. In some cases, however, the application is
responsible for allocating and freeing memory. The following factors determine which component is
responsible for memory management:

· Whether the pointer is a top-level ref parameter or whether the pointer is embedded within another
structure

· Directional attributes applied to the parameter
· Pointer attributes applied to the parameter
· Function return values

 Top-Level and Embedded Pointers

When discussing how pointers and their associated data elements are allocated in Microsoft RPC, you
have to differentiate between top-level pointers and embedded pointers. It is also often useful to refer
to the set of all pointers that are not top-level pointers.

Top-level pointers are those that are specified as the names of parameters in function prototypes. Top-
level pointers and their referents are always allocated on the server.

Embedded pointers are pointers that are embedded in data structures, such as arrays, structures, and
unions.

When embedded pointers are out-only and null on input, the server application can change their
values to non-null. In this case, the client stubs allocate new memory for this data.

If the embedded pointer is not null on the client before the call, the stubs do not allocate memory on the
client on return. Instead, the stubs attempt to write the memory associated with the embedded pointer
into the existing memory on the client associated with that pointer, overwriting the data already there.

Out-only embedded pointers are discussed in Combining Pointer and Directional Attributes.

The term non-top-level pointers refers to all pointers that are not specified as parameter names in the
function prototype, including both embedded pointers and multiple levels of nested pointers.

 Directional Attributes Applied to the Parameter

The directional attributes in and out determine how the client and server allocate and free memory.
The following table summarizes the effect of directional attributes on memory allocation:

Direction
al
attribute

Memory on client Memory on server

in Client application must
allocate before call.

Server stub allocates.

out Client stub allocates on
return.

Server stub allocates top-
level pointer only; server
application must allocate all
embedded pointers. Server
also allocates new data as
needed.

in, out Client application must
allocate initial data
transmitted to server; client
stub allocates additional data.

Server stub allocates; server
application allocates new data
as needed.

The following table summarizes the effect of directional attributes on memory deallocation:

Directional
attribute Memory on client Memory on server
(all cases) Not freed Freed by server stubs on return

(subject to ACF attribute
allocate)

Note that for out-only parameters, MIDL allocates only the memory required for the top-level pointer
parameter. The generated stub does not chase, or dereference, subsequent pointers that are part of
the out-only data structure. The server application must allocate and initialize all such pointers.

 Length, Size, and Directional Attributes

The size-related attributes max_is and size_is determine how many array elements the server stub
allocates on the server.

The length-related attributes length_is, first_is, and last_is determine how many elements are
transmitted to both the server and the client.

Different directional attribute(s) can be applied to a declarator and the parameter specified by a field
attribute. However, some combinations of different directional attributes can cause errors when they
are applied to the declarator and to the field attribute parameter.

Consider a procedure with two parameters, an array and the transmitted length of the array. The
italicized term dir_attr refers to the directional attribute applied to the parameter:

Proc1(
 [dir_attr] short * plength;
 [dir_attr, length_is(pLength)] short array[MAX_SIZE]);

The MIDL compiler behavior for each combination of directional attributes is described below:

Arra
y

Length
parameter

Stub actions during call
from client to server

Stub actions on return
from server to client

in in Transmit the length and
the number of elements
indicated by the parameter.

No data transmitted.

in out Not legal; MIDL compiler
error.

Not legal; MIDL
compiler error.

in in, out Transmit the length and
the number of elements
indicated by the length
parameter.

Transmit the length
only.

out in Transmit the length.
If array size is fixed,
allocate the array size on
the server, but transmit no
elements.
If array size is not bound,
not legal: MIDL compiler
error.

Transmit the number of
elements indicated by
the length.
Note that the length can
be changed and can
have a different value
from the value on the
client. Do not transmit
the length.

out out Allocate space for the
length parameter on the
server but do not transmit
the parameter.
If the array size is fixed,
allocate the array size on
the server, but transmit no
elements.
If array size is not fixed,
not legal: MIDL compiler
error.

Transmit the length and
the number of elements
indicated by the length
as set by the server
application.

out in, out Transmit the length Transmit the length.

parameter.
If the array size is bound,
allocate the array size on
the server, but transmit no
elements.
If array size is not bound,
not legal: MIDL compiler
error.

Transmit the number of
array elements
indicated by the length.

in,
out

in Transmit the length and
the number of elements
indicated by the parameter.

Do not transmit the
length.
Transmit the number of
elements indicated by
the length.
Note that the length can
be changed and can
have a different value
from the original value
on the client.

in,
out

out Not legal; MIDL compiler
error.

Not legal; MIDL
compiler error.

in,
out

in, out Transmit the length and
the number of elements
indicated by the parameter.

Transmit the length and
the number of elements
indicated by the
parameter.

In general, you should not modify the length or size parameters on the server side. If you change the
length parameter, you can orphan memory. For more information, see Memory Orphaning.

 Pointer Attributes Applied to the Parameter

Each pointer attribute (ref, unique, and ptr) has characteristics that affect memory allocation. The
following table summarizes these characteristics:

Pointer attribute Client Server
Reference (ref) Client application must

allocate.
Special handling
needed for for out-only
non-top-level pointers.

Unique (unique) If parameter, client
application must
allocate; if embedded,
can be null.
Change from null to
non-null causes client
stub to allocate; change
from non-null to null can
cause orphaning.

Full (ptr) If parameter, client
application must
allocate; if embedded,
can be null.
Change from null to
non-null causes client
stub to allocate; change
from non-null to null can
cause orphaning.

The ref attribute indicates that the pointer points to valid memory. By definition, the client application
must allocate all the memory the reference pointers require.

The unique pointer can change from null to non-null. If the unique pointer changes from null to non-null,
new memory is allocated on the client. If the unique pointer changes from non-null to null, orphaning
can occur. For more information, see Memory Orphaning.

 Combining Pointer and Directional Attributes

A few caveats apply to certain combinations of directional attributes and pointer attributes.

Embedded out-Only Reference Pointers

When you use out-only reference pointers in Microsoft RPC, the generated server stubs allocate only
the first level of pointers accessible from the reference pointer. Pointers at deeper levels are not
allocated by the stubs but must be allocated by the server application layer.

Consider an out-only array of reference pointers:

/* IDL file (fragment) */
typedef [ref] short * PREF;

Proc1([out] PREF array[10]);

In the preceding example, the server stub allocates memory for ten pointers and sets the value of each
pointer to null. The server application must allocate the memory for the ten short integers that are
referenced by the pointers and must set the ten pointers to point to the integers.

When the out-only data structure includes nested reference pointers, the server stubs allocate only the
first pointer accessible from the reference pointer.

/* IDL file (fragment) */
typedef struct {
 [ref] small * psValue;
} STRUCT1_TYPE;

typedef struct {
 [ref] STRUCT1_TYPE * ps1;
} STRUCT_TOP_TYPE;

Proc2([out, ref] STRUCT_TOP_TYPE * psTop);

In the preceding example, the server stubs allocate the pointer psTop and the structure
STRUCT_TOP_TYPE. The reference pointer ps1 in STRUCT_TOP_TYPE is set to null. The server
stub does not allocate every level of the data structure. The server stub does not allocate the
STRUCT1_TYPE or its embedded pointer, psValue.

out-Only Unique or Full Pointer Parameters Not Accepted

Out-only unique or full pointers are not accepted by the MIDL compiler. Such specifications cause the
MIDL compiler to generate an error message.

The automatically generated server stub has to allocate memory for the pointer referent so that the
server application can store data in that memory area. According to the definition of an out-only
parameter, no information about the parameter is transmitted from client to server. In the case of a
unique pointer, which can take the value NULL, the server stub doesn't have enough information to
correctly duplicate the unique pointer in the server's address space, and the stub doesn't have any
information about whether the pointer should point to a valid address or whether it should be set to
NULL. Therefore, this combination is not allowed.

Rather than out, unique or out, ptr pointers, use in, out, unique or in, out, ptr pointers or use
another level of indirection, such as a reference pointer that points to the valid unique or full pointer.

 Function Return Values

Function return values are similar to out-only parameters because their data is not provided by the
client application, but they are managed differently. Unlike out-only parameters, they are not required
to be pointers. The remote procedure can return any valid data type except ref pointers and non-
encapsulated unions.

Function return values that are pointer types are allocated by the client stub with a call to
midl_user_allocate. Accordingly, only the unique or full pointer attribute can be applied to a pointer
function-return type.

 Memory Orphaning

When your distributed application uses an in, out, unique or in, out, ptr pointer parameter, the server
side of the application can change the value of the pointer parameter to NULL. When the server
subsequently returns the null value to the client, memory referenced by the pointer before the remote
procedure call is still present on the client side but is no longer accessible from that pointer, except in
the case of an aliased full pointer. This memory is said to be orphaned.

Memory can also be orphaned whenever the server changes an embedded pointer to a null value. For
example, if the parameter points to a complex data structure such as a tree, the server side of the
application can delete nodes of the tree.

Another situation that can lead to a memory leak involves conformant, varying, and open arrays
containing pointers. When the server application modifies the parameter that specifies the array size or
transmitted range so that it represents a smaller value, the stubs use the smaller value(s) to free
memory. The array elements with larger indices than the size parameter are orphaned. Your application
must free elements outside the transmitted range.

Repeated orphaning of memory on the client without freeing the unused memory can lead to a situation
where the client runs out of available memory resources.

 Summary of Memory Allocation Rules

The following table summarizes key rules regarding memory allocation:

MIDL element Description
Top-level ref pointers Must be non-null pointers.
Function return value New memory always allocated for

pointer return values.
unique, out or ptr, out pointer Not allowed by MIDL.
Non-top-level unique, in, out or
ptr, in, out pointer that changes
from null to non-null

Client stubs allocate new memory on
client on return.

Non-top-level unique, in, out
pointer
that changes from non-null to null

Memory is orphaned on client; client
application is responsible for freeing
memory and preventing leaks.

Non-top-level ptr, in, out pointer
that changes from non-null to null

Memory will be orphaned on client if
not aliased; client application
responsible for freeing and preventing
memory leaks in this case.

ref pointers Client-application layer usually
allocates.

Non-null in, out pointer Stubs attempt to write into existing
storage on client. If string and size
increases beyond size allocated on
the client, will cause a GP-fault on
return.

The following table summarizes the effects of key IDL and ACF attributes on memory management:

MIDL feature Client issues Server issues
allocate
(single_node),
allocate
(all_nodes)

Determines whether one
or many calls are made to
the memory functions

Same as client, except
private memory can often
be used for allocate
(single_node) [in] and
[in,out] data

allocate(free) or
allocate(dont_fre
e)

(None; affects server) Determines whether
memory on the server is
freed after each remote
procedure call

array attributes
max_is and
size_is

(None; affects server) Determines size of
memory to be allocated

byte_count Client must allocate
buffer; not allocated or
freed by client stubs

ACF parameter attribute
determines size of buffer
allocated on server

enable_allocate Usually, none. However,
the client may be using a
different memory
management
environment.

Server uses a different
memory management
environment.
RpcSmAllocate should
be used for allocations.

in attribute Client application
responsible for allocating

Allocated on server by
stubs

memory for data
out attribute Allocated on client by

stubs
out-only pointer must be
ref pointer; allocated on
server by stubs

ref attribute Memory referenced by
pointer must be allocated
by client application

Top-level and first-level
reference pointers
managed by stubs

unique attribute Non-null to null can result
in orphaned memory; null
to non-null causes client
stub to call
midl_user_allocate

(Affects client)

ptr attribute (See unique) (See unique)

 Using Encoding Services

Microsoft RPC supports two methods for encoding and decoding, or "serializing," data. You can
serialize on a procedure or type basis. Serialization means that the data is marshalled to and
unmarshalled from buffers that you control. This differs from the traditional usage of RPC, in which the
stubs and the RPC run-time library have full control of the marshalling buffers, and the process is
transparent to you. You can use the buffer for storage on a permanent media, encryption, and so on.
When encoding, the data is marshalled to a buffer, and the buffer is passed to you. When decoding,
you supply a marshalling buffer with data in it, and the data is unmarshalled from the buffer to memory.

When you use procedure serialization, MIDL generates a serialization stub for the procedure decorated
with serialization attributes. When you call this routine, you execute a serialization call instead of a
remote call. The procedure arguments are marshalled to or unmarshalled from a buffer in the usual
way, and you control the buffers.

In contrast, when type serialization occurs (a type is labelled with serialization attributes), MIDL
generates routines to size, encode and decode objects of that type. To serialize data, you must call
these routines in the appropriate way. Type serialization is a Microsoft extension and is only supported
when using /ms_ext mode. By using the encode and decode attributes as interface attributes, RPC
applies encoding to all the types and routines defined in the IDL file.

Note You must supply adequately aligned buffers when using encoding services. The beginning of the
buffer must be aligned at 8. For procedure serialization, each procedure call must marshal into or
unmarshal from a buffer position aligned at 8. For type serialization, sizing, encoding and decoding
must start at a position aligned at 8.

 Procedure Encoding and Decoding

When you use procedure encoding and decoding, a procedure, rather than a type, is labeled with the
encode and/or decode attribute. Rather than generating the usual remote stub, the compiler
generates a serialization stub for the routine.

Just as a remote procedure must use a binding handle to make a remote call, a serialization procedure
must use an encoding handle to use encoding services. If an encoding handle is not specified, a
default implicit encoding handle is used to direct the call. On the other hand, if the encoding handle is
specified, either as an explicit handle_t argument of the routine or by using the explicit_handle
attribute, the developer must pass a valid handle as an argument of the call. For additional information
on how to create a valid serialization handle, see Serialization Handles, Examples of Fixed Buffer
Encoding, and Examples of Incremental Encoding.

Microsoft RPC allows for remote and serialization procedures to be mixed in one interface. Use caution
when doing so, however. For implicit handles, the global implicit handle must be set to a valid binding
handle before a remote call, and to a valid encoding or decoding handle before a serialization call.

 Type Encoding and Decoding

The MIDL compiler generates up to three functions for each type to which the encode or decode
attribute is applied. For example, for a user-defined type named MyType, the compiler generates code
for the MyType_Encode, MyType_Decode, and MyType_AlignSize functions. For these functions,
the compiler writes prototypes to STUB.H and source code to STUB_C.C. Generally, you can encode a
MyType object with MyType_Encode and decode an object from the buffer using MyType_Decode.
MyType_AlignSize is used if you need to know the size of the marshalling buffer prior to allocating it.

The following encoding function is generated by the MIDL compiler. It serializes the data for the object
pointed to by pObject. The buffer is obtained according to method specified in the handle. After writing
the serialized data to the buffer, you control the buffer. Note that the handle inherits the status from the
previous calls and the buffers must be aligned at 8.

For an implicit handle:

void MyType_Encode (MyType __RPC_FAR * pObject);

For an explicit handle:

void MyType_Encode (handle_t Handle, MyType __RPC_FAR * pObject);

The following function deserializes the data from the application's storage into the object pointed to by
pObject. You supply a marshalled buffer according to the method specified in the handle. Note that the
handle may inherit the status from the previous calls and the buffers must be aligned at 8.

For an implicit handle:

void MyType_Decode (MyType __RPC_FAR * pObject);

For an explicit handle:

void MyType_Decode (handle_t Handle, MyType __RPC_FAR * pObject);

The following function returns the sum of the size in bytes of the type instance plus any padding bytes
needed to align the data. This enables serializing a set of instances of the same or different types into a
buffer while ensuring that the data for each object is appropriately aligned. MyType_AlignSize
assumes that the instance pointed to by pObject will be marshalled into a buffer beginning at the offset
aligned at 8.

For an implicit handle:

size_t MyType_AlignSize (MyType __RPC_FAR * pObject);

For an explicit handle:

size_t MyType_AlignSize (handle_t Handle, MyType __RPC_FAR * pObject);

 Serialization Handles

An application uses the serializing procedures or the serializing support routines generated by the
MIDL compiler in conjunction with a set of library functions to manipulate an encoding-services handle.
Together, these functions provide a mechanism for customizing the way an application serializes data.
For example, rather than using several I/O operations to serialize a group of objects to a stream, an
application can optimize performance by serializing several objects of different types into a buffer and
then writing the entire buffer in a single operation. The functions that manipulate serialization handles
are independent of the type of serialization you are using.

A serializing handle is required for any serializing operation. All serializing handles must be managed
explicitly by you. First, you create a valid handle with a call to one of the Mes*HandleCreate routines.
Then, after the operation is complete, you release the handle with a call to MesHandleFree. Once the
handle has been created or re-initialized, it represents a valid serialization context and can be used to
encode or decode, depending on the type of the handle. A serialization handle can be either an
encoding or decoding handle. The encoding handles are available in three styles: incremental, fixed
buffer and dynamic buffer. The decoding handles are available in two styles: incremental and (fixed)
buffer. A serialization handle can be used for procedure or type serialization, regardless of the handle
style.

 Implicit Versus Explicit Handles

You can declare a serialization handle with the primitive handle type, handle_t. The serialization
handles can be explicit or implicit. An implicit handle must be specified in the ACF by using the
implicit_handle attribute. Serializing procedures that do not have an explicit handle would then use
the global variable corresponding to that handle in order to access a valid serializing context. When
using type encoding, the generated routines supporting serialization of a particular type use the global
implicit handle to access the serialization context. Note that remote routines may need to use the
implicit handle as a binding handle. Be sure that the implicit handle is set to a valid serializing handle
prior to making a serializing call.

An explicit handle is specified as a parameter of the serialization procedure prototype in the IDL file, or
it can also be specified by using the explicit_handle attribute in the ACF. The explicit handle
parameter is used to establish the proper serialization context for the procedure. To establish the
correct context in the case of type serialization, the compiler generates the supporting routines that use
explicit handle_t parameter as the serialization handle. You must supply a valid serializing handle
when calling a serialization procedure or serialization type support routine.

 Serialization Styles

There are three styles you can use to manipulate serialization handles. These are: fixed buffer,
dynamic buffer, and incremental. Regardless of the style you use, you must create either an encoding
or decoding handle, serialize the data, and then free the handle. The style is set by creating the handle
and defining the way a buffer is manipulated. The handle maintains the appropriate context associated
with each of the three serialization styles.

Fixed Buffer Serialization

When using the fixed buffer style, specify a buffer that is large enough to accommodate the encoding
(marshalling) operations performed with the handle. When unmarshalling, you provide the buffer that
contains all of the data to decode.

The fixed buffer style of serialization uses the following routines:

· MesEncodeFixedBufferHandleCreate
· MesDecodeBufferHandleCreate
· MesBufferHandleReset
· MesHandleFree

MidlEncodeFixBufferHandleCreate allocates the memory needed for the encoding handle and then
initializes it. It has the following prototype:

RPC_STATUS RPC_ENTRY MesEncodeFixedBufferHandleCreate (
char * Buffer, /* user-supplied buffer */
unsigned long BufferSize, /* size of the user-supplied

/* buffer */
unsigned long *pEncodedSize, /* pointer to size of

/* encoding */
handle_t *pHandle); /* pointer to the new

/* handle */

The application can call the MesBufferHandleReset function to reinitialize the handle, or it can call the
MesHandleFree function to free the handle's memory. To create a decoding handle corresponding to
the fixed style encoding handle, you must use the MesDecodeBufferHandleCreate routine.

RPC_STATUS RPC_ENTRY MesDecodeBufferHandleCreate (
char * Buffer, /* buffer with data to

/* decode */
unsigned long BufferSize, /* number of bytes of

/* data to decode in buffer */
handle_t *pHandle); /* pointer to new handle */

The application calls MesHandleFree to free the encoding or decoding buffer handle.

RPC_STATUS RPC_ENTRY MesHandleFree (
handle_t Handle); /* handle to free */

Examples of Fixed Buffer Encoding

The following section provides an example of how to use a fixed buffer style serializing handle for
procedure encoding.

/*This is a fragment of the IDL file defining FooProc */

...
void __RPC_USER

FooProc([in] handle_t Handle, [in,out] FooType * pFooObject,
 [in, out] BarType * pBarObject);

...

/*This is an ACF file. FooProc is defined in the IDL file */

[explicit_handle
]
interface regress
{
[encode,decode]FooProc();
}

The following excerpt represents a part of an application.

if (MesEncodeFixedBufferHandleCreate (Buffer, BufferSize,
pEncodedSize, &Handle) == RPC_S_OK)

{
...
/* Manufacture a FooObject and a BarObject */
...
/* The serialize works from the beginning of the buffer because the

handle is in the initial state. The FooProc does the following when
called with an encoding handle:

 - sizes all the parameters for marshalling,
 - marshalls into the buffer (and sets the internal state
appropriately)

*/

FooProc (Handle, pFooObject, pBarObject);
...
MesHandleFree ();
}
if (MesDecodeBufferHandleCreate (Buffer, BufferSize, &Handle) ==

RPC_S_OK)
{

/* The FooProc does the following for you when called with a decoding
handle:
 - unmarshalls the objects from the buffer into *pFooObject and

*pBarObject
*/

FooProc (Handle, pFooObject, pBarObject);
...
MesHandleFree (Handle);
}

The following section provides an example of how to use a fixed buffer style serializing handle for type
encoding.

/* This is an ACF file. FooType is defined in the IDL file */

[explicit_handle
]
interface regress

{
typedef [encode,decode] FooType;
}

The following excerpt represents the relevant application fragments.

if (MesEncodeFixedBufferHandleCreate (Buffer, BufferSize, pEncodedSize,
&Handle) == RPC_S_OK)
{
...
/* Manufacture a FooObject and a pFooObject */
...
FooType_Encode (Handle, pFooObject);
...
MesHandleFree ();
}
if (MesDecodeBufferHandleCreate (Buffer, BufferSize, &Handle) ==

RPC_S_OK)
{
FooType_Decode (Handle, pFooObject);
...
MesHandleFree (Handle);
}

Dynamic Buffer Serialization

When using the dynamic buffer style of serialization, the marshalling buffer is allocated by the stub. The
data is encoded into this buffer and passed back to you. When unmarshalling, you supply the buffer
that contains the data.

The dynamic buffer style of serialization uses the following routines:

· MesEncodeDynBufferHandleCreate
· MesDecodeBufferHandleCreate
· MesBufferHandleReset
· MesHandleFree

MesEncodeDynBufferHandleCreate allocates the memory needed for the encoding handle and then
initializes it. It has the following prototype:

RPC_STATUS RPC_ENTRY MesEncodeDynBufferHandleCreate (
char **pBuffer, /* pointer to buffer containing /*

encoded data */
unsigned long *pEncodedSize, /* pointer to size of buffer

/* containing encoded data */
handle_t *pHandle); /* pointer to the new handle */

The application can call the MesBufferHandleReset function to reinitialize the handle, or it can call the
MesHandleFree function to free the handle's memory. To create a decoding handle corresponding to
the dynamic buffer encoding handle, use the MesDecodeBufferHandleCreate routine. For prototypes
of these routines, see Fixed Buffer Serialization.

Incremental Serialization

When using the incremental style, you supply three routines to manipulate the buffer when required by
the stub. These routines are: Alloc, Read, and Write. The Alloc routine allocates a buffer of the
required size. The Write routine writes the data into the buffer, and the Read routine retrieves a buffer

that contains marshalled data. A single serialization call can make several calls to these routines.

The incremental style of serialization uses the following routines:

· MesEncodeIncrementalHandleCreate
· MesDecodeIncrementalHandleCreate
· MesIncrementalHandleReset
· MesHandleFree

The prototypes for the Alloc, Read, and Write functions that you must provide are as follows:

void __RPC_USER Alloc (
void *State, /* application-defined pointer */
char **pBuffer, /* returns pointer to allocated buffer */

unsigned int *pSize); /* inputs requested bytes; outputs
pBuffer size */

void __RPC_USER Write (
void *State, /* application-defined pointer */
char *Buffer, /* buffer with serialized data */
unsigned int Size); /* number of bytes to write from

Buffer */
void __RPC_USER Read (

void *State, /* application-defined pointer */
char **pBuffer, /* returned pointer to buffer with data

with data */
unsigned int *pSize); /* number of bytes to read into

pBuffer */

The State input argument for all three functions is the application-defined pointer that was associated
with the encoding services handle. The application can use this pointer to access the data structure
containing application-specific information such as a file handle or stream pointer. Note that the stubs
do not modify the State pointer other than to pass it to the Alloc, Read, and Write functions. During
encoding, Alloc is called to obtain a buffer into which the data is serialized. Then, Write is called to
enable the application to control when and where the serialized data is stored. When decoding, Read
is called to return the requested number of bytes of serialized data from wherever the application
stored it.

An important feature of the incremental style is that the handle keeps the state pointer for you. This
pointer maintains the state and is never touched by the RPC code, except when passing the pointer to
Alloc, Write, or Read function. The handle also maintains an internal state that makes it possible to
serialize and deserialize several type instances to the same buffer by adding padding as needed for
alignment. The MesIncrementalHandleReset function resets a handle to its initial state to enable
reading or writing from the beginning of the buffer.

The Alloc and Write functions, along with an application-defined pointer, are associated with an
encoding-services handle by a call to the MesEncodeIncrementalHandleCreate function.
MesEncodeIncrementalHandleCreate allocates the memory needed for the handle and then
initializes it. It has the following prototype:

RPC_STATUS RPC_ENTRY MesEncodeIncrementalHandleCreate (
void * UserState , /* application-defined pointer */
MIDL_ES_ALLOC Alloc, /* pointer to Alloc function */
MIDL_ES_WRITE Write, /* pointer to Write function */
handle_t *pHandle); /* receives encoding services handle */

The application can call MesDecodeIncrementalHandleCreate to create a decoding handle,
MesIncrementalHandleReset to reinitialize the handle, or MesHandleFree to free the handle's

memory. The Read function, along with an application-defined parameter, is associated with a
decoding handle by a call to the MesDecodeIncrementalHandleCreate routine. The function creates
the handle and initializes it. It has the following prototype:

RPC_STATUS RPC_ENTRY MesDecodeIncrementalHandleCreate (
void * UserState , /* application-defined pointer */
MIDL_ES_READ Read, /* pointer to Read function */
handle_t Handle); /* handle to create and initialize */

The UserState, Alloc, Write, and Read parameters of MesIncrementalHandleReset can be NULL to
indicate no change.

RPC_STATUS RPC_ENTRY MesIncrementalHandleReset (
handle_t Handle, /* handle to reinitialize */
void * UserState , /* application-defined pointer */
MIDL_ES_ALLOC Alloc, /* pointer to Alloc function */
MIDL_ES_WRITE Write, /* pointer to Write function */
MIDL_ES_READ Read, /* pointer to Read function */
MIDL_ES_CODE OpCode); /* operations allowed */

RPC_STATUS RPC_ENTRY MesHandleFree (
handle_t Handle); // handle to free

Examples of Incremental Encoding

The following section provides an example of how to use the incremental style serializing handle for
type encoding.

/* This is an acf file. FooType is defined in the idl file */

[explicit_handle
]
interface regress
{
typedef [encode,decode] FooType;
}

The following excerpt represents the relevant application fragments.

if (MesEncodeIncrementalHandleCreate (State, AllocFn, WriteFn,
&Handle) == RPC_S_OK)

{
...
/* The serialize works from the beginning of the buffer because

the handle is in the initial state. The Foo_Encode does the
following:
- sizes *pFooObject for marshalling,
- calls AllocFn with the size obtained,
- marshalls into the buffer returned by Alloc, and
- calls WriteFn with the filled buffer

*/

Foo_Encode (Handle, pFooObject);
...
}
if (MesIncrementalHandleReset (Handle, NULL, NULL, NULL, ReadFn,

MES_DECODE) == RPC_OK)

{
/*The ReadFn is needed to reset the handle. The arguments

that are NULL do not change. You can also call
MesDecodeIncrementalHandleCreate (State, ReadFn, &Handle);
The Foo_Decode does the following:
- calls Read with the appropriate size of data to read and

receives a buffer with the data
- unmarshalls the object from the buffer into *pFooObject

*/

Foo_Decode (Handle, pFooObject);
...
MesHandleFree (Handle);
}

 Obtaining an Encoding Identity

An application that is decoding encoded data can obtain the identity of the routine used to encode the
data, prior to calling a routine to decode it. The MesInqProcEncodingId routine provides this identity.
It has the following prototype:

RPC_STATUS RPC_ENTRY MesInqProcEncodingId (
handle_t Handle, /* decoding handle */
PRPC_SYNTAX_IDENTIFIER pInterfaceId, /* points

to location
the identity will be
written to*/

unsigned long __RPC_FAR * pProcNum); /* number of
the routine
used to encode data */

 The IDL and ACF Files

The MIDL design specifies two distinct files, the Interface Definition Language (IDL) file and the
application configuration file (ACF). These files contain attributes that direct the generation of the C-
language stub files that manage the remote procedure call. The purpose of distinguishing the files is to
keep the network interface separate from characteristics that affect only the operating environment.

The IDL file specifies a network contract between the client and server ¾ that is, the IDL file specifies
what is transmitted between client and server. Keeping this information distinct from the information
about the operating environment makes the IDL file portable to other environments.

The ACF specifies attributes that affect only local performance rather than the network contract.

Microsoft RPC also offers an option that allows you to combine the ACF and IDL attributes in a single
IDL file. In /ms_ext mode, multiple interfaces can be combined in a single IDL file (and its ACF).

The syntax of MIDL is based on the syntax of the C programming language. Whenever a language
concept in this description of MIDL is not fully defined, the C-language definition of that term is implied.

This section summarizes the attributes that are specified in the IDL and ACF files and the output files
generated by the MIDL compiler. It is organized by topic. The same material is alphabetized and
presented in more detail in the reference topics. For more information, see the MIDL Reference and the
MIDL Command-Line Reference.

 Attributes

Attributes are keywords that specify characteristics of the data in the remote procedure calls and
characteristics of the interface. Most attributes appear within square brackets in the IDL and ACF files.
The following table briefly describes categories of MIDL attributes that can appear in the IDL file:

Attribute
category

Attributes Description

Array attributes max_is, size_is,
first_is, last_is,
length_is

Apply to the first dimension of an
array

Directional
attributes

in, out Describe the direction in which
the parameter is transmitted on
the network; either or both in and
out can be applied

Field attributes switch_is,
array attributes,
pointer attributes,
string, ignore

Apply to struct or union
members

Function
attributes

callback, call_as,
idempotent, local,
maybe, optimize,
pointer attributes,
usage attributes

Apply to the return type and
characteristics of the function

Interface
attributes

uuid, object, local,
version,
pointer_default,
endpoint

Apply to the interface as a whole

Parameter
attributes

Directional
attributes, array
attributes, pointer
attributes,
switch_is, string,
context_handle

Describe the network-
transmission characteristics of
function parameters

Pointer
attributes

ref, unique, iid_is,
ptr

Describe characteristics of the
pointer and its data

Type attributes handle,
ms_union,
v1_enum,
transmit_as,
switch_type,
represent_as
pointer attributes,
field attributes

Apply to a type definition

Usage attributes string, ignore,
context_handle

Describes how the data object is
used

 The IDL File

The IDL file specifies an interface used by the client and the server. The interface consists of two parts,
an interface header and an interface body.

 Interface Header

The interface header specifies information about the interface as a whole. It must contain the uuid or
local attribute, and whichever one you choose must occur exactly once. The version attribute may
occur at most once. The interface header can also contain the attributes pointer_default and
endpoint.

Interface attributes for imported files are optional. However, the top-level importing interface (also
called the base interface) must have at least one uuid or local attribute. MIDL explicitly checks for one
of these attributes.

The uuid Attribute

The uuid attribute designates a UUID that distinguishes one interface from other interfaces. The
textual representation of a UUID is a string consisting of 8 hexadecimal digits followed by a hyphen,
followed by 3 hyphen-separated groups of 4 hexadecimal digits, followed by a hyphen, followed by 12
hexadecimal digits. For example:

12345678-1234-ABCD-1234-0123456789AB

Use the command-line utility uuidgen to generate unique identifiers.

The version Attribute

The version attribute identifies a particular version of an interface in cases where multiple versions of
the interface exist. The version keyword is followed by either a pair of decimal integers separated by a
period, or a single decimal integer. The first of the two integers represents the major version number,
and the second represents the minor version number of an interface. If a single integer is used, it
represents the major version number. Both major and minor version numbers are short unsigned
integers in the range between 0 and 65535, inclusive.

Leading zeros in a major or minor version-number specification are not significant. A version
specification of 1.0001 is the same as 0001.001 and 1.1.

The endpoint Attribute

The endpoint attribute specifies a well-known port or ports (communication end-points) on which
servers of the interface listen. Well-known port values are typically assigned by the central authority
that owns the protocol.

The local Attribute

The local attribute, when used as an interface attribute, specifies that you want to use the MIDL
compiler to generate header files only. Stubs are not generated and checks for transmissibility are
omitted.

The pointer_default Attribute

The pointer_default attribute specifies the pointer attribute that is applied to an unattributed pointer
specification in the IDL file, including unattributed pointers nested in structure and union fields and
arrays. It is not applied to unattributed top-level pointer parameters, which default to ref.

Failing to supply a pointer_default attribute on an interface that contains an unattributed pointer
results in a compile-time warning.

 Interface Body

The interface body contains data types used in remote procedure calls and the function prototypes for
the procedures to be executed remotely. The interface body can contain imports, pragmas, constant
declarations, type declarations, and function declarations. In Microsoft-extensions mode, the MIDL
compiler also allows implicit declarations in the form of variable definitions.

Base Types

Base types are the fundamental data types of MIDL. Other types in the interface must be derived from
base types or from predefined types.

For example, MIDL does not allow you to specify parameters of type int orvoid * because the size of
these types is not known or because the size varies among different computers. The automatically
generated stubs must know the exact size of every data item to be transmitted.

The boolean type is an 8-bit data item that is implemented by the MIDL compiler as an unsigned
char. In keeping with commonly followed programming practices, MIDL implements FALSE as 0 and
TRUE as 1. When you use the Microsoft-extensions mode of the MIDL compiler, boolean initializations
using 0 and 1 are allowed in addition to TRUE and FALSE. In DCE-compatibility mode, however, only
the values TRUE and FALSE are allowed.

The byte type consists of 8 bits. The byte type is considered opaque data and consequently the value
is not converted on transmission.

The char type is an unsigned 8-bit entity that maps to the unsigned char in C. MIDL translates all
char types in the IDL file to unsigned char types in the generated header file. The user can change
the default sign of char on the target system with the /char switch.

The handle_t type is used to declare a primitive handle in a type declaration or in a parameter list.
Objects of type handle_t are not transmitted on the network.

The void keyword is valid in a function declaration or in a pointer declaration. In a function declaration,
it designates a procedure with no arguments or a procedure that does not return a result. In a pointer
declaration, void can only be used with the context_handle attribute.

The keyword int without a modifier is not a valid MIDL type. The hyper keyword designates a 64-bit
integer. The long keyword designates a 32-bit integer. The short keyword designates a 16-bit integer.
The small keyword designates an 8-bit integer. For more information, see signed and unsigned.

The float keyword designates a 32-bit floating-point number. The double keyword designates a 64-bit
floating-point number. For more information, see signed and unsigned.

Predefined Types

The predefined types error_status_t and wchar_t are derived from the MIDL base types. The
predefined type wchar_t is a wide-character type and is defined as an unsigned short. The
predefined type error_status_t is the data type returned by the stubs when the stubs encounter a run-
time error. Attributes specify how data is managed on the network. For example, when the function
parameter represents a pointer, array, or union, the attributes direct the generation of stub code that
packages the data for network transmission.

The import Directive

The import directive is closely related to the #include C-preprocessor macro. It directs the compiler to
include, at the point of import, the data types defined in the imported files and to make them available
for use in the interface. In contrast to the C #include macro, the import directive ignores procedure
prototypes defined in imported files.

Pragmas

C-preprocessing directives such as #define are expanded by the C preprocessor during MIDL
compilation and are not available at C-compile time. To avoid losing these C-preprocessor macro
definitions, use the cpp_quote or pragma midl_echo directive. These directives take quoted strings
as parameters, instructing the MIDL compiler to emit the parameter string into the generated header file
in the same lexical position relative to other interface components.

Constant Declarations

Constant declarations allow you to associate a constant value with an identifier and use the identifier
as part of an expression. Constant declarations are generated as #define statements in the header file.
The MIDL compiler does not perform any range checking on integral expressions.

Constant declarations are limited to integral char, boolean, wchar_t, wchar_t *, char *, and void *
types. The constant value is an expression whose operands are all constant integer literals, boolean
expressions that are computable at compile time, or single characters or strings, depending on the
const type. For more information, see const.

 Structures

Normal C semantics apply to the fields of base types. Fields of more complex types, such as pointers,
arrays, and other constructed types, can be modified by type or field_attributes. For more information,
see struct.

 Unions

Two fundamental types of discriminated unions are provided by MIDL: non-encapsulated_union and
encapsulated_union. The discriminant of a non-encapsulated union is another parameter if the union
is a parameter. It is another field if the union is a field of a structure. The definition of an encapsulated
union is turned into a structure definition whose first field is the discriminant and whose second and last
field is the union.

The Microsoft RPC MIDL compiler allows union declarations outside of typedef constructs. This
feature is an extension to DCE IDL. For more information, see union, and /ms_ext.

 Enumerated Types

The enum declaration is not translated into #define statements as is done by some DCE compilers but
is reproduced as a C-language enum declaration in the generated header file.

 Arrays

See arrays.

 Type Attributes

Type attributes are the MIDL attributes that can be applied to type declarations: transmit_as, handle,
ignore, switch_type, and context_handle, string, pointer attributes, and array attributes.

The transmit_as attribute instructs the compiler to associate a transmitted type with a presented type
that client and server applications manipulate. You must supply the routines that carry out the
conversion between the presented types and the transmitted types. Supply routines to release memory
used to hold the converted data. Using the transmit_as attribute instructs the stub to call the supplied
conversion routines before and after transmission. The represent_as attribute instructs the compiler to
associate a local type with a transfer type that is transferred between client and server. You must
supply the routines that convert between the local and the transfer types. Supply routines to release
memory used to hold the converted data. Using the represent_as attribute instructs the stub to call the
supplied conversion routines before and after transmission.

The handle attribute specifies that a type can occur as a user-defined, generic, or serialization handle.
This feature permits the design of handles that are meaningful to the application. The user must
provide binding and unbinding routines to convert between the user-defined handle type and the RPC
primitive handle type handle_t. A primitive handle contains destination information meaningful to the
RPC run-time libraries. A user-defined handle can only be defined in a type declaration, not in a
function declaration. A parameter with the handle attribute has a double purpose. It is used to
determine the binding for the call, and it is transmitted to the called procedure as a normal parameter.

The ignore attribute designates pointer fields to be ignored during the marshalling process. An ignored
field is set to NULL on the receiver side when allocating memory. When used as a type attribute, the
ignore attribute specifies that the ignored type can only be used as a field type.

The switch_type attribute designates the type of a union discriminator. This attribute applies only to a
non-encapsulated union. The context_handle attribute allows the developer to write procedures that
maintain state information between remote procedure calls. A context handle is a pointer with a
context_handle attribute. A context handle with a non-null value represents saved context and serves
two purposes. On the client side, it contains the information needed by the RPC run-time library to
direct the call to the server. On the server side, it serves as a handle on active context.

 Field Attributes

Field attributes are the attributes that can be applied to fields of an array, structure, or union: ignore,
size_is, max_is, length_is, first_is, last_is, switch_is, and string, and pointer attributes. For
example, field attributes are used in conjunction with array declarations to specify either the size of the
array or the portion of the array that contains valid data. This is done by associating another parameter,
another structure field, or a constant expression with the array.

The ignore attribute designates pointer fields to be ignored during the marshalling process. Such an
ignored field is set to NULL on the receiver side.

Conformant Arrays (size_is, max_is Attributes)

An array is called conformant if its bounds are determined at run time. The size_is attribute designates
the upper bound on the allocation size of the array. The max_is attribute designates the upper bound
on the value of a valid array index. For more information, see arrays.

Varying and Open Arrays (length_is, first_is, last_is Attributes)

An array is called "varying" if its bounds are determined at compile time but the range of transmitted
elements is determined at run time. An open array (also called a conformant varying array) is an array
whose upper bound and range of transmitted elements are determined at run time. To determine the
range of transmitted elements of an array, the array declaration must include a length_is, first_is, or
last_is attribute.

The length_is attribute designates the number of array elements to be transmitted. The first_is
attribute designates the index of the first array element to be transmitted. The last_is attribute
designates the index of the last array element to be transmitted.

The switch_is Attribute

The switch_is attribute designates a union discriminator. When the union is a procedure parameter,
the union discriminator must be another parameter of the same procedure. When the union is a field of
a structure, the discriminator must be another field of the structure at the same level as the union field.
The discriminator must be a boolean, char, integral, or enum type, or a type that resolves to one of
these types. For more information, see non-encapsulated_union.

The string Attribute

The string attribute designates that a one-dimensional character or byte array or pointer to a zero-
terminated character or byte stream is to be treated as a string. The string attribute only applies to one-
dimensional arrays and pointers. The element type is limited to char, byte, wchar_t, or a named type
that resolves to these types.

 Three Pointer Types

MIDL supports three types of pointers to accommodate a wide range of applications. The three
different levels are called reference, unique, and full pointers, indicated by the attributes ref, unique,
and ptr, respectively. The pointer classes described by these attributes are mutually exclusive.

Pointer attributes can be applied to pointers in type definitions, function return types, function
parameters, members of structures or unions, or array elements.

Embedded pointers are pointers that are members of structures or unions or elements of arrays.
Embedded pointers can differ from top-level pointers depending upon directional attributes. In the in
direction, embedded ref pointers are assumed to be pointing to valid storage and must not be null. This
situation is recursively applicable to any ref pointers they are pointing to. In the in direction, embedded
unique and full pointers may or may not be null.

Any pointer attribute placed on a parameter in the syntax of a function declaration affects only the
rightmost pointer declarator for that parameter. To affect other pointer declarators, intermediate named
types must be used.

Functions that return a pointer can have a pointer attribute as a function attribute. The unique and ptr
attributes must be applied to function return types.

Member declarations that are pointers can specify a pointer attribute as a field attribute. A pointer
attribute can also be applied as a type attribute in typedef constructs.

When no pointer attribute is specified as a field or type attribute, pointer attributes are applied
according to the rules for unattributed pointer declaration, as follows:

In DCE-compatibility mode, pointer attributes are determined in the defining IDL file. If there is a
pointer_default attribute specified in the defining interface, that attribute is used. If no pointer_default
attribute is present, all unattributed pointers are full pointers.

In Microsoft-extensions mode, pointer attributes can be determined by importing IDL files. Pointer
attributes are applied in the following order:

1. An explicit pointer attribute applied at the use site
2. When the unattributed pointer is a top-level pointer parameter, the ref attribute
3. A pointer_default attribute specified in the defining interface
4. A pointer_default attribute specified in the base interface
5. The unique attribute

The pointer_default interface attribute specifies the default pointer attributes to be applied to a pointer
declarator in a type, parameter, or return type declaration when that declaration does not have an
explicit pointer attribute applied to it. The pointer_default interface attribute does not apply to an
unattributed top-level pointer of a parameter, which is assumed to be ref.

 Function Declarations

The callback and local attributes can be applied as function attributes.

Callbacks are a special kind of remote call from server to client that executes as part of a conceptual
single-execution thread. A callback is always issued in the context of a remote call (or callback) and is
executed by the thread that issued the original remote call (or callback).

It's often desirable to place a local procedure declaration in the IDL file, just because this is the logical
place to describe interfaces to a package. The local attribute indicates that a procedure declaration is
not actually a remote function but a local procedure. The MIDL compiler does not generate any stubs
for that function. For more information, see callback and local.

 Parameter Declarations

The directional attributes in and out can be applied to parameters.

The in attribute indicates that the parameter is passed from the client to the server. The out attribute
indicates that the parameter is passed from the server to the client. In DCE-compatibility mode, each
parameter must have at least one explicit directional attribute. In Microsoft-extensions mode, a
parameter without a directional attribute defaults to an in attribute.

 Expressions

Expressions can be used as constant initializers, array bounds, and transmission-range specifiers, and
union discriminators. For more information, see version.

 Error Handling

Caller stubs report run-time errors to application code in one of the three following ways:

· When the return type of a remote procedure is error_status_t, the error is returned as the
procedure return value.

· When the procedure has an out parameter of type error_status_t *, the error is returned as the
value of this parameter.

· In any other case, the stub raises an exception.

Server stubs report run-time errors to application code by raising an exception. For more information,
see error_status_t, comm_status and fault_status.

 The ACF

The application configuration file (ACF) has two parts: an interface header similar to the interface
header in the IDL file, and a sequence of attributes with values.

The ACF specifies behavior on the local computer and does not affect the data transmitted over the
network. The ACF is used to specify details of a stub to be generated. In DCE-compatibility mode, the
ACF does not affect interaction between stubs but between the stub and application code.

A parameter specified in the ACF must be one of the parameters specified in the IDL file. The order of
specification of the parameter in the ACF is not significant because the matching is by name, not by
position. The parameter list in the ACF can be empty, even when the parameter list in the
corresponding IDL signature is not. Abstract declarators (unnamed parameters) in the IDL file cause
the MIDL compiler to report errors while processing the ACF because the parameter is not found.

The include Declaration

The include statement specifies one or more header files to be included into generated stub code via
the C-preprocessor #include statement. The user must supply the C header file when compiling the
stubs. The ACF include statement provides some flexibility in distributed application design. It is
necessary for certain types, such as implicit_handle types that are not defined in the IDL or its closure
under #include and import directives.

Implicit Binding Handles

When an interface contains one or more functions whose first parameter is not an explicit handle and
that do not have an in or an in, out context handle bound to a remote address space, an implicit
handle is needed. The implicit_handle and auto_handle attributes provide this capability.

The implicit_handle attribute specifies a global variable that is used as the RPC binding handle for all
calls without a binding parameter.

The auto_handle attribute indicates that any function needing implicit handles is automatically bound.
When no binding handle to a server exists just prior to calling the function for the first time, the stub
automatically establishes a binding handle for the call.

Either auto_handle or implicit_handle can appear, but not both. When a function in the interface
requires an implicit handle and no ACF is supplied, or the supplied ACF does not specify either
implicit_handle or auto_handle, the MIDL compiler uses auto_handle and issues an informational
message.

The code and nocode Attributes

If code appears in the interface attribute list, client stub code is generated for any function in the
interface that does not appear in the ACF with a nocode in its function attribute list and that does not
have a local attribute.

If nocode appears in the interface attribute list, stub code is generated only for functions in the
interface that appear in the ACF with a code in their function attribute lists and that do not have a local
attribute.

The nocode attribute is ignored when server stubs are generated. Applying nocode when generating
server stubs in DCE-compatibility mode is an error. Either code or nocode can appear in an function
attribute list, but not both.

The allocate Attribute

The allocate attribute allows you to customize the allocation and deallocation patterns used by the
application and stubs. It can be applied to pointer types as a type attribute or as an interface attribute.
When it occurs as an interface attribute, it affects all pointer parameters and types in the interface.

allocate attribute Description
allocate(single_nod
e)

Storage for each node on both the caller and callee
side is allocated separately, by calling
midl_user_allocate.

allocate(all_nodes) The size of the total graph (or tree) is precomputed by
the stub, and midl_user_allocate is called once to
allocate sufficient memory for all nodes in the graph
upon return from a remote call. In this case application
code has to release this storage by making a single
call to midl_user_free.

allocate(free) Storage allocated for nodes on the callee side is freed
by stubs upon return from the manager code.

allocate(dont_free) Storage allocated for nodes on the server side is not
deallocated by the server stub. This feature is useful
for maintaining persistent pointer structures as part of
the server application.

The byte_count Attribute

The byte_count ACF attribute associates a pointer parameter with another parameter that specifies
the size in bytes of the memory area indicated by the pointer. Memory referenced by the pointer
parameter is contiguous and is not allocated or freed by the client stubs. This feature of the
byte_count attribute allows the developer to create a persistent buffer area in client memory that can
be reused across multiple calls.

The parameter providing the buffer must be an out pointer parameter and the parameter providing the
length in bytes must be an in parameter of integral type. The byte_count attribute cannot be specified
on a parameter that has the size attributes (size_is, max_is) applied to it.

 Using ACF Attributes in the IDL File

The Microsoft RPC MIDL compiler offers an operating mode that makes it possible to provide one file
that contains both the IDL attributes and selected ACF attributes. You can supply the ACF attributes
auto_handle and implicit_handle in the IDL file when you use the MIDL compiler switch /app_config.

 MIDL Compiler Output

With the IDL and ACF files as input, the MIDL compiler generates up to five C-language source files.
By default, the MIDL compiler uses the base filename of the IDL file as part of the generated stub files.
When more than six characters are present in the base filename, some file systems may not accept the
full stub name. The following conventions are used:

File
Default portion
of base filename Example

IDL file --- ABCDEFGH.IDL
Header .H ABCDEF.H
Client stub _C.C ABCDEF_C.C
Server stub _S.C ABCDEF_S.C

 Run-Time RPC Functions

The RPC functions are those your distributed application calls to establish a binding handle that
represents the logical connection between a client and a server. The binding handle enables the RPC
run-time libraries to direct a client's remote procedure call to an instance of the specified interface on a
server.

Obtaining the binding handle involves several data structures or strings:

· Protocol sequence and network address strings
· Endpoints
· Interface UUIDs and interface version numbers
· Object UUIDs
· Name-service database server entries

This section describes these data structures and strings, and the RPC functions that allow your
application to manipulate them.

The name-service functions allow a server to register its interface in a database. When a server
registers its interface, a client can query the database, supplying a logical name and an optional object
UUID, to obtain a binding handle to the server without knowing the host name of the server.

The RPC name service makes distributed applications easy to administer. When the server side of the
distributed application is moved to another computer, clients do not have to be reconfigured. As long as
the database entry name and object UUIDs remain the same, client applications can access the server
application as they did before. In addition, you can run several instances of the server on different
hosts, thereby providing clients with random load balancing.

You can provide more than one implementation of the remote procedure calls defined in an interface.
RPC maps a remote procedure call to an implementation of the procedure through a table of function
pointers known as the manager entry-point vector (EPV). You can add implementations of the
procedure by supplying additional manager EPVs. The client selects the appropriate implementation of
the function.

You can also add security to your distributed application in two ways: by installing a security package
and calling the RPC functions related to security, or by using the security features built into Windows
NT transport protocols.

The set of RPC functions supported by Microsoft RPC overlaps the DCE RPC functions. The Microsoft
RPC functions are optimized for use with the MS-DOS, Microsoft Windows, and Microsoft Windows NT
operating systems. They are fully compatible with other Microsoft naming and calling conventions.

For a complete description of each function and data structure in Microsoft RPC, see the RPC Function
Reference.

 Naming Conventions for RPC Functions

RPC function names generally consist of the prefix "Rpc," an object name, and a verb that describes
an operation on that object. The functions, with some exceptions, are named as follows:

RpcObjectOperation

Object
Specifies a term that identifies an RPC object; a data structure defined by the RPC function.

Operation
Specifies an operation that is performed on the object specified by Object.

Functions that operate on UUID objects omit the prefix "Rpc" and start with the object name "Uuid."

The functions provided with this version of Microsoft RPC operate on the following objects:

Object
Object in
function name Example

Binding handle Binding RpcBindingFree
Endpoint Ep RpcEpRegister
Interface If RpcIfInqId
Management Mgmt RpcMgmtStopServerListen

ing
Name-service group
entry

NsGroup RpcNsGroupDelete

Name-service
management

NsMgmt RpcNsMgmtEntryCreate

Name-service profile
entry

NsProfile RpcNsProfileEltAdd

Name-service server
entry

NsBinding RpcNsBindingExport

Network Network RpcNetworkInqProtseqs
Object, type UUID
mapping

Object RpcObjectSetType

Protocol-sequence
vector

ProtseqVector RpcProtseqVectorFree

Server Server RpcServerListen
String String RpcStringFree
String binding StringBinding RpcStringBindingCompose
UUID Uuid UuidCreate

Microsoft RPC function names are derived by converting the first character of the DCE RPC function
name and every character that follows an underscore character to uppercase and then removing
underscore characters. For example, the DCE function rpc_server_use_all_protseqs_if is named
RpcServerUseAllProtseqsIf in Microsoft RPC.

Microsoft data-structure names are derived from the DCE names by converting all characters to
uppercase and removing the trailing suffix _t. For example, the DCE data structure
rpc_binding_vector_t is named RPC_BINDING_VECTOR in Microsoft RPC.

In the header files provided in Microsoft RPC, each RPC function that takes character-string
parameters appears in two forms: followed by the suffix "A" and followed by the suffix "W." The "A"
suffix represents the ASCII-character-string version of the function and the "W" suffix represents the
wide-character-string version. The identifier UNICODE determines which version of the function is

selected. The standard function name is mapped to either the ASCII or the wide-character-string
version.

Wide-character versions of the RPC functions are selected when you define the identifier UNICODE.
You can define the identifier either with a #define preprocessor directive or with the /D option of the
Microsoft C/C++ version 7.0 compiler. For example:

#define UNICODE
main()

cl /DUNICODE filename.c

You can use the wide-character version of a function on one side of the distributed application and the
ASCII version on the other side. You do not need to use the same versions of the functions with both
the client and server applications. You can use both versions in the same application.

 Data Structures

Obtaining the handle that represents the binding between clients and servers involves several key data
structures:

· Binding handle
· Protocol sequence and network address string
· Endpoint
· Interface UUIDs and interface version number
· Object UUID
· Name-service database entries, including profile, group, and server entries

 Binding Handle

One purpose of the RPC run-time functions is to provide the client with a binding handle to the server.
A binding handle is a data structure that represents the logical connection between the client and the
server.

Like a file handle or a window handle, a binding handle cannot be used to directly access and
manipulate data about the binding itself. Instead, the binding handle is a unique identifier that the RPC
run-time libraries use to access the appropriate data.

The components of a string binding offer a simple way to explain some of the data structures used to
obtain a binding handle. Note, however, that creating a binding from a string binding is not
recommended. Most applications should use the name-service functions.

 String Binding

The string binding is a character string that consists of several sub-strings. The strings in a string
binding represent the object UUID, the protocol sequence, the network address, the endpoint, and the
endpoint options.

The object UUID is a unique identifier. The protocol sequence is a string that represents the RPC
network-communications protocol. The protocol sequence also determines network-address and
endpoint-naming conventions. For example, the protocol sequence ncacn_ip_tcp indicates a
connection-based NCA connection over TCP/IP. For more information about protocol sequences, see
Specifying the Protocol Sequence or the reference entry for PROTSEQ.

The network address indicates the server name. The endpoint indicates a communication port at that
server.

The client application can itself combine these substrings into the correct
string-binding syntax, or it can call the function RpcStringBindingCompose. After a client calls
RpcStringBindingCompose, it calls RpcBindingFromStringBinding to obtain the binding handle.
For a complete description of the required syntax, see String Binding.

Most distributed applications should use the name-service functions instead of the string binding to
obtain the binding handle. The name-service functions allow your server application to register its
interface and object UUIDs, network address, and endpoint under a single logical name. These
functions provide location independence and ease of administration.

 Endpoint

The endpoint specifies the communication port clients use to make remote procedure calls to a server.

The server application specifies endpoint information at the same time it specifies the protocol
sequence by calling the RPC routine that starts with the prefix "RpcServerUseProtseq" or
"RpcServerUseAllProtseqs."

A finite number of endpoints are available for any protocol sequence. Some of these are usually
assigned by the authority responsible for the protocol. The syntax of the endpoint string depends on
the protocol sequence you use. For example, the endpoint for TCP/IP is a port number, and the
endpoint syntax for named pipes is a valid pipe name.

The major design decision you must make regarding the endpoint is whether it is well known or
dynamic. Your choice of option determines whether the distributed application or the run-time library
specifies the endpoint the application will use.

Most applications should use dynamic endpoints so that an endpoint-mapping service can dynamically
map a distributed application to an endpoint available for the protocol. In this way, this limited system
resource can be assigned to a distributed service at run time as needed, rather than being dedicated to
a distributed service when the service is developed.

 Dynamic Endpoints

The number of communication ports for a particular server can be limited. For example, when you use
the ncacn_nb_nb protocol sequence, indicating that RPC network communication occurs using
NetBIOS over NetBEUI, less than 255 ports are available. The RPC run-time libraries allow you to
assign endpoints dynamically as needed.

The application selects a dynamic endpoint in one of two ways: on the client side, it uses a null string to
indicate the endpoint when it composes a string binding; on the server side, it registers the server
application in the name-service database, or it calls RpcServerUseProtseq or
RpcServerUseAllProtseqs to explicitly select dynamic endpoints.

The dynamic endpoint is registered in an endpoint-map database, a database that is managed by a
specific service that creates and deletes elements for applications. In Windows NT, the endpoint-
mapping service is called RPCSS. The dynamic endpoint expires when the server instance stops
running. Call RpcEpUnregister at application termination to remove the old endpoint from the endpoint
mapper database.

 Well-Known Endpoints

A distributed application can specify an endpoint in a string that is used as a parameter to the function
RpcServerUseProtseqEp or in a string that appears in the IDL file interface header as part of the
endpoint interface attribute. Well-known endpoints are not recommended for most applications.

You can use two approaches to implement the well-known endpoint:

· Specify all information in a string binding
· Store the well-known endpoint in the name-service database

All the information needed to establish the binding can be written into a distributed application when
you develop it. The client can specify the well-known endpoint directly in a string, call
RpcStringBindingCompose to create a string that contains all the binding information, and obtain a
handle by supplying this string to the function RpcBindingFromStringBinding. The client and server
can be hard-coded to use a well-known endpoint, or written so that the endpoint information comes
from the command line, a data file, or the IDL file.

When a server uses a well-known endpoint, the endpoint data is included as part of the name-service
database server entry. When the client imports a binding handle from the server entry, the binding
handle contains a complete server address that includes the well-known endpoint.

 Fully and Partially Bound Handles

When you use dynamic endpoints, the run-time libraries obtain endpoint information when they need it.
The run-time libraries make the distinction between a fully bound handle (one that includes endpoint
information) and a partially bound handle (one that does not include endpoint information).

The client run-time library must convert the partially bound handle to a fully bound handle before the
client can bind to the server. The client run-time library tries to convert the partially bound handle for
the client application by obtaining the endpoint information:

· From the client's interface specification
· From an endpoint-mapping service running on the server

When the client tries to use a partially bound handle, the endpoint information is not available in the
interface specification, and there is no endpoint-mapping service, the client does not have enough
information to make its remote procedure call and that call fails. You must provide the endpoint map
when your distributed application uses partially bound handles. For more information about the
endpoint map, see Registering the Endpoint.

When a remote procedure call fails, the client application can call RpcBindingReset to remove out-of-
date endpoint information. When the client tries to call the remote procedure, the client run-time library
again tries to convert the fully bound handle to a partially bound handle.

 Server-Application RPC API Calls

For most distributed applications, write your server application for calling the RPC functions in the
following sequence:

1. Use the protocol sequence(s). Call one of the following RPC functions: RpcServerUseProtseq,
RpcServerUseAllProtseqs, RpcServerUseProtseqIf, RpcServerUseAllProtseqsIf, and
RpcServerUseProtseqEp.

2. Call RpcServerInqBindings to obtain the binding vector needed for subsequent calls to
RpcEpRegister, RpcEpRegisterNoReplace, and RpcNsBindingExport.

3. When you use dynamic endpoints, add the endpoints associated with the server to the endpoint-
map database. Call RpcEpRegister or RpcEpRegisterNoReplace.

4. Export to the name-service database. Call RpcNsBindingExport.
5. Clean up data structures. Call the RPC function RpcBindingVectorFree.
6. Register the interface. Call RpcServerRegisterIf.
7. Listen for clients. Call RpcServerListen or RpcMgmtWaitServerListen.

When the server application is no longer actively serving clients, you usually instruct it to call RPC
functions in the following sequence:

1. Stop listening for clients. Call the RPC function RpcMgmtStopServerListening.
2. Remove the interface. Call the RPC function RpcServerUnregisterIf.
3. Remove endpoint-map database entries. Call the RPC function RpcEpUnregister.

When the server stops providing service for a short period of time, the server should not remove its
registration from the name-service database. The RPC name-service function
RpcNsBindingUnexport is called only when the service is permanently removed.

 Specifying the Protocol Sequence

One of the first acts of the server application is to specify the protocol sequences over which it can
communicate with clients.

The protocol sequence is a string that represents a valid combination of an RPC protocol (such as
"ncacn"), a transport protocol (such as "tcp" and "nb"), and a network-address format (such as "ip").
Microsoft RPC supports the protocol sequences listed in the following list. Other protocol sequences
will be supported in subsequent releases.

Protocol
sequence

Description

ncacn_ip_tcp Connection-oriented TCP/IP
ncacn_nb_tcp NetBIOS over TCP/IP
ncacn_nb_nb NetBIOS over NetBEUI
ncacn_np Named pipes
ncacn_spx Connection-oriented SPX
ncadg_ip_udp Datagram-oriented TCP/IP
ncadg_ipx Datagram-oriented IPX
ncalrpc Local communication on Windows NT only

Note Windows 95 does not support ncalrpc, ncacn_nb_ipx, and ncacn_nb_tcp. The ncacn_np
protocol is supported only on the client side. You must have an authentic Novell client to use the RPC
SPX transport.

The server application specifies a single protocol sequence by calling one of the functions that starts
with the prefix "RpcServerUseProtseq." The server specifies all supported protocol sequences by
calling RpcServerUseAllProtseqs.

The function you choose to specify protocol sequences also specifies information about the endpoint.
The endpoint can be specified explicitly (RpcServerUseProtseqEp), culled from the IDL file
(RpcServerUseProtseqIf, RpcServerUseAllProtseqsIf), or selected for the application by the run-
time library (RpcServerUseProtseq, RpcServerUseAllProtseqs). These choices are listed following:

"Protseq" function Description
RpcServerUseAllProtseqs Registers all protocols using dynamic

endpoints.
RpcServerUseAllProtseqsI
f

Registers all protocols with endpoints from
the
IDL file.

RpcServerUseProtseq Registers one protocol using a dynamic
endpoint.

RpcServerUseProtseqEp Registers one protocol with the specified
endpoint.

RpcServerUseProtseqIf Registers one protocol with the endpoint in
the IDL file.

The server application specifies endpoint information at the same time that it specifies the protocol
sequence by calling the RPC function that starts with the prefix "RpcServerUseProtseq" or
"RpcServerUseAllProtseqs." The endpoint specifies the communication port through which clients
make remote procedure calls to the server. For more information about endpoints, see Endpoints.

 Registering the Endpoint

When a server uses dynamic endpoints (and the client has partially bound handles), the server
application should also call RpcEpRegister or RpcEpRegisterNoReplace.

The dynamic endpoints are registered after the server application has specified the use of dynamic
endpoints by calling the RPC function that starts with the prefix "RpcServerUseProtseq" or
"RpcServerUseAllProtseqs."

The functions RpcEpRegister and RpcEpRegisterNoReplace store information about the dynamic
endpoint in a database that contains local endpoint maps. The client run-time library gets the endpoint
from the database by querying using a partially bound handle and the client interface specification. This
allows the client to establish a binding to a server instance.

When the server run-time library selects the endpoint, it is available to the client application through the
endpoint-map database.

An endpoint map stores handles that are partially bound to local server endpoints. Each database
element contains an interface specification, an object UUID (which may be nil), the protocol sequence,
and the associated endpoint.

When the client makes a remote procedure call using a partially bound handle, the client's run-time
library asks the endpoint map for the endpoint of a compatible server instance. The client library
supplies the interface UUID and the object UUID in the partially bound handle if it exists.

The endpoint map compares the client interface UUID and the object UUID to server entries in the
endpoint-map database. If both the interface UUID and the object UUID match, the endpoint map tests
compatibility of the version numbers, the protocol version, and the protocol sequence, as follows:

· The interface major version numbers must match, and the server minor version number must be
greater than or equal to the client minor version number.

· At least one transfer syntax must match.
· The RPC protocol version must match.
· The server must have at least one protocol sequence that matches the client.

If all tests are successful, the endpoint map returns the valid endpoint, and the client run-time library
returns a fully bound binding handle.

 Exporting to the RPC Name-Service Database

After specifying the protocol sequence and endpoint and registering any dynamic endpoints in the
endpoint-map database, the server application registers the binding handle for the interface with the
RPC name-service provider by calling RpcNsBindingExport.

In the Microsoft environment, the server application should register itself with the name-service
database every time the server application is run. In the DCE environment, the server application
registers with the name-service database only once, when the application is installed. The Microsoft
Locator maintains its database in transient memory on the server, while the DCE name service resides
in permanent, replicated storage that is relatively expensive to update.

 Using the Locator

This section describes how to best use the name service feature of Microsoft RPC.

 An Overview of the Name Service Entry

The name service entry consists of three distinct sections. The first section is for interfaces (UUID +
version), the second section contains the object UUIDs, and the third section is for binding handles.
You provide a name for the entry that will serve as a way to identify it.

When calling RpcNsBindingExport, the server specifies the name of the entry in which to place the
exported information. This newly exported interface is then added to the interface section of the name
service entry. Any interfaces that are already present in the name service entry remain as well. This
same process is followed for object UUIDs and binding handles.

The client calls RpcNsBindingLookupBegin (or RpcNsBindingImportBegin) to search for an
appropriate binding handle. The entry name, interface handle, and an object UUID are extracted.
These restrict the entries from which binding handles are returned. If an entry matches the search
criteria, all the binding handles in that entry are returned from RpcNsBindingImportNext.

 Criteria for Name Service Entries

The following criteria are used when processing name service entries:

· If you provide a non-NULL entry name for RpcNsBindingLookupBegin, that entry will be the only
entry searched for binding handles. If you pass NULL, all entries in your logon domain will be
searched. Note that this does not include trusted domains.

· If you provide an interface handle, binding handles are returned from an entry only if the interface
section of the entry contains a compatible version of that interface UUID. In other words, the major
version number must be the same as your interface UUID, while the minor version number must be
equal to or greater than yours.

· If you provide an object UUID, binding handles are returned from an entry only if the object UUID
section of the entry contains that particular object UUID.

If a name service entry survives the criteria described above, all the binding handles from those entries
are gathered. Handles with a protocol sequence that is unsupported by the client are discarded and the
remaining handles are returned to you as the output from RpcNsBindingLookupNext.

 Name Service Entry Cleanup

A name service entry should contain information that does not change frequently. For this reason, do
not include dynamic endpoints in your exported binding handles, since they will change at each
invocation of the server and will clutter up your name service entry. Use RpcBindingReset to remove
such binding handles. For example, a reasonable sequence of server operations would be as follows:

For more than one transport:

RpcServerUseProtseq();
RpcServerUseProtseq();

To place bindings in the endpoint mapper:

RpcServerInqBindings(&Vector);
RpcEpRegister(Interface, Vector);

To remove endpoints from bindings:

for (i=0; i < Vector- > Count; + + i)
{
RpcBindingReset(Vector->BindingH[i];
}

To add bindings to the name service:

RpcNsBindingExport(RPC_C_NS_SYNTAX_DEFAULT, EntryName, Interface
Vector);

RpcServerListen();

Since the Microsoft Locator service does not use many resources to export information, the examples
above work well. However, Microsoft RPC also supports Digital Equipment Corporation's Cell Directory
Service (CDS). This is a more robust name service. When using CDS, RpcNsBindingExport or
RpcNsBindingUnexport will create a lot of network traffic for replication and distribution. Thus, the
server should determine if the information already has been exported, and only export it if is has not.

 What Happens During a Query

This section describes how the network handles the query when a 32-bit client looks for a name in its
own domain.

When your client application calls RpcNsBindingImportBegin, the locator residing on your client
computer will try to satisfy this request. If there is nothing in the cache, it will forward the request by
RPC to a master locator. If the master locator finds nothing in its cache, it sends the request to all the
computers in the domain using a mailslot broadcast. If there is a match, the locator on each computer
will respond by a directed mailslot (for example, if a process on that computer has exported the
interface). The responses are collated and the RPC is completed from the client's process locator,
which will reply to the client process itself.

In a domain, the client locator searches for a master locator in the following places:

1. On the primary domain controller, or
2. On each backup domain controller.
If a match is not found, the client locator declares itself to be the master locator. As such, it will
broadcast queries if they cannot be satisfied locally.

In a workgroup, the client locator maintains a cache of the computers whose locators have
broadcasted. It uses the one that has been running the longest as the master locator. If that computer
is unavailable, the next longest-broadcasting computer is used, and so on. If the client needs a master
locator and the cache is empty, it replenishes the cache by sending a special mailslot broadcast that
requests master locators to respond. If there are no responses, the client locator declares itself to be
the master locator and will broadcast queries if they cannot be satisfied locally.

This changes if your client application is a Windows 3.x or MS-DOS program. In this case, there is no
locator running on the client computer, and rpcns1.dll or rpcnslm.rpc contains the code to find a master
locator. All requests are forwarded directly to the master locator.

These guidelines are valid for names in the client's domain, for example, names for "/.:/entryname". If
the client requests a name from another domain through the use of "/.../DOMAIN/entryname;" the client
locator forwards the request to the specified domain, which will broadcast it if it doesn't have the
answer. If the domain is down or is actually a workgroup, the request will fail.

Note Remember the following when working with entries in the name service:

· A client cannot use the "/.../DOMAIN/entryname" syntax to find an entry in its own domain. Use the
syntax "/.:/entryname". However, you can use "/.../DOMAIN/entryname" to find an entry in another
domain.

· The domain name in "/.../DOMAIN/entryname" must be upper-case. When looking for a match, the
locator is case-sensitive.

· Locator entry names are also case-sensitive.

 Using CDS

If you have CDS, you can use it instead of the Locator. Change the registry entries as follows:

HKEY_LOCAL_MACHINE
Software

Microsoft
Rpc

Name Service
NetworkAddress

HKEY_LOCAL_MACHINE
Software

Microsoft
Rpc

Name Service
Endpoint

Changing these entries will point to a gateway computer that is running the nsid. This will be used as
the master locator. In the event of a crash, there will be no search for a replacement.

 Name Syntax

Microsoft RPC accepts names that conform to the following syntax:

/.:/name[/name...]
/.../domainname/name[/name...]

name
Specifies an identifier that can contain any character except the delimiting slash (/) character.

domainname
Specifies the name of the Windows NT domain.

A parameter that selects the name-syntax type and the string that specifies the name are supplied to
many of the name-service interface (NSI) RPC functions.

Only one name-syntax type is supported by Microsoft RPC, as specified by the constant
RPC_C_NS_SYNTAX_DCE. This constant is defined in the header file RPCNSI.H.

The name syntax specified by RPC_C_NS_SYNTAX_DCE is an extension of the DCE Cell Directory
Service (CDS) name syntax. The ability to specify a domain name represents an extension to that
syntax. There is no absolute limit on the number of names that can be separated by slash characters,
as long as the overall string is less than 256 characters.

The slashes allow you to specify a logical structure to the name, but they do not correspond to a logical
structure in the objects themselves.

 The RPC Name-Service Database

A name service is a service that maps names to objects, usually maintaining the (name, object) pairs in
a database. The name is usually a logical name that is easy for users to remember and use. For
example, a name service would allow a user to use the logical name "laserprinter." The name service
maps this name to the network-specific name used by the print server.

To use a simplified explanation, the RPC name service maps a name to a binding handle and
maintains the (name, binding handle) mappings in the RPC name-service database. The RPC name
service allows client applications to use a logical name instead of a specific protocol sequence and
network address. The use of the logical name makes it easier for network administrators to install and
configure your distributed application.

An RPC name-service database entry has one of the following attributes: server, group, or profile. In
the Microsoft implementation, entries can have only one attribute, so these entries are also known as
server entries, group entries, and profile entries.

The server entry consists of interface UUIDs, object UUIDs (needed when the server implements
multiple entry points), network address, protocol sequence, and any endpoint information associated
with well-known endpoints. When a dynamic endpoint is used, the endpoint information is kept in the
endpoint-map database rather than the name-service database, and the endpoint is resolved like any
other dynamic endpoint. Server entries are managed by functions that start with the prefix
"RpcNsBinding."

The group entry can contain server entries or other group entries. Group entries are managed by
functions that start with the prefix "RpcNsGroup."

The profile entry can contain profile, group, or server entries. Profile entries are managed by the
functions that start with the prefix "RpcNsProfile."

 Name-Service Application Guidelines

When you develop your distributed application, give your application users the ability to supply the
name for registering the application in the name-service database. Provide a method, such as a data
file, command-line input, or dialog box, that allows the application user or network administrator to
specify the name.

The RPC name-service architecture supports various methods for organizing an application's server
entries, but it is optimized for lookups. As a result, frequent updates can hinder the performance of both
the name service and the application. To avoid exporting information unnecessarily, choose a design
that allows the server to determine whether its information is in the name-service database. In addition,
each server instance should export to its own entry name; otherwise it will be very difficult for an
instance to change its supported object UUIDs or protocol sequences without disturbing another
instance's information.

Following is a method that avoids these pitfalls and provides good performance, whether you use the
Microsoft Locator or another name service.

Design your application so that the first time a given server instance starts up, it picks a unique server-
entry name and saves this name in an .INI file along with the application's other configuration
information. Then have it export its binding handles and object UUIDs, if any, to its name-service entry.
Subsequent invocations of the server instance should check that the name-service entry is present and
contains the correct set of object UUIDs and binding handles. A missing entry might mean that an
administrator removed it, or that a power outage caused the name-service information to be lost. It is
important to verify that the binding handles in the entry are correct; if an administrator adds TCP/IP
support to a computer, for example, RPC servers will listen on that protocol sequence when they call
RpcServerUseAllProtseqs. But if the server doesn't update the name-service entry, clients won't be
informed that TCP is supported.

When the client imports, it should specify NULL as the entry name; specifying NULL causes the
Microsoft Locator to search for the interface in all name-service entries in the client machine's domain
or workgroup, thus finding the information for every instance.

If you use object UUIDs to represent well-known objects such as printers, you can use a variation of
this method. Instead of exporting bindings to one entry, design your application so that each instance
creates an entry for each supported object, such as "/.:/printers/Laser1" and "/.:/printers/Laser2." Then
have the server export its binding handles to each server entry, along with the object UUID relevant to
that entry.

In this case, a client can look up a resource by name by importing from the relevant server entry; it
doesn't require the object UUID of the resource. If it has the resource UUID but not the name, it can
import from the null entry.

 Registering the Interface

After calling RpcServerUseAllProtseqs, registering dynamic endpoints in the endpoint-map database
and registering your distributed application in the name service, register the interface by calling
RpcServerRegisterIf once for each implementation of the interface.

Where you provide a single implementation of each function prototype specified in the interface, supply
the interface handle data structure generated by the MIDL compiler and supply null pointers for the
manager type and the parameters of the manager entry-point vector (EPV).

RpcServerRegisterIf sets values in the internal interface registry table. This table is used to map the
interface UUID and object UUIDs to a manager EPV. The manager EPV is an array of function pointers
that contains exactly one function pointer for each function prototype in the interface specified in the
IDL file.

The run-time library uses the interface registry table (set by calls to the function RpcServerRegisterIf)
and the object registry table (set by calls to the function RpcObjectSetType) to map interface and
object UUIDs to the function pointer.

For information about supplying multiple EPVs to provide multiple implementations of the interface, see
Multiple Interface Implementations.

 Listening for Clients

After registering the protocol sequence, endpoint, and interface, and after advertising the availability of
the server application in the name-service database, the server calls RpcServerListen to indicate to
the run-time library that it is ready to accept remote procedure calls from clients.

The DCE implementation of RpcServerListen does not return to the server application until another
server thread calls RpcMgmtStopServerListening. The call to RpcServerListen ties up the server-
manager thread.

Microsoft has extended the DCE definition of this function. You supply a flag that indicates whether to
wait or to return immediately to the server application to allow further processing. When your server
application uses this option, it can call a new function, RpcMgmtWaitServerListen, to perform the wait
operation.

The wait functionality prevents the server from terminating an active client operation. When the server
has selected the wait option by calling RpcServerListen or RpcMgmtWaitServerListen, the server
waits until all client operations are complete before shutting down the server-manager application.

 Client Application RPC API Calls

To make the remote procedure call, the client must obtain a binding handle. Two approaches are used
to obtain a binding handle:

· Importing from the name-service database. The client specifies the name of the name-service
database entry and obtains a binding handle.

· Constructing individual strings that represent the client object UUID, server, protocol sequence,
network address, endpoint, and options. Call the function RpcStringBindingCompose to assemble
these strings into the correct syntax for a string binding, and then call
RpcBindingFromStringBinding to obtain the binding handle.

For information see String Bindings.

Use the RPC name service in both client and server applications for ease of administration and
maintenance.

 Importing from the Name-Service Database

When the server application is registered with the name-service database, the client can obtain binding
handles by using one of two equivalent methods:

· Importing (call RpcNsBindingImportBegin, RpcNsBindingImportNext, and
RpcNsBindingImportDone)

· Looking up and selecting (call RpcNsBindingLookupBegin, RpcNsBindingLookupNext,
RpcNsBindingSelect, and RpcNsBindingLookupDone).

The import method returns a single binding handle, while the lookup method returns a binding vector
from which the application selects one binding handle using the function RpcNsBindingSelect.

The client queries the name service by supplying the logical name the client uses to refer to the server
application. The name-service provider returns a binding handle.

The client can also choose to supply a null name (an empty string or a null pointer). In this case, the
Microsoft Locator searches for name-service database entries that match the supplied interface UUID.
The search varies slightly between the DCE CDS and the Microsoft Locator.

The DCE implementation of the name-service provider uses the DEFAULT_ENTRY environment
variable, which is usually the name of a profile, to search for an entry that matches the interface ID
specified in the import call.

The Microsoft Locator implementation of the name-service provider does not use DEFAULT_ENTRY
and does not support profile entries. Instead, all entries in the primary locator (at the domain controller)
are combined to form a default profile. When no matches are found in that domain, the client
application can search in another domain. For more information about specifying the domain name,
see Name Syntax.

 Multiple Interface Implementations

You can supply more than one implementation of the remote procedure(s) specified in the IDL file. The
server application calls RpcObjectSetType to map object UUIDs to type UUIDs and calls
RpcServerRegisterIf to associate manager EPVs with a type UUID. When a remote procedure call
arrives with its object UUID, the RPC server run-time library maps the object UUID to a type UUID. The
server application then uses the type UUID and the interface UUID to select the manager EPV.

You can also specify your own function to resolve the mapping from object UUID to manager type
UUID. You specify the mapping function when you call RpcObjectSetInqFn.

 Entry-Point Vectors

The manager EPV is an array of function pointers that point to implementations of the functions
specified in the IDL file. The number of elements in the array corresponds to the number of functions
specified in the IDL file. Microsoft RPC supports multiple entry-point vectors, representing multiple
implementations of the functions specified in the interface.

The MIDL compiler automatically generates a manager EPV data type for use in constructing manager
EPVs. The data type is named if-name_SERVER_EPV, where if-name specifies the interface identifier
in the IDL file.

The MIDL compiler automatically creates and initializes a default manager EPV on the assumption that
a manager routine of the same name exists for each procedure in the interface and is specified in the
IDL file.

When a server offers multiple implementations of the same interface, the server must create one
additional manager EPV for each implementation. Each EPV must contain exactly one entry point
(address of a function) for each procedure defined in the IDL file. The server application declares and
initializes one manager EPV variable of type if-name_SERVER_EPV for each additional
implementation of the interface. It registers the EPVs by calling RpcServerRegisterIf once for each
supported object type.

When the client makes a remote procedure call to the server, the EPV containing the function pointer is
selected based on the interface UUID and the object type. The object type is derived from the object
UUID by the object-inquiry function or the table-driven mapping controlled by RpcObjectSetType.

 Supplying Your Own Object-Inquiry Function

Consider a server that manages thousands of objects of many different types. Whenever the server
started, the server application would have to call the function RpcObjectSetType for every one of the
objects, even though clients might refer to only a few of the objects (or take a long time to refer to
them). The thousands of objects are likely to be on disk, so that retrieving their types would be time
consuming. Also, the internal table mapping the object UUID to the manager type UUID would
essentially duplicate the mapping maintained with the objects themselves.

For convenience, the RPC function set includes the function RpcObjectSetInqFn. With this function,
you provide your own object-inquiry function.

For example, you can supply your own object-inquiry function when you map objects 100 - 199 to type
number 1, 200 - 299 to type number 2, and so on. The object-inquiry function can also be extended to
a distributed file system, where the server application does not "know" all the files (object UUIDs)
available, or when files in the file system are named by object UUIDs and you don't want to preload all
object-UUID-to-type-UUID mappings.

 Using Datagram Protocols

Microsoft RPC supports datagram, or connectionless, protocols; as well as connection-oriented
protocols. Some of the features available when using datagram protocols are as follows:

· Datagrams support the UDP and IPX connectionless transport protocols.
· Because it is not necessary to establish and maintain a connection, resource overhead is less using

the datagram RPC protocol.
· Datagrams enable faster binding.
· Datagram RPC provides guaranteed, at-most-once delivery through its non-idempotent attribute. A

non-idempotent routine is one that cannot be executed more than once because it will either return
different results each time, or because it modifies some state. Contrast this with an idempotent
routine which also provides guaranteed delivery, but does not ensure at-most-once delivery since
transmission acknowledgement is not required.

· Datagram RPC supports the broadcast and maybe capabilities. Broadcast enables a client to
issue messages to multiple servers at the same time. This allows the client to locate one of several
available servers on the network, or to control multiple servers simultaneously.

 Exception Handling

Microsoft RPC uses the same approach to exception handling as the Microsoft Win32 API.

With Microsoft Windows NT, the RpcTryFinally / RpcFinally / RpcEndFinally structure is equivalent
to the Win32 try-finally statement. The RPC exception construct RpcTryExcept / RpcExcept /
RpcEndExcept is equivalent to the Win32 try-except statement.

The exception-handler structures in Microsoft RPC are provided so they can also be supported on
computers with MS-DOS and Windows 3.x. When you use the RPC exception handlers, your client-
side source code is portable to Windows NT, Windows 3.x, and MS-DOS. The different RPC header
files provided for each platform resolve the RpcTry and RpcExcept structures for each platform. In the
Win32 environment, these macros map directly to the Win32 try-finally and try-except statements. In
other environments, these macros map to other platform-specific implementations of exception
handlers.

The RPC exception-handling macros provide consistent try-except support across MS-DOS, Windows
3.x, and Windows NT. With Windows NT, RPC try-except support expands into Windows NT try-
except support.

When you write distributed applications for Win32 only, use the Win32 try-except and try-finally
statements. If you are writing for MS-DOS and Windows 3.x, use the RPC versions of these macros.

Potential exceptions raised by these structures include the set of error codes returned by the RPC
functions with the prefixes "RPC_S_" and "RPC_X" and the set of exceptions returned by Win32.

Exceptions that occur in the server application, server stub, and server run-time library (above the
transport layer) are propagated to the client. This propagation feature includes multiple layers of
callbacks. No exceptions are propagated from the server transport level. The following figure shows
how exceptions are returned from the server to the client:

{ewc msdncd, EWGraphic, group10525 0 /a "SDK_a20.bmp"}

The RPC exception handlers differ slightly from the DCE exception-handling macros TRY, FINALLY,
and CATCH. Various vendors provide include files that map the DCE RPC functions to the Microsoft
RPC functions, including TRY, CATCH, CATCH_ALL, and ENDTRY. These header files also map the
RPC_S_* error codes onto the DCE exception counterparts, rpc_s_*, and map RPC_X_* error codes
to rpc_x_*. For DCE portability, use these include files.

For more information about the RPC exception handlers, see RpcExcept and RpcFinally. For more
information about the Win32 exception handlers, see your Win32 API documentation.

 Security

Microsoft RPC supports two different methods for adding security to your distributed application:

· Use a security package that can be accessed using the RPC functions.
· Use the security features built into Windows NT transport protocols.
The transport-level security method is not the preferred method. We recommend that you use RPC
security because it works on all transports, across platforms, and provides a high levels of security
(including Privacy).

 Using Authenticated RPC

While previous versions of Microsoft RPC depended on the security built into the named pipes
transport, this version also implements the transport-independent security functions from DCE RPC,
using the Windows NT Security Service as the default security provider. This higher-level security
enables servers to filter client requests based on an authenticated identity associated with each
request.

 An Overview of Authenticated RPC

To use authenticated RPC, a client passes its user security information to the runtime library. This
security information is called the client credentials. The client runtime library forwards the credentials to
the server run-time library. The server runtime library then passes it to the relevant security provider for
verification. (In this version of Microsoft RPC, the NT Security Service is the only supported security
provider. Other security providers may be added in the future.) When a call is made, the security saver
ensures the credentials are valid. If so, the server stub is called and the call proceeds. Otherwise, the
client is denied access and the call fails.

Authenticated RPC involves a series of tasks performed by all servers every time a client tries to
connect. The server must:

1. Extract binding information about the client from the incoming call.
2. Extract the authentication information from the binding handle and check the credentials with the NT

Security Service.
3. Compare the client's authentication information with the access control list (ACL) on the security

server's database.

 Writing a Secure Server

Depending on your security provider, invalid credentials may or may not be rejected. By default, the
RPC runtime library will dispatch calls. It is your responsibility to protect yourself by either:

· Determining exactly who the client is, or
· Using impersonation.

Note Disable the guest account on all computers where security is a significant factor.

If you need additional information about how to write a secure server, check with the manufacturer of
your security provider.

 Implementing Security for Clients

To set up a binding handle for authenticated RPC, a client application calls RpcBindingSetAuthInfo.
Without this call, all remote procedure calls on the binding handle will be unauthenticated. The chosen
level of security and authentication applies only to that binding handle. Context handles derived from
the binding handle will use the same security information, but subsequent modifications to the binding
handle will not be reflected in the context handles. The security and authentication level stays in effect
until another level of security is chosen, or until the process terminates. Most applications will not
require a change in the security level.

The levels of security and authentication available for authenticated RPC are shown in the following
table:

Authentication-Level Constant Description
RPC_C_AUTHN_LEVEL_DEFAULT Uses the default authentication

level for the specified
authentication service.

RPC_C_AUTHN_LEVEL_NONE Performs no authentication.
RPC_C_AUTHN_LEVEL_CONNECT Authenticates only when the

client establishes a relationship
with the server.

RPC_C_AUTHN_LEVEL_CALL Authenticates only at the
beginning of each remote
procedure call when the server
receives the request. Does not
apply to remote procedure calls
made using the connection-
based protocol sequences
(those that start with the prefix
"ncacn"). If the protocol
sequence in a binding handle is
a connection-based protocol
sequence and you specify this
level, this routine instead uses
the
RPC_C_AUTHN_LEVEL_PKT
constant.

RPC_C_AUTHN_LEVEL_PKT Authenticates that all data
received is from the expected
client.

RPC_C_AUTHN_LEVEL_PKT_INTEGRI
TY

Authenticates and verifies that
none of the data transferred
between client and server has
been modified.

RPC_C_AUTHN_LEVEL_PKT_PRIVAC
Y

Authenticates all previous
levels and encrypts the
argument value of each remote
procedure call.

Note For Windows 95 platforms, RPC_C_AUTHN_LEVEL_CALL, RPC_C_AUTHN_LEVEL_PKT,
RPC_C_AUTHN_LEVEL_PKT_INTEGRITY, and RPC_C_AUTHN_LEVEL_PKT_PRIVACY are only
supported for a Windows 95 client communicating with a Windows NT server. These levels are never
supported for a Windows 95 client communicating with a Windows 95 server.

The level of security required depends entirely on the application. When considering security levels,
remember that the higher the protection level, the greater the overhead required to create and maintain
the levels. Additionally, there are performance tradeoffs to consider. The checksum computation and
encryption required by the RPC runtime library can make data protection a time-consuming operation.
The more often credentials are checked, the more time it will take to get on with the business of the
application. When selecting a security level, choose the elements needed by the application, mixing
and matching only as required.

 Windows 95 Considerations

For systems configured for NetWare clients, the server-side of the application must obtain the server
principal name, and then pass this value to RpcServerRegisterAuthInfo. Use the
RpcServerInqDefaultPrincName routine to obtain the server principal name. In this situation, the
client calls RpcBindingSetAuthInfo in the usual manner, but a value of NULL is specified for
PrincipalName. Behind the scenes, the Windows 95 runtime library queries the server to obtain the
value of PrincipalName specified to RpcServerRegisterAuthInfo. This is the name that is actually
used. The binding handle will be authenticated on the NetWare server.

For Windows 95, if RpcBindingSetAuthInfo is called with a NULL server principal name (as described
above), the binding handle must be fully bound. If it is a dynamic endpoint in which the server registers
the endpoint with the endpoint mapper, and therefore, it is not known by the client, you must use
RpcEpResolveBinding to bind the handle. This is because in order to obtain the principal name from
the server, the Windows 95 runtime library implicitly calls RpcMgmtInqServerPrincName; calls to
management interfaces cannot be made to unbound handles. All RPC server processes have the
same management interface, and registering the handle with the endpoint mapper is not sufficient to
uniquely identify a server.

Note The ncacn_np and ncalrpc security descriptors are ignored by the Windows 95 runtime library,
since Windows 95 does not support the Windows NT security model.

Differences in Platforms

When developing applications for MS-DOS, you must feed in the password and credential information
to RpcBindingSetAuthInfo manually. This is not the case for an NT or Windows-based platform where
the password for the domain will be used. If a Windows For Workgroups or Windows 3.x workstation is
not part of a domain, the user will be prompted for the password.

For MS-DOS applications, create a pointer to the SEC_WINNT_AUTH_IDENTITY structure and pass
in the credential information under the AuthIdentity parameter.

 Providing Client Credentials to the Server

Servers use the client's binding information to enforce security. Clients always pass a binding handle
as the first parameter of a remote procedure call; however, servers cannot use the handle unless it's
declared as the first parameter to remote procedures in either the IDL file or in the server's ACF. You
can choose to list the binding handle in the IDL file, but this forces all clients to declare and manipulate
the binding handle rather than using automatic or implicit binding if they choose. Another method is to
leave the binding handles out of the IDL file and to place the explicit_handle attribute into the server's
ACF. In this way, the client can use whatever type of binding is best suited to the application, while the
server uses the binding handle as though it were declared explicitly.

The processs of extracting the client credentials from the binding handle is as follows:

· RPC clients call RpcBindingSetAuthInfo and include their authentication information as part of the
binding information passed to the server.

· Usually, the server calls RpcImpersonateClient in order to behave as though it were the client. If the
binding handle is not authenticated, the call fails with RPC_S_NO_CONTEXT_AVAILABLE. To
obtain the client's user name, call GetUserName while impersonating.

· The server will normally create objects with ACLs by using the Windows NT call
CreatePrivateObjectSecurity. After this is accomplished, later security checks become automatic.

 Security Packages

The RPC run-time API set includes several functions that let your application manage security.

A security package such as the Kerberos Authentication Protocol can be supplied as a DLL that
interoperates with the Microsoft RPC run-time libraries.

 Windows NT Transport Security

Although this is not the preferred method, you can add security features to your distributed application
by using the security settings offered by the Windows NT named-pipe transport. These security
settings are used with the Microsoft RPC functions that start with the prefixes "RpcServerUseProtseq"
and "RpcServerUseAllProtseqs" and the functions RpcImpersonateClient and RpcRevertToSelf.

Note If you are running an application that is a service and you are using NTLMSSP for security, you
must add an explicit service dependency for your application. The NTLMSSP.DLL will call the Service
Controller (SC) to begin the NTLMSSP service. However, an RPC application that is a service and is
running as a system, must also contact the SC, unless it is connecting to another service on the same
computer.

 Impersonation

Impersonation is useful in a distributed computing environment when servers must pass client requests
to other server processes or to the operating system. In this case, a server impersonates the client's
security context. Other server processes can then handle the request as if it had been made by the
original client.

For example, a client makes a request to Server A. If Server A must query Server B to complete the
request, Server A impersonates client security context and makes the request to Server B on behalf of
the client. Server B uses the original client's security context, rather than the security identity for Server
A, to determine whether to complete the task.

The server calls RpcImpersonateClient to overwrite the security for the server thread with the client
security context. RpcRevertToSelf restores the security context defined for the server thread.

When binding, the client can specify quality-of-service information about security that specifies how the
server can impersonate the client. For example, one of the settings allows the client to specify that the
server is not allowed to impersonate it.

 Using Transport-Level Security on the Server

When you use ncacn_np or ncalrpc as the protocol sequence, the server specifies a security
descriptor for the endpoint at the time it selects the protocol sequence. The security descriptor is
provided as an additional parameter (an extension to the standard DCE parameters) on all functions
that start with the prefixes "RpcServerUseProtseq" and "RpcServerUseAllProtseqs." The security
descriptor controls whether a client can connect to the endpoint.

Each Windows NT process and thread is associated with a security token. The security token includes
a default security descriptor that is used for any objects created by the process, such as the endpoint.
If no security descriptor is specified when calling a function with the prefixes "RpcServerUseProtseq"
and "RpcServerUseAllProtseqs," the default security descriptor from the process security token is
applied to the endpoint.

To guarantee that the server application is accessible to all clients, the administrator should start the
server application on a process that has a default security descriptor that can be used by all clients. In
Windows NT, generally only system processes have a default security descriptor.

For more information about these functions and the functions RpcImpersonateClient and
RpcRevertToSelf.

 Using Transport-Level Security on the Client

The client specifies how the server impersonates the client when the client establishes the string
binding. This quality-of-service information is provided as an endpoint option in the string binding. The
client can specify the level of impersonation, dynamic or static tracking, and the effective-only flag.

To supply quality-of-service information for the server, the client performs the following steps:

1. Imports a handle from the name-service database.
The client specifies the name of the name-service database entry and obtains a binding handle.

2. Calls RpcBindingToStringBinding to obtain the protocol sequence, network address, and
endpoint.

3. Calls RpcStringBindingParse to split the string binding into its component substrings.
4. Verifies that the protocol sequence is equal to ncacn_np or ncalrpc.

Client quality-of-service information is supported only on named pipes in Microsoft RPC.
5. Adds the security information to the endpoint string as an option.

For more information about the syntax, see String Binding.
6. Calls RpcStringBindingCompose to reassemble the component strings, including the new

endpoint options, in the correct string-binding syntax.
7. Calls RpcBindingFromStringBinding to obtain a new binding handle and to apply the quality-of-

service information for the client.
8. Makes remote procedure calls using the handle.

Microsoft RPC supports Windows NT security features only on ncacn_np and ncalrpc. Windows NT
security options for other transports are ignored.

Note Since it does not support the Windows NT security model, the Windows 95 runtime library
ignores the security descriptors ncalrpc and ncacn_np.

The following security parameters can be associated by the client with the binding for the named-pipe
transport ncacn_np or ncalrpc:

· Identification, Impersonation, or Anonymous. Specifies the type of security used.
· Dynamic or Static. Determines whether security information associated with a thread is a copy of

the security information created at the time the remote procedure call is made (static) or a pointer to
the security information (dynamic).
Static security information does not change. The dynamic setting reflects the current security
settings, including changes made after the remote procedure call is made.

· TRUE or FALSE. Specifies the value of the effective-only flag. A value of TRUE indicates that only
security settings set to "on" at the time of the call are effective. A value of FALSE indicates that all
security settings are available and can be modified by the application.

Any combination of these settings can be assigned to the binding, as in the following example:

"Security=Identification Dynamic True"
"Security=Anonymous Static True"
"Security=Impersonation Static False"

Default security-parameter settings vary according to the transport protocol.

For more information about the security features of Windows NT, see your Microsoft Windows NT
documentation. For information about the syntax of the endpoint options, see endpoint.

 Building RPC Applications

The procedure for building a distributed RPC application varies slightly, depending on the operating-
system platform that you are developing on and the target platform, version of the MIDL and C or C++
compiler, and API libraries that you use. In all cases, however, the general procedure is the same:
Develop the MIDL and C source files, compile the MIDL source files, then compile the C source files,
and then link with the RPC and other API libraries.

 Environment, Compiler, and API Set Choices

You can develop RPC applications for different target environments: MS-DOS, Microsoft Windows 3.x,
and Microsoft Windows NT. You can also choose to develop the executable applications for these
target environments using different build environments. Accordingly, you can choose among several
development environments, MIDL and C compilers, and API sets.

Available tools and libraries are described in the following table:

Development tool Description
MIDL for 32-bit
environment

Produces C source code for 16- or 32-bit
environment

C and MSVC for 16-bit
environment (Microsoft
C/C++ version 7.0)

Produces 16-bit object files only

C and MSVC for 32-bit
environment (Win32
SDK)

Produces 32-bit object files only

Win32 API Provided for 32-bit environment only (RPC
functions are provided as 32-bit DLLs)

Windows 3.x API Provided for 16-bit environment only (RPC
functions are provided as 16-bit Windows DLLs)

 General Build Procedure

Use the following procedure to develop your distributed application:

1. Install the RPC SDK for your platform. For more information on how to install RPC, see Installing
RPC.

2. Develop the IDL file (and optional ACF) that specify the interface.
3. Develop the C-language source files that implement and call the interface.
4. Generate C-language stub files by compiling the IDL file and optional ACF with the MIDL compiler.
5. Compile the C-language source and stub files with the C compiler.
6. Link the object files with the RPC import libraries for your platform.
7. Run the client and server distributed applications.

 Developing IDL Files

This topic includes the following:

· a description of the uuidgen utility.
· a discussion about importing other IDL files.

 The uuidgen Utility

The UUID is assigned to an interface to distinguish that interface from other interfaces. The UUID is
generated from a command-line utility program, uuidgen, which creates unique identifiers in the
required format using both a time identifier and a machine identifier. It guarantees that any two UUIDs
produced on the same machine are unique because they are produced at different times, and that any
two UUIDs produced at the same time are unique because they are produced on different machines.

The uuidgen utility generates the UUID in IDL file format or C-language format.

The textual representation of a UUID is a string consisting of eight hexadecimal digits followed by a
hyphen, followed by three hyphen-separated groups of four hexadecimal digits, followed by a hyphen,
followed by twelve hexadecimal digits. The following example is a valid UUID string:

6B29FC40-CA47-1067-B31D-00DD010662DA

When you run the uuidgen utility from the command line, you can use the following command
switches:

uuidgen switch Description
/i Outputs UUID to an IDL interface template
/s Outputs UUID as an initialized C structure
/o<filename> Redirects output to a file; specified immediately

after the /o switch
/n<number> Specifies the number of UUIDs to generate
/v Displays version information about uuidgen
/h or ? Displays command-option summary

 Importing Other IDL Files

When you import IDL files using the import attribute, you reuse software. You can also port existing
applications to RPC.

Microsoft RPC offers several extensions to the MIDL compiler that affect:

· Pointer-attribute type inheritance among imported IDL files
· How many support routines are generated
· Where support routines are located
Note that an interface without attributes can be imported into a base IDL file. However, the interface
must contain only datatypes with no procedures. If even one procedure is contained in the interface, a
local or UUID attribute must be specified.

Pointer-Attribute Type Inheritance

According to the DCE specification, each IDL file must define attributes for its pointers. If an explicit
attribute is not assigned to a pointer, the pointer uses the value specified by the pointer_default
keyword. Some DCE implementations don't allow unattributed pointers. If a pointer does not have an
explicit attribute, the IDL file must have a pointer_default specification so that the pointer attribute can
be set.

In Microsoft-extensions mode, you can specify a pointer's attribute in the IDL file that imports the
defining IDL file. This mode, selected using /ms_ext, allows pointers defined in one IDL file to inherit
attributes that are specified in other IDL files.

In Microsoft-extensions mode, IDL files can include unattributed pointers. If neither the base nor the
imported IDL files specify a pointer attribute or pointer_default, unattributed pointers are interpreted as
unique pointers.

The MIDL compiler assigns pointer attributes to pointers using the following priority rules (1 is highest):

1. Explicit pointer attributes explicitly applied to the pointer at the definition or use site
2. Pointer_default attribute in the IDL file that defines the type
3. Pointer_default attribute in the IDL file that imports the type
4. Ptr (DCE-compatibility mode); unique (Microsoft-extensions mode)

 Developing C Source Files

Your C-language source files must include the header file that will be generated by the MIDL compiler.
By default, the generated header file has the same name as the IDL file. You can specify the name of
the generated header file with the MIDL compiler command-line option midl /header. Whatever
filename you choose, include the generated header file in your C source code.

The generated header file includes directives to include the following RPC header files:

Header files Description
RPC.H RPC types and run-time function prototypes
RPCNDR.H byte, boolean, and small types and data-

conversion function prototypes

 Using the MIDL Compiler

The MIDL compiler offers a variety of command-line switches that allow you to control its input and
output. This section describes some of the major command-line switches, options, and arguments that
are supported in Microsoft RPC. For a complete description of each switch, see the reference
documentation for the MIDL compiler.

In its default mode, the MIDL compiler generates files that are compatible with DCE RPC. In this mode,
language features that are not compatible with DCE IDL are noted as warnings or errors.

Three other compiler modes can be activated with MIDL compiler switches. The modes are as follows:

Compiler
mode

Description

/ms_ext Specifies Microsoft extensions to DCE IDL compilers
/c_ext Specifies C extension to IDL
/app_config Supports selected ACF keywords in the IDL file, so you

do not have to provide an ACF

The three compiler-mode switches permit different extensions to the DCE IDL language. Each set is
independent of the other two and any combination of switches can be set. If no switch is turned on, the
language and the compiler output are compatible with DCE IDL.

Each line in the following table shows one of the eight possible combinations of switch settings for the
MIDL compiler:

/
ms_e
xt

/c_ext /
app_confi
g

Description

Off Off Off DCE-compatibility mode
Off Off On Allows some ACF attributes in the IDL file;

otherwise DCE-compatible
Off On Off DCE-compatible with Microsoft C

extensions
Off On On DCE-compatible with Microsoft C

extensions and allow some ACF attributes
in the IDL file

On Off Off Allows MIDL extensions
On Off On Allows MIDL extensions and allows ACF

attributes in the IDL file
On On Off Allows MIDL extensions and Microsoft C

language extensions
On On On Allows MIDL extensions, Microsoft C

language extensions, and some ACF
keywords in the IDL file

The following sections describe each of the compiler modes in detail.

 Microsoft-Extensions Mode

The /ms_ext switch enables Microsoft extensions to the DCE IDL. The following features are
supported in /ms_ext mode:

· Static callback functions on the client
· Explicit handle parameters in any position in the argument list rather than first only
· Pointers to tagged declaration types
· Expressions used as size and discriminator specifiers
· Enumerator initialization (sparse enums)
· wchar_t wide-character constants, strings, types, and parameters
· cpp_quote(quoted_string) and #pragma midl_echo
· Multiple interfaces in an IDL file
· Definitions outside of an interface

 C-Extensions Mode

C-extensions mode, selected with the /c_ext switch, allows you to use existing C header files with your
distributed application. The /c_ext switch allows you to use type qualifiers, such as far and stdcall, in
type definitions and function prototypes specified in the IDL file.

The /c_ext switch instructs the MIDL compiler to accept C type qualifiers in type declarations as long
as the type declarations are not used in a remote procedure call. This allows the compiler to ignore int
and void * declarations that would otherwise generate MIDL compiler errors.

C-extensions mode also allows most Microsoft and ANSI C declarative syntax. The following features
are supported in the /c_ext compiler mode as long as they are not used in remote procedures:

· int
· void *
· Declaration qualifiers in the IDL file: _ _near, near, _ _far, far, _ _cdecl, cdecl, _ _pascal, pascal, _

_loadds, loadds, _ _volatile, volatile, _ _export, export
· Complex declarators (such as void ** _near _cdecl proc(int * _far * a[]);)
· Ellipses in the procedure parameter list
· Bit fields in structures and unions
· Non-discriminated unions
· extern declarations
· Enumerator initialization

 Application Configuration Mode

The /app_config switch allows you to put selected ACF attributes in an IDL file so you don't have to
maintain two files that describe an interface. This mode supports the use of the implicit_handle and
auto_handle interface attributes in the IDL file.

The following ACF attributes can appear in the IDL file when you use the /app_config compiler mode:

· Handle attributes in the IDL file: implicit_handle
· auto_handle

 Help

A complete listing of MIDL compiler switches and options is available when you use the MIDL compiler
/help and /? switches. The switches are organized by categories.

 Response Files

As an alternative to placing all the options on the command line, the MIDL compiler accepts response
files that contain switches and arguments. A response file is a text file containing one or more MIDL
compiler command-line options. Unlike a command line, a response file allows multiple lines of options
and filenames. This is important on systems such as MS-DOS that have a hard-coded limit on the
length of a command line. You can specify a MIDL response file as follows:

midl @filename

filename
Specifies the name of the response file. The response filename must immediately follow the @
character. No white space is allowed between the @ character and the response filename.

Options in a response file are interpreted as if they were present at that place in the MIDL command
line.

Each argument in a response file must begin and end on the same line. The backslash character (\)
cannot be used to concatenate lines.

MIDL supports command-line arguments that include one or more response files, combined with other
command-line switches:

midl -pack 4 @midl1.rsp -env win32 @midl2.rsp itf.idl

The MIDL compiler does not support nested response files.

 C-Compiler and C-Preprocessor Requirements

The MIDL compiler must interoperate with the C compiler and C preprocessor. The requirements for
the C compiler and preprocessor are described in the following sections.

 C-Preprocessor Requirements for MIDL

The MIDL compiler uses the C preprocessor during initial processing of the IDL file. The operating
system used when you compile the IDL files is associated with a default C preprocessor. If you want to
use a different C-preprocessor name, the MIDL compiler switch /cpp_cmd allows you to override the
default C-preprocessor name:

midl /cpp_cmd cl386 filename

filename
Specifies the name of the IDL file.

During initial processing, the C preprocessor removes all preprocessor directives in the IDL file. After
preprocessing, the only directive that can appear in a file is the #line directive in one of the following
forms:

#line digit-sequence "filename" new-line

digit-sequence "filename" new-line

Other directives should not appear in either the IDL file or any header file included by the IDL file.
These other directives are not supported by the MIDL compiler and can cause errors. For a complete
description of the line directive and other preprocessor directives, see your C-compiler documentation.

The MIDL compiler requires the C preprocessor to observe the following conventions:

· The input file must be the last argument on the command line.
· The preprocessor must direct output to the standard output device, stdout.

Preprocessor directives present in the IDL file do not appear in the header file generated by the MIDL
compiler. For example, any values defined in the IDL file with the C #define statement are removed by
the C preprocessor. These #define statements will not appear in the header file generated by the MIDL
compiler. If such values are defined only in the MIDL file and are required by C source files, the C
compiler will report errors when it tries to compile these source files.

Four workarounds are recommended:

· Use cpp_quote to reproduce #define in the generated header file
· Use const declaration specification
· Use header files that are included in the IDL file and the C source code
· Use enumeration constants in the IDL file

To get a declaration in the generated header file with cpp_quote, use the following statement:

cpp_quote ("#define ARRSIZE 10");

This statement results in the following line being generated in the header file:

#define ARRSIZE 10

You can reproduce manifest constants using the constant-declaration syntax:

const short ARRSIZE = 10

This syntax results in the following line being generated in the header file:

#define ARRSIZE 10

You can define separate header files that contain only preprocessor directives and include them in both
the IDL file and the C source files. Although the directives will not be available in the header file

generated by the MIDL compiler, the C source program can include the separate header file.

You can choose to use enumeration constants in the IDL file. Enumeration constants are not removed
during the early phases of MIDL compilation by the
C-compiler preprocessor, so these constants are available in the header file generated by the MIDL
compiler. For example, the statement

typedef enum midlworkaround { MAXSTRINGCOUNT = 300 };

will not be removed during MIDL compilation by the C preprocessor. The constant
MAXSTRINGCOUNT is available to C source programs that include the header file generated by the
MIDL compiler.

 Verifying Preprocessor Options

To verify the correct operation of /cpp_opt options, invoke the C preprocessor independently before
including the command line as part of the MIDL compiler command line. When called independently,
the C compiler correctly reports errors caused by invalid options.

Errors in /cpp_opt switch input to the MIDL compiler can produce error messages related to the IDL
file. The errors are incorrectly reported by the MIDL compiler when operating with some C compilers.

For example, invalid command-line syntax to the Microsoft C compiler can be reported as a syntax
error in the IDL file when that syntax is included as part of the MIDL compiler command line. The error
is not in the IDL file but in the MIDL compiler /cpp_opt input.

The following MIDL compiler command line contains the /cpp_opt switch and related options:

midl /cpp_cmd "cl" /cpp_opt /E foo.idl

The options in this command line can be verified by invoking the compiler only, as follows:

cl /E foo.idl

 C-Compiler Requirements for MIDL

The MIDL compiler requires the C compiler to support a packing level of 1, 2, 4, or 8. The command-
line option for Microsoft C compilers that controls packing is /Zplevel, where level is the packing level:
1, 2, 4, or 8. The following rules govern the alignment of compound types:

· Base-type fields of size < packing level start on a (0 modulo size) address.
· Base-type fields of size >= packing level start on a (0 modulo packing level) address.
· The compound type itself (and any field of compound type) is aligned according to the strictest

alignment requirement on any of its fields.
· Compound types are padded to the next (0 modulo level) address. This padding appears in the size

returned by the C SIZEOF macro.

For example, consider a compound type consisting of a 1-byte character, an integer 4 bytes long, and
a 1-byte character:

struct mystructtype {
 char c1; /* requires 1 byte */
 long l2; /* requires 4 bytes */
 char c3; /* requires 1 byte */
 } mystruct;

For packing level 4, the structure mystruct is aligned on a (0 mod 4) boundary and sizeof(struct
mystructtype) = 12.

For packing level 2, the structure mystruct is aligned on a (0 mod 2) boundary and sizeof(struct
mystructtype) = 8.

 C-Compiler Requirements for Callbacks in Microsoft Windows 3.x

When you use Microsoft Visual C/C++ version 1.5 to develop your RPC application for Microsoft
Windows 3.x platforms, compile with the /GA switch. The /GA switch directs the compiler to generate
code that loads the DS register from the SS register on entry to a far, exported function in a protected-
mode application based on Windows 3.x.

For protected-mode Microsoft Windows applications, the /GA switch allows the C compiler to generate
the code for performing the housekeeping chores required when switching between tasks. This code is
needed when your RPC interface contains one or more callback functions. Without this code, these
callback functions can fail at run time due to an incorrect DS value.

When you use compilers other than Microsoft Visual C/C++ version 1.5, use the compiler switch that is
equivalent to /GA.

The /GA switch provides, in an optimized way, the same functionality that the /Gw switch and calls to
the Windows 3.x function MakeProcInstance provided for previous versions of the Microsoft C
compiler and previous versions of Microsoft Windows.

When you do not compile using the /GA switch ¾ for example, when you are using a compiler that
does not support the /GA switch ¾ your application must:

1. Compile using the /Gw switch (or its equivalent).
2. Add the client stub functions to the EXPORTS section of the application's DEF file.
3. Replace function pointers in the the client stub function dispatch table with function pointers returned

by MakeProcInstance.

The function dispatch table is part of the RPC_CLIENT_INTERFACE structure defined in the RPC
header file RPCDCEP.H. For example, step 3 can be implemented using the following C code:

#include "hello.h" // generated stub file
RPC_DISPATCH_FUNCTION Old, New;
HINSTANCE hInst;
RPC_CLIENT_INTERFACE * If = Hello_ClientIfHandle;
...
 for (i = 0; i < If->DispatchTable->DispatchTableCount; i++)
 {
 Old = If->DispatchTable->DispatchTable[i];
 New = (RPC_DISPATCH_FUNCTION) MakeProcInstance(Old, hInst);
 If->DispatchTable->DispatchTable[i] = New; // overwrite
 }
...

 Link Libraries for MS-DOS

The following RPC client application static libraries are provided for MS-DOS:

Static library Description
RPC.LIB Base RPC functions and name-

service functions
RPCNDR.LIB NDR and other stub-helper functions
NDRLIB10.LIB If you are using MIDL 1.0 on MS-

DOS, you must connect to this
library. All other users should
disregard this library. Note that this
library is meant to be a temporary
solution, and MIDL 1.0 users should
migrate to MIDL 2.0 at the earliest
occasion.

The following RPC transports are provided for MS-DOS clients:

Pseudo-dynamic-link library Description
RPC16C1.RPC Client named-pipe transport
RPC16C3.RPC Client TCP/IP transport
RPC16C5.RPC NetBIOS transport
RPC16C6.RPC Client SPX transport
RPCNS.RPC Name-service functions
RPCNSLM.RPC LAN Manager support functions
RPCNSMGM.RPC Name-service management

functions

 Link Libraries for Microsoft Windows 3.x

The following RPC import libraries are provided for Microsoft Windows 16-bit clients:

Import library Description
RPCW.LIB RPC API and name-service

functions
RPCNDRW.LIB NDR and other stub-helper functions

The following RPC dynamic-link libraries are provided for Microsoft Windows 3.x clients:

Dynamic-link library Description
RPCNS1.DLL Name service
RPCRT1.DLL Windows run-time library
RPC16C1.DLL Client named-pipe transport
RPC16C3.DLL Client TCP/IP transport
RPC16C5.DLL Client NetBIOS transport

 Link Libraries for Microsoft Windows NT

The following RPC import libraries are provided for Microsoft Windows NT clients and servers:

Import library Description
RPCNDR.LIB Helper functions
RPCNS4.LIB Name-service functions
RPCRT4.LIB Windows run-time functions

The following RPC libraries are provided for Microsoft Windows NT clients and servers:

Dynamic-link library Description
RPCLTC1.DLL Client named-pipe transport
RPCLTS1.DLL Server named-pipe transport
RPCLTC3.DLL Client TCP/IP transport
RPCLTS3.DLL Server TCP/IP transport
RPCLTC5.DLL Client NetBIOS transport
RPCLTS5.DLL Server NetBIOS transport
RPCNS4.DLL Name service
RPCRT4.DLL Windows run-time library

 Using the __midl Predefined Constant

When the MIDL compiler processes the input IDL and ACF files, __midl is defined by default. __midl is
used for conditional compilation to attain consistency throughout the build. This phases out the use of
defines in the header files, such as MIDL_PASS, and replaces them with a consistent flag.

Note that if you so choose, you can override this default by specifying the following on the command
line:

-U__midl

 Building 16-Bit Windows-Based Applications

You can build your 16-bit Windows-based client applications on a computer that is running Microsoft
Windows 3.x, Microsoft Windows for Workgroups 3.1, or MS-DOS.

It is possible to install Microsoft RPC on Windows NT and to use this single platform for developing all
server and client applications. However, cross-compilation of Windows 3.x and MS-DOS clients on
Windows NT requires that you install a 16-bit C compiler in the Microsoft Windows NT environment.
This development environment is not automatically installed as part of the Windows NT or Microsoft
RPC installation.

 Using Different Memory Models

Microsoft RPC supports the development of Microsoft Windows 3.x applications using small, medium,
compact, and large memory models. You can build your application using any memory model when
you use the macro definitions provided in the RPC header files.

Note Microsoft RPC for MS-DOS supports only large-model applications.

The following table lists some of the advantages and disadvantages of the different memory models:

Memory model Advantage Disadvantage
Small Best performance;

size and speed
Must add code to your
application to handle the
far pointers returned
from remote procedures

Large Easiest to build with the
Microsoft RPC tools

Size/speed performance
degradation; cannot run
multiple instances

Large compiled with
/Gx

Easy to build; can run
multiple instances of the
application

Size/speed performance
degradation; limited to
only one data segment

 Macro Definitions

The RPC tools achieve model, calling, and naming-convention independence by associating data types
and function-return types in the generated stub files and header files with definitions that are specific to
each platform. These macro definitions ensure that any data types and functions that require the
designation of _ _far are specified as far objects.

The following figure shows which macro definitions the MIDL compiler applies to function calls between
RPC components:

{ewc msdncd, EWGraphic, group10526 0 /a "SDK_a29.bmp"}

The macro definitions are as follows:

Definition Description
_ _RPC_API Applied to calls made by the stub to the user

application. Both functions are in the same executable
program.

_ _RPC_FAR Applied to standard macro definition for pointers. This
macro definition should appear as part of the signature
of all user-supplied functions.

_ _RPC_STUB Applied to calls made from the run-time library to the
stub. These calls can be considered private.

_ _RPC_USER Applied to calls made by the run-time library to the user
application. These cross the boundary between a DLL
and an application.

RPC_ENTRY Applied to calls made by the application or stub to the
run-time library. This macro definition is applied to all
RPC run-time functions.

To link correctly with the Microsoft RPC run-time libraries, stubs, and support routines, some user-
supplied functions must also include these macros in the function definition. You must use the macro _
_RPC_API when you define the functions associated with memory management, user-defined binding
handles, and the transmit_as attribute. You must use the macro _ _RPC_USER when you define the
context-rundown routine associated with the context handle. Specify the functions as follows:

_ _RPC_USER midl_user_allocate(...)
_ _RPC_USER midl_user_free(...)
_ _RPC_USER handletype_bind(...)
_ _RPC_USER handletype_unbind(...)
_ _RPC_USER type_to_local
_ _RPC_USER type_from_local
_ _RPC_USER type_to_xmit(...)
_ _RPC_USER type_from_xmit(...)
_ _RPC_USER type_free_local
_ _RPC_USER type_free_inst(...)
_ _RPC_USER type_free_xmit(...)
_ _RPC_USER context_rundown(...)

Note All pointer parameters in these functions must be specified using the macro
_ _RPC_FAR.

Two approaches can be used to select an application's memory model:

1. To use a single memory model for all files, compile all source files using the same memory-model
compiler switches. For example, to develop a small-model application, compile both the application

and the stub source code using the C-compiler switch /AS, as in the following:
cl -c /AS myfunc.c
cl -c /AS clstub_c.c

2. To use different memory models for the application source files and the support source files (stubs
files), use the RPC macros when you define function prototypes in the IDL file. Compile the
distributed-application source files using one compiler memory-model setting and compile the
support files using another compiler memory-model setting. Use the same memory model for all of
the files generated by the compiler.

 Installing RPC

Microsoft® RPC consists of two products: one for developing distributed applications and one for
executing distributed applications. Using the RPC development tools, you can develop RPC distributed
applications in C/C++ on a computer with a Microsoft® Windows NT™ operating system. Distributed
applications developed using RPC technology can be executed as servers in the Windows NT
environment and as clients in the Windows NT, Windows 3.x, MS-DOS®, and Macintosh environments.
The RPC user environment, which consists of the RPC run-time files and libraries, must be installed on
servers and workstations that run RPC distributed applications.

Once RPC is installed, you can configure the network transport protocols and the name-service
provider that RPC uses.

This section contains information on the following topics:

· Installing the RPC development tools
· Installing RPC for executing distributed applications
· Configuring the RPC name-service provider
· Starting RPC services and utilities
· Network-transport information for RPC

 Installing the RPC Programming Environment

You develop RPC distributed applications on the 32-bit Windows NT platform. While the 16-bit MIDL
compiler is not supported in this version of RPC, you can develop 16-bit code by doing the following:

1. Use the 32-bit MIDL compiler installed as part of Win32 SDK Setup.
2. Select the MS-DOS or Windows 3.x option of the MIDL /env command line switch.
3. Compile your MS-DOS or Windows 3.x application and RPC stubs using your 16-bit development

environment.

When the Win32 SDK is installed, the RPC development environment and the run-time libraries are
automatically installed. For the Windows NT platform, no additional installation is required.

Note See Building RPC Applications for information about various build environments.

When you install the 16-bit SDK, you install the following:

· Header files and libraries needed to build RPC applications for MS-DOS and Windows 3.x.
· Sample RPC programs for MS-DOS and Windows 3.x.
· Run-time RPC and .DLL files for MS-DOS and Windows 3.x.
· MIDL compiler for Microsoft Windows NT

When you install the Win32 SDK, you install the following:

· C/C++ language header files (.H for the RPC run-time libraries) and run-time libraries (.LIB
and .DLL) for Microsoft Windows NT

· Sample programs for Microsoft Windows NT
· RPC reference Help files
· The uuidgen utility

When you install Windows NT, you install the following:

· RPC Run-time .DLLs
· RPC Locator and RPC Endpoint-mapping services

 Microsoft Windows NT

The Microsoft Win32 SDK contains the Microsoft Windows NT and Microsoft Windows 95 APIs. When
the Win32 SDK is installed, Microsoft RPC is also installed.

 Windows/MS-DOS Client Applications

To develop client-side distributed applications for MS-DOS and Microsoft Windows 3.x, you must install
the Microsoft Windows 3.x/MS-DOS version of the RPC toolkit. Microsoft RPC development for MS-
DOS and Microsoft Windows requires:

· Microsoft C/C++ version 7.0 or MSVC++ version 1.x
· One of the following:

· Microsoft Windows version 3.x with Microsoft LAN Manager version 2.2
· Microsoft Windows 3.x with a Windows Sockets-compliant TCP/IP stack
· Microsoft Windows 3.x with Workgroup Connection 3.1
· Microsoft Windows for Workgroups 3.11 with NetBEUI or the Microsoft TCP/IP-32 stack
· Microsoft Windows 3.x with NetWare 3.x or 4.x
· Microsoft Windows for Workgroups 3.11 with NetWare 3.x or 4.x software

The Setup program for installing RPC for Windows prompts you to specify one of two installation
options: Install All Files or Custom Install. The Install All Files option quickly installs all the RPC files; all
you have to do is select a NetBIOS protocol and a name-service provider. With the Custom Install
option, you can specify all information about the setup.

{ewl msdncd, EWGraphic, group10529 0 /a "SDK.BMP"} To start the RPC Setup program for a
Windows/MS-DOS Client

1. Insert the Setup disk in drive A.
2. From the File menu, choose Run.
3. In the Run box, type a:\setup and choose OK.

After the Microsoft RPC dialog box is displayed, the Name Service Installation Options dialog box
appears.

4. Choose Install Default Name Service Provider or Install Custom Name Service Provider, and then
choose Continue.
When you choose Install Default Name Service Provider, the default name-service provider, the
Microsoft Locator, is installed. The Microsoft Locator works in Microsoft Windows NT domains.
When you choose Install Custom Name Service Provider, complete the Define Network Address
dialog box to install the DCE Cell Directory Service as your name-service provider. The DCE Cell
Directory Service is the name-service provider used with DCE servers.
· In the Network box, type the network address. The network address is the name of the host

computer that runs the NSI daemon (NSID).
The host computer that runs the NSID acts as a gateway to the DCE Cell Directory Service,
passing name-service interface function calls between computers that run Microsoft operating
systems and DCE computers. The network address can be 80 characters or less ¾ for example,
11.1.9.169 is a valid address.

5. In the Installations Options dialog box, select the Install All Files option or the Custom Install option.
· If you choose Install All Files, carry out the following procedure, "To run RPC Setup using the

Install All Files option."
· If you choose Custom Install, skip to To run RPC Setup using the Custom Install option.

{ewl msdncd, EWGraphic, group10529 1 /a "SDK.BMP"} To run RPC Setup using the Install All
Files option

When you start the RPC Setup program and choose the Install All Files option, the Base Directory Path
dialog box appears.

1. In the Path box, type the path where you want to install the RPC directory.

It is a good idea to install the RPC files into the same location as your 16-bit C compiler. Otherwise,
you must set the environment variables INCLUDE, LIB, and PATH to point to the directories that
contain the RPC header files, libraries, and DLLs and binaries.

2. Choose OK.
The Custom NetBIOS Protocols dialog box appears.

3. In the Custom NetBIOS Protocols dialog box, select one of the following protocols:
· Select Microsoft NetBEUI NetBIOS Protocol to install the NetBEUI NetBIOS protocol.
· Select TCP/IP NetBIOS Protocol to install the TCP/IP protocol.
· Select Custom NetBIOS Protocol if your computer uses more than one network card or more than

one protocol. When you choose the Custom NetBIOS protocol, the NetBIOS Custom Protocol
Mapping dialog box appears. Use the Current Mappings box to build a list of NetBIOS protocol
mappings that associate the protocol you specify with a LAN adapter number. Add and delete
NetBIOS protocol mappings using the New and Delete buttons.
To add a NetBIOS protocol, choose New. In the Protocol box, type the name of the protocol using
the protocol names "nb" and "tcpip." In the LAN Adapter # box, type the LAN adapter number. You
can use LAN adapter (lana) numbers 0 through 9. If your configuration has only one card and
protocol, the LAN adapter number is usually 0. For more information about NetBIOS settings, see
Network-Transport Information for RPC.
To delete a NetBIOS protocol, select the protocol from the Current Mappings box and choose
Delete.

{ewl msdncd, EWGraphic, group10529 2 /a "SDK.BMP"} To run RPC Setup using the Custom
Install option

When you start the RPC Setup program and choose the Custom Install option, the SDK Tools Options
dialog box appears.

1. In the Base Installation Path box, choose Path to change the location where the RPC directory is
installed.
The Path box automatically displays the path to the Microsoft C/C++ version 7.0 directory. If you
type a different path, it should point to the same location as this directory. Otherwise, you must set
the environment variables INCLUDE, LIB, and PATH to point to the directories that contain the RPC
header files, libraries, and DLLs and binaries.

2. In the Installation Options box, select one or more of the following files to install:
· MS-DOS Libraries and Include Files. If you are developing a distributed application that will be

used on MS-DOS clients, you must install these libraries and include files.
· Windows Libraries and Include Files. If you are developing a distributed application that will be

used on Windows clients, you must install these libraries.
· Online Help Files. The Help files are not needed to develop applications. They are designed to

answer questions during the development process.
3. Choose Continue.

The Run-Time Custom Install Options dialog box appears.
4. In the Run-Time Custom Install Options dialog box, set one or more of the following options:

· Under Registry Data File Path, choose Set Location to specify the location of the configuration
file. The configuration file contains all of the configurable RPC components, which you can modify
at a later time. Type the path in the Path box. The default is the root directory.

· In the MS-DOS Options box, set the MS-DOS configuration options. If you did not install MS-DOS
libraries and include files in the previous step, don't modify this section.
Select the MS-DOS Run-time Support box to install the MS-DOS run-time libraries. This box must
be marked if you will be programming or executing RPC in MS-DOS.
Under Runtime DLL Path, choose Set Location to specify the path where the DLLs are stored.

Type the path in the Path box. Choose OK.
· To install Windows run-time libraries, select the Windows Run-time Support box. If you are

programming in Microsoft Windows, you must install Windows run-time libraries.
· Under Network Drivers, select the Load All box to install all drivers.

Choose the Set Location button to specify the drivers your distributed application uses. Select the
protocol adapters you want to install. To select more than one driver, hold down the CTRL key as
you select additional drivers. To undo your selection, choose Reset Selection.

5. Choose Continue.
The Custom NetBios Protocols dialog box appears.

6. Follow step 3 in To run RPC Setup using the Install All Files option.

 Writing Macintosh Client Applications

To develop client-side applications for the Macintosh, you must have the following:

· Visual C++ for the Macintosh. The RPC runtime has been compiled using Visual C++, version 2.0,
cross development tools. In order to use rpc.lib, you must link against the C runtime and swapper
library (swap.lib) provided with Visual C++, version 2.0.

· Macintosh RPC SDK, which can be found in the mac_rpc directory. Note that the current rpc.lib is
native 68K. We currently do not provide a native Power Mac library. RPC runs in emulation on
Power Macs.

· The target computer must have a microprocessor of 68020 or later, and it must be running System
7.0 or later.

Note There is no Macintosh support for the Windows 95 platform.

To set up the Windows NT server:

·Current supported protocols for the Macintosh are ADSP and TCP/IP. In order to use ADSP, the
Windows NT server must have both the AppleTalk protocol and Services for Macintosh.

To write an RPC client:

1. If you use atexit to perform cleanup at shutdown, do not call any RPC APIs in your exit processing
function.

2. If a yielding function is not registered, an RPC will not yield on the Macintosh. Register a yielding
function by calling RpcMacSetYieldInfo.
void RPC_ENTRY MacCallbackFunc(short *pStatus)
{
 MSG msg;
 while (*pStatus == 1)
 {

if(PeekMessage(&msg,NULL,0,0,PM_REMOVE))
{
TranslateMessage(&msg);
DispatchMessage(&msg);
}

 }
}

3. Most client-side APIs that are supported by Windows 3.x are also supported by the Macintosh. The
following APIs are not supported by the Macintosh:

· RpcNs* APIs
· RpcMgmt* APIs
· RpcWinSetYieldInfo (replaced by RpcMacSetYieldInfo)
The only authentication service currently supported for the Macintosh is RPC_C_AUTHN_WINNT.

The following protocol sequences are supported:

· ADSP:ncacn_at_dsp
· TCP:ncacn_ip_tcp

 Installing RPC for Distributed-Application Users

When you use an RPC application on a Windows 3.x or MS-DOS system, the RPC run-time
executables must be copied to the Windows 3.x or MS-DOS machines that will be using the
application.

Microsoft RPC provides two utility programs to create RPC run-time installation disks to accompany
your distributed application. These utilities provide the Setup program and the Microsoft RPC run-time
libraries for use with Microsoft Windows/MS-DOS and MS-DOS. The RPC run-time libraries are
automatically installed with Windows NT and no further RPC installation is required.

Microsoft RPC provides the following run-time installation utilities:

· The WRUNDISK.BAT utility, which creates a Microsoft Windows/MS-DOS run-time installation disk
· The DRUNDISK.BAT utility, which creates an MS-DOS-only run-time installation disk

 Creating RPC Install Disks for Windows NT Servers and Clients

When Windows NT is installed on a server or client, the RPC run-time files are automatically installed
as well. No further RPC installation is required.

However, to run MS-DOS or Microsoft Windows 16-bit clients on Windows NT, your application's install
program must install the proper Windows/MS-DOS client DLLs.

 Creating RPC Install Disks for Windows Clients

The WRUNDISK.BAT utility copies the RPC run-time libraries from an installed Microsoft Win32 SDK to
create a Microsoft Windows/MS-DOS run-time install disk.

{ewl msdncd, EWGraphic, group10529 3 /a "SDK.BMP"} To create RPC install disks for a
Windows client

1. Copy the compressed files from the Microsoft Win32 SDK directory \MSTOOLS\RPC_DOS\DISK1 to
a floppy disk or directory on your hard disk.

2. Insert a formatted, blank floppy disk in the destination drive.
3. At the MS-DOS prompt, type:

wrundisk source destination
source

Specifies the path to the disk or directory that contains the compressed files provided in the
Microsoft Win32 SDK directory \MSTOOLS\RPC_DOS\DISK1.

destination
Specifies the name of the drive that contains the formatted, blank floppy disk. For example, the
command
wrundisk c:\nt\mstools\rpc_dos\disk1 a:

copies the compressed files to a floppy disk in drive A.

Your application user can then use the Setup program on the run-time install disk to install the RPC
run-time libraries.

 Creating RPC Install Disks for MS-DOS Clients

The DRUNDISK.BAT utility copies files from an installed Microsoft Win32 SDK to create an MS-DOS-
only run-time install disk. To ensure that all MS-DOS loadable transports are present on the run-time
install disk, you must select all loadable transports at the time you install the Microsoft Win32 SDK.

{ewl msdncd, EWGraphic, group10529 4 /a "SDK.BMP"} To create RPC install disks for an MS-
DOS client

1. Insert a formatted, blank floppy disk in the destination drive.
2. At the MS-DOS prompt, type:

drundisk directory destination
directory

Specifies the name of the directory that contains all loadable transport (.RPC) files and all name-
service DLLs ¾ for example,
C:\LANMAN.DOS\NETPROG

destination
Specifies the name of the drive that contains the formatted, blank floppy disk. For example, the
command
drundisk c:\lanman.dos\netprog a:

copies the MS-DOS run-time libraries, the loadable transport files, and the name-service DLLs
from the C drive to the floppy disk in drive A.

Your application user can then use the Setup program on the run-time install disk to install the RPC
run-time libraries.

 Configuring the Name-Service Provider

When a server registers its distributed application using a name-service provider, other computers
using a name-service provider that want to interoperate with the server must use the same name-
service provider as that of the server. Microsoft RPC interoperates with the Microsoft Locator and any
name-service provider that adheres to the Microsoft RPC name-service interface (NSI) ¾ for example,
the DCE Cell Directory Service accessed through the DEC NSID.

In Microsoft RPC, the Microsoft Locator is the default name-service provider. It is designed for use in
Windows environments.

 Reconfiguring the Name Service for Microsoft Windows NT

When you install Microsoft Windows NT, the Microsoft Locator is automatically selected as the name-
service provider. You can change the name-service provider through the Windows NT Control Panel.

{ewl msdncd, EWGraphic, group10529 5 /a "SDK.BMP"} To configure the name-service provider
for Windows NT

1. In the Control Panel, choose the Networks icon.
The Networks dialog box appears.

2. In the Networks dialog box, choose Add Software.
3. In the Network Software list, select Remote Procedure Call (RPC) Service, and then choose

Configure.
The RPC Name Service Provider Configuration dialog box appears.

4. In the RPC Name Service Provider Configuration dialog box, select a name-service provider from
the list.
· When you choose the Microsoft Locator, choose OK and the configuration process is complete.
· When you choose the DCE Cell Directory Service, in the Network Address box type the name of

the host computer that runs the NSI daemon (NSID), and then choose OK.
The host computer that runs the NSID acts as a gateway to the DCE Cell Directory Service,
passing name-service interface function calls between computers that run Microsoft operating
systems and DCE computers. A network address can be up to 80 characters ¾ for example,
11.1.9.169 is a valid address.

Note You must have Digital Equipment Corporation's DCE DCS product to configure the DCE CDS as
your name-service provider. See the documentation provided by Digital Equipment Corporation for
information about DCE CDS.

 Reconfiguring the Name Service for Windows/MS-DOS

When you install the Win32 SDK for Windows/MS-DOS, you specify a name-service provider. You can
change the name-service provider you specified by editing the RPCREG.DAT configuration file, which
contains the name-service-provider parameters and RPC protocol settings. Use a text editor to change
name-service provider entries.

{ewl msdncd, EWGraphic, group10529 6 /a "SDK.BMP"} To reconfigure the Microsoft Locator
name-service provider

1. Open the RPCREG.DAT file using a text editor.
RPCREG.DAT is in the root directory unless you specified a different path during the Setup program.

2. Set the following values for the registry entries:
Registry entry Value
Software\Microsoft\RPC
\NameService\Protocol

The protocol sequence for the
protocol you are using. The default
is ncacn_np.

Software\Microsoft\RPC\
NameService\NetworkAddress

The name of the computer running
the Locator that is used by clients
during name-service lookup
operations. The default is the
primary domain controller.

Software\Microsoft\RPC\
NameService\Endpoint

The name of the endpoint used by
the name service. The default is \
pipe\locator.

3. Save and close the file.

{ewl msdncd, EWGraphic, group10529 7 /a "SDK.BMP"} To configure the DCE CDS name-
service provider

· You must have Digital Equipment Corporation's DCE DCS product to configure the DCE CDS as
your name-service provider. See the documentation provided by Digital Equipment Corporation for
information about DCE CDS.

 Configuring the Security Server

Use the following to configure the security server for RPC:

1. Start Windows NT and choose the Control Panel icon.
2. In the Control Panel, choose the Networks icon.

The Network Settings dialog box appears.
3. In the Installed Network Software list, select RPC Configuration.

The RPC Configuration dialog box appears.
4. In the Security Service Provider list, select from one or more security providers.
5. Select OK.

 Starting and Stopping RPC Services and Utilities on Microsoft Windows NT

On Microsoft Windows NT, the Microsoft Locator and the endpoint-mapping service are automatically
started by the RPC run-time libraries when necessary. You can stop the Locator or the endpoint-
mapping service on a machine. They will be restarted, as necessary, by the RPC run-time libraries.

Note Only administrators can start the RPC Locator and Endpoint-mapping services once they are
stopped.

{ewl msdncd, EWGraphic, group10529 8 /a "SDK.BMP"} To stop and start the RPC endpoint-
mapping service

1. From the Control Panel, select Services.
The Services dialog box appears.

2. In the Service box, select Remote Procedure Call (RPC) Service and choose Start or Stop.

{ewl msdncd, EWGraphic, group10529 9 /a "SDK.BMP"} To stop and start the Microsoft Locator
1. From the Control Panel, select Services.

The Services dialog box appears.
2. In the Service box, select Remote Procedure Call (RPC) Locator and choose Start or Stop.

 Network-Transport Information for RPC

This section contains information describing the Windows NT registry entries and information relating
to SPX1IPX installations.

Registry Information
When you install Microsoft Windows NT or you run the Windows/MS-DOS Setup programs, the RPC
protocol information you specify is stored in the registry file. The Windows NT registry entries are
automatically configured and no further configuration is necessary. With MS-DOS and Windows 3.1,
use a text editor to change entries in the RPCREG.DAT file:

Registry entry Description
SOFTWARE\Microsoft\Rpc\
NameService\DefaultSyntax

Specifies the default syntax that is
used by the RPC functions
RpcNsBindingImportBegin and
RpcNsBindingExport. This
registry entry corresponds to the
DCE environment variable
RPC_DEFAULT_ENTRY_SYNTAX
.

SOFTWARE\Microsoft\Rpc\
NameService\NetworkAddress

Specifies the address of the
computer running the Locator that
is used by clients during name-
service lookup operations. The
default setting is the primary
domain controller.

SOFTWARE\Microsoft\Rpc\
NameService\ServerNetworkAddress

Specifies the address of the
computer running the Locator that
is used by servers during name-
service export operations. Default
is PDC (Windows NT only).

SOFTWARE\Microsoft\Rpc\
NameService\Endpoint

Specifies the endpoint used by the
name service.

SOFTWARE\Microsoft\Rpc\
NameService\Protocol

Specifies the protocol used by the
name service.

SOFTWARE\Microsoft\Rpc\
ClientProtocols\ncacn_np

Specifies the name of the RPC
client transport DLL for named
pipes.

SOFTWARE\Microsoft\Rpc\
ClientProtocols\ncacn_ip_tcp

Specifies the name of the RPC
client transport DLL for TCP/IP.

SOFTWARE\Microsoft\Rpc\
ClientProtocols\ncacn_nb_nb

Specifies the name of the RPC
client transport DLL for NetBEUI
over NetBIOS.

SOFTWARE\Microsoft\Rpc\
ClientProtocols\ncalrpc

Specifies the name of the RPC
client transport DLL for local RPC
(Windows NT only).

SOFTWARE\Microsoft\Rpc\
ServerProtocols\ncacn_np

Specifies the name of the RPC
server transport DLL for named
pipes.

SOFTWARE\Microsoft\Rpc\
ServerProtocols\ncacn_ip_tcp

Specifies the name of the RPC
server transport DLL for TCP/IP.

SOFTWARE\Microsoft\Rpc\
ServerProtocols\ncacn_nb_nb

Specifies the name of the RPC
server transport DLL for NetBEUI.

SOFTWARE\Microsoft\Rpc\
ServerProtocols\ncalrpc

Specifies the name of the RPC
server transport DLL for local RPC
(Windows NT only).

SOFTWARE\Microsoft\Rpc\NetBios Consists of mapping strings that
map protocols to NetBIOS lana
numbers. For NetBIOS
information, see the following
section.

The Microsoft RPC Setup program automatically maps protocol strings to NetBIOS lana numbers and
writes these settings in the registry. These mappings work as long as you only have one network card
and one network protocol. If you have more than one network card and network protocol, or if you
change your network configuration after installing Microsoft RPC, you must update the registry to
indicate the new correspondences between protocol strings and NetBIOS lana numbers.

For Microsoft Windows NT, the mapping string appears in the registry tree under \SOFTWARE\
Microsoft\Rpc\NetBios. For MS-DOS and Windows, the mapping string appears in the registry file
RPCREG.DAT.

The mapping string uses the following syntax:

ncacn_nb_protocol digit=lana_number
protocol

Specifies the protocol type. The valid protocol values are as follows:
Protocol Protocol type
nb NetBEUI
tcp TCP/IP

digit
Specifies a unique number associated with each instance of a protocol. Use the value 0 for the first
instance of a protocol and use the next consecutive number for each additional instance of that
protocol. For example, assign the value ncacn_nb_nb0 to the first NetBEUI entry; assign the value
ncacn_nb_nb1 to the second NetBEUI entry.

lana_number
Specifies the NetBIOS lana number.
A unique lana number is associated with each network adapter present in the computer. For LAN
Manager networks, the lana numbers for each network card are available in the configuration files
LANMAN.INI and PROTOCOL.INI. For more information about the lana number, see your network
documentation.
For example, the following mapping string describes a configuration that uses the NetBEUI protocol
over an adapter card that is assigned lana number 0:
ncacn_nb_nb0=0

When you install a second card that supports both XNS and NetBEUI protocols, the mapping strings
appear as follows:
ncacn_nb_tcp0=0
ncacn_nb_nb1=1

SPX/IPX Installation
When using the ncacn_spx and ncadg_ipx transports, the server name is exactly the same as the
Windows NT server name. However, since the names are distributed using Novell protocols, they must

conform to the Novell naming conventions. If a server name is not a valid Novell name, servers will not
be able to create endpoints with the ncacn_spx or ncadg_ipx transports.

A valid Novell server name contains only the characters between 0x20 and 0x7f. Lowercase characters
are changed to uppercase. The following characters cannot be used:

"*,./:;<=>?[]\|]

To maintain compatibility with the first version of Windows NT, ncacn_spx and ncadg_ipx also allow
you to use a special format of the server name known as the tilde name. The tilde name consists of a
tilde, followed by the server's eight-digit network number, and then followed by its twelve-digit Ethernet
address. Tilde names have an advantage in that they do not require any name service capabilities.
Thus, if you are connected to a server, the tilde name will work.

The following tables contain two sample configurations used to illustrate the points described above:

Component Configured As
Windows NT Server NWCS
Windows NT Client NWCS
Windows 3.x/MS-DOS Client NetWare Redirector

The configuration in the table above requires that you have NetWare file servers or routers on your
network. It will produce the best performance because the server names are stored in the NetWare
Bindery.

Component Configured As
Windows NT Server SAP Agent
Windows NT Client IPX/SPX
Windows 3.x/MS-DOS Client IPX/SPX

The second configuration works in an environment that does not contain NetWare file servers or
routers (for example, a network of two computers: a Windows NT server and an MS-DOS client). Name
resolution, which is accomplished during the first call over a binding handle, will be slightly slower than
the first configuration. In addition, the second configuration results in more traffic generated over the
network.

To implement name resolution, when an RPC server uses an SPX or IPX endpoint, the server name
and endpoint are registered as a SAP server of type 640 (hexadecimal). To resolve a server name, the
RPC client sends a SAP request for all services of the same type, and then scans the list of responses
for the name of the server. This process occurs during the first RPC call over each binding handle. For
additional information on the SAP protocol for Novell, see your NetWare documentation.

 MIDL Command-Line Reference

This section contains reference information for each command-line switch and switch option
recognized by the Microsoft RPC MIDL compiler. Switch entries are arranged in alphabetical order. The
topic midl describes the general command-line syntax.

 midl

midl [switch [switch-options]] filename

switch
Specifies MIDL compiler command-line switches. Switches can appear in any sequence.

switch-options
Specifies options associated with switch. Valid options are described in the reference entry for each
MIDL compiler switch.

filename
Specifies the name of the IDL file. This file usually has the extension .IDL, but it can have any
extension or no extension.

Remarks

The MIDL compiler processes an IDL file and an optional ACF to generate a set of output files. The
attributes specified in the IDL file's interface attribute list determine whether the compiler generates
source files for an RPC interface or for a custom OLE interface. The following lists show the default
names of the files generated for an IDL file named name.IDL. You can use command-line switches to
override these default names. Note that the name of the IDL file can have no extension, or it can have
an extension other than .IDL.

By default (that is, if the interface attribute list does not contain the object or local attribute), the
compiler generates the following files for an RPC interface:

· Client stub (name_C.C)
· Server stub (name_S.C)
· Header file (name.H)

When the object attribute appears in the interface attribute list, you must use the /ms_ext command-
line switch, and the compiler generates the following files for an OLE interface:

· Interface proxy file (name_P.C)
· Interface header file (name.H)
· Interface UUID file (name_I.C)

When the local attribute appears in the interface attribute list, the compiler generates only the interface
header file, name.H.

The MIDL compiler provided with Microsoft RPC invokes the C preprocessor as needed to process the
IDL file. It does not automatically invoke the C compiler to compile generated files.

Note The MIDL compiler provided with Microsoft RPC uses a different command-line syntax than the
DCE IDL compiler uses.

 Files Generated for an RPC Interface

The Client Stub

The client stub module provides surrogate entry points on the client for each of the operations defined
in the input IDL file.

When the client application makes a call to the remote procedure, its call first goes to the surrogate
routine in the client stub file. The client stub routine performs the following functions:

· Marshals arguments. The client stub packages input arguments into a form that can be transmitted
to the server.

· Calls the client run-time library to transmit arguments to the remote address space and invoke the
remote procedure in the server address space.

· Unmarshals output arguments. The client stub unpackages output arguments and returns to the
caller.

The MIDL compiler switches /client, /cstub, and /out affect the client stub file.

The Server Stub

The server stub provides surrogate entry points on the server for each of the operations defined in the
input IDL file.

When a server stub routine is invoked by the RPC run-time library, it performs the following functions:

· Unmarshals input arguments (unpacks the arguments from their transmitted formats)
· Calls the actual implementation of the procedure on the server
· Marshals output arguments (packages the arguments into the transmitted forms)

The MIDL compiler switches /env, /server, /sstub, and /out affect the server stub file.

The Header File

The header file contains definitions of all the data types and operations declared in the IDL file. The
header file must be included by all application modules that call the defined operations, implement the
defined operations, or manipulate the defined types.

The MIDL compiler switches /header and /out affect the header file.

 Files Generated for an OLE Interface

This topic describes each of the files generated for a custom OLE interface, which you identify by
including the object attribute in the interface attribute list of the IDL file. For OLE interfaces, the MIDL
compiler combines all client and object server routines into a single interface proxy file. This file
includes the surrogate entry points for both clients and servers. In addition, the MIDL compiler
generates an interface header file, a private header file, and an interface UUID file. You will use all
these files when creating a proxy DLL that contains the code to support the use of the interface by both
client applications and object servers. You will also use the interface header file and the interface UUID
file when creating the executable file for a client application that uses the interface.

The Interface Proxy File

The interface proxy file (name_P.C) is a C file that contains routines equivalent to those in the client
stub, server stub, client and server files of an RPC interface. This file contains implementations of
CProxyInterface and CStubInterface classes that are derived from the CProxy and CStub classes of
the base interface. For example, an interface named ISomeInterface derived from the IUnknown
interface is implemented in the CProxyISomeInterface and CStubISomeInterface classes derived from
the CProxyIUnknown and CStubIUnknown classes.

The interface proxy file includes the following sections:

· The implementation of a CProxyInterface class. The virtual member functions of this class provide
a client application's surrogate entry points for each of the interface functions. These member
functions marshal the input arguments into a transmittable form, transmit the marshalled arguments
along with information that identifies the interface and the operation, and then unmarshal the return
value and any output arguments when the transmitted operation returns.

· The implementation of a CStubInterface class. The virtual member functions of this class provide
an object server's surrogate entry points for each of the interface functions. These member functions
unmarshal the input arguments, invoke the server's implementation of the interface function, and
then marshal and transmit the return value and any output arguments. A CStubInterface class also
includes a member function that is invoked by the RPC run-time library when a client application
calls one of the interface functions. This routine calls the surrogate routine specified by the RPC
message.

· Marshalling and unmarshalling support routines for complex data types.

Use the /proxy MIDL compiler switch to override the default name of the interface proxy file. The /env
and /out switches affect this file.

The Header Files

The interface header file (name.H) contains type definitions and function declarations based on the
interface definition in the IDL file. Include this file in the source files for the proxy DLL and for client
applications that use the interface.

The /header MIDL compiler switch overrides the default name of the interface header file.

The Interface UUID File

The interface UUID file defines the constant IID_Interface and initializes it to the interface's UUID
specified in the IDL file. Client applications and the proxy DLL use this constant to identify the interface.

The /iid MIDL compiler switch overrides the default name of the interface UUID file.

See Also

ACF, /app_config, /c_ext, IDL, /import, /ms_ext

 @

midl @response_file

response_file
Specifies the name of a response file. The response filename must immediately follow the @
character. No white space is allowed between the @ character and the response filename.

Examples

midl @midl.rsp

midl /pack 4 @midl1.rsp /env win32 @midl2.rsp itf.idl

Remarks

As an alternative to placing all the options associated with a switch on the command line, the MIDL
compiler accepts response files that contain switches and arguments.

A response file is a text file containing one or more MIDL compiler command-line options. Unlike a
command line, a response file allows multiple lines of options and filenames. This is important on
systems such as MS-DOS, which limit the number of characters in the command line.

Options in a response file are interpreted as if they are present at that place in the MIDL command line.

Each argument in a response file must begin and end on the same line. The backslash character (\)
can't be used to concatenate lines.

When it is part of a quoted string in the response file, the backslash character (\) can only be used
before another backslash (\) or before a double quotation mark character ("). When it is not part of a
quoted string, the backslash character can only be used before a double quotation mark character (").

MIDL supports command-line arguments that include one or more response files combined with other
command-line switches.

The MIDL compiler doesn't support nested response files.

See Also

midl

 /acf

midl /acf acf_filename

acf_filename
Specifies the name of the ACF. White space may or may not be present between the /acf switch and
the filename.

Example

midl /acf bar.acf foo.idl

Remarks

The /acf switch allows the user to supply an explicit ACF filename. The switch also allows the use of
different interface names in the IDL and ACF files.

By default, the MIDL compiler constructs the name of the ACF by replacing the IDL filename extension
(usually .IDL) with .ACF. When the /acf switch is present, the ACF takes its name from the specified
filename. The /acf switch applies only to the IDL file specified on the MIDL compiler command line. It
does not apply to imported files.

When the /acf switch is used, the interface name in the ACF need not match the MIDL interface name.
This feature allows interfaces to share an ACF specification.

When an absolute path to an ACF is not specified, the MIDL compiler searches in the current directory,
directories supplied by the /I option, and directories in the INCLUDE path. If the ACF is not found, the
MIDL compiler assumes there is no ACF for this interface. For more information about the sequence of
directories, see /no_def_idir switches. For more information related to /acf, see IDL.

See Also

midl,

 /app_config

midl /app_config

Examples

midl /app_config foo.idl
midl /app_config /ms_ext foo.idl
midl /app_config /ms_ext /c_ext foo.idl

Remarks

The /app_config switch selects application-configuration mode, which allows you to use some ACF
keywords in the IDL file. With this MIDL compiler switch, you can omit the ACF and specify an interface
in a single IDL file.

This release of Microsoft RPC supports the use of the following ACF attributes in the IDL file:

· implicit_handle
· auto_handle
· explicit_handle

Future releases of Microsoft RPC may support the use of other ACF attributes in the IDL file.

For more information related to the /app_config switch, see ACF and IDL.

See Also

/c_ext, midl, /ms_ext

 /c_ext

midl /c_ext

Examples

midl /c_ext foo.idl
midl /c_ext /ms_ext foo.idl
midl /c_ext /ms_ext /app_config foo.idl

Remarks

The /c_ext switch selects the MIDL compiler mode that supports the use of
C-language extensions in the IDL file. The /c_ext switch makes it easier for you to use existing code
and header files in your distributed application.

Many existing header files define types using qualifiers, such as far and stdcall, that are not part of the
DCE IDL. DCE IDL compilers (and the MIDL compiler in DCE-compatibility mode), generate errors
when they attempt to process these qualifiers. The MIDL compiler /c_ext switch allows you to compile
IDL files that contain these qualifiers.

The type qualifiers do not affect the way the data is transmitted on the network.

The following C-language extensions are supported in the /c_ext compiler mode:

· Bit fields in structures and unions
· Comments that start with two backslash characters
· External declarations
· Procedures with ellipses in the parameter list
· Type int that is not used in remote operations
· Type void * that is not used in remote operations
· Type qualifiers, including the form with the ANSI-conformant prefix, contain two underscore

characters: _ _cdecl, cdecl, _ _const, const, _ _export, export, _ _far, far, _ _loadds, loadds, _
_near, near, _ _pascal, pascal, _ _stdcall, stdcall, _ _volatile, and volatile.

Note that directional attributes can be omitted when using /c_ext mode.

The three compiler-mode switches, /ms_ext, /c_ext, and /app_config, are independent. Any
combination of these mode switches, including none or all, can be used.

For more information about declaration qualifiers, see your Microsoft C/C++ documentation.

See Also

/app_config, midl, /ms_ext

 /caux

This switch is obsolete and, if used, results in an error.

 /char

midl /char { signed | unsigned | ascii7 }

signed
Specifies that the default C-compiler type for char is signed. All occurrences of char not
accompanied by a sign specification are generated as unsigned char.

unsigned
Specifies that the default C-compiler type for char is unsigned. All uses of small not accompanied
by a sign specification are generated as signed small.

ascii7
Specifies that all char values are to be passed into the generated files without a specific sign
keyword. All uses of small not accompanied by a sign specification are generated as small.

Examples

midl /char signed foo.idl
midl /char unsigned foo.idl
midl /char ascii7 foo.idl

Remarks

The /char switch helps you ensure that the MIDL compiler and C compiler operate together correctly
for all char and small types. By definition, MIDL char is unsigned. Small is defined in terms of char
(#define small char), and MIDL small is signed.

The /char switch directs the MIDL compiler to specify explicit signed or unsigned declarations in the
generated files when the C-compiler sign declaration conflicts with the MIDL default for that type.

The following table summarizes the generated types:

midl /char option Generated char type Generated small type
midl /char signed unsigned char small
midl /char unsigned char signed small
midl /char ascii7 char small

The /char signed option indicates that the C-compiler char type is signed. To match the MIDL default
for char, the MIDL compiler must convert all uses of char not accompanied by a sign specification to
unsigned char. The small type is not modified because this C-compiler default matches the MIDL
default for small.

The /char unsigned option indicates that the C-compiler char type is unsigned. The MIDL compiler
converts all uses of small not accompanied by a sign specification to signed small.

The ascii7 option indicates that no explicit sign specification is added to char types. The type small is
generated as small.

To avoid confusion, you should use explicit sign specifications for char and small types whenever
possible in the IDL file. Explicit sign specification is allowed only when you use the /ms_ext switch. The
use of explicitly signed char types in your IDL file is not supported by DCE IDL.

For more information related to /char, see small.

 /client

midl /client { stub | none }

stub
Generates the client-side files.

none
Does not generate any client-side files.

Examples

midl /client none foo.idl
midl /client stub foo.idl

Remarks

The /client switch directs the MIDL compiler to generate client-side C source files for an RPC interface.
When the /client switch is not specified, the MIDL compiler generates the client stub file. This switch
does not affect OLE interfaces.

The /client switch takes precedence over the /cstub switch.

See Also

/cstub, midl, /server

 /confirm

midl /confirm

Examples

midl /confirm
midl /confirm @response.rsp foo.idl

Remarks

The /confirm switch instructs the compiler to display all MIDL compiler options without processing the
input IDL (and optional ACF) files.

See Also

/help, midl

 /cpp_cmd

midl /cpp_cmd "C_preprocessor_command"

C_preprocessor_command
Specifies the command that invokes the C preprocessor. This command allows you to override the
default C preprocessor. By default, MIDL invokes the Microsoft C compiler for the build environment
you are using.

Examples

midl /cpp_cmd "cl386" /cpp_opt "/E" foo.idl
midl /cpp_cmd "mycpp" /DFLAG=TRUE /Ic:\tmp foo.idl
midl /cpp_opt "/E /DFLAG=TRUE" foo.idl

Remarks

The /cpp_cmd switch specifies the C-compiler preprocessor that the MIDL compiler uses to
preprocess the IDL and ACF files. When this switch is present, the C_preprocessor_command option is
required.

When the specified C preprocessor does not direct its output to stdout, you must specify the C
compiler switch that redirects output to stdout as part of the MIDL compiler /cpp_opt switch.

The C preprocessor is invoked by a command string that is formed from the information provided to the
MIDL compiler /cpp_cmd, /cpp_opt, /D, /I, and /U switches. The following table summarizes how the
command string is constructed for each combination of /cpp_cmd and /cpp_opt switches:

/
cpp_c
md
presen
t?

/
cpp_opt
present
?

Description

Yes Yes Invokes specified C compiler with specified options;
you must supply /E as part of /cpp_opt

Yes No Invokes specified C compiler with settings obtained
from MIDL /I, /D, /U switches; adds C compiler /E
switch

No Yes Invokes Microsoft C compiler with specified options;
does not use MIDL /I, /D, /U options; you must supply
/E as part of /cpp_opt

No No Invokes Microsoft C compiler with /E option only

When the /cpp_cmd switch is not specified, the MIDL compiler invokes the Microsoft C/C++ compiler
for that environment.

When the /cpp_opt switch is not present, the MIDL compiler concatenates the string specified by
the /cpp_cmd switch with the information specified by the MIDL /I, /D, and /U options. The string /E is
also concatenated to the C-compiler invocation string to indicate that the C compiler should perform
preprocessing only. The MIDL compiler uses the concatenated string to invoke the C preprocessor for
each IDL and ACF source file.

When the /cpp_opt switch is present, the MIDL compiler concatenates the string specified by the
/cpp_cmd switch with the string specified by the /cpp_opt switch. The MIDL compiler uses the
concatenated string to invoke the C preprocessor for each IDL and ACF source file. When the
/cpp_opt switch is present, neither the MIDL compiler options specified by the /I, /D, and /U switches
nor the C compiler switch /E is concatenated with the string. You must supply the /E option as part of

the string.

See Also

/cpp_opt, midl, /no_cpp

 /cpp_opt

midl /cpp_opt "C_preprocessor_option"

C_preprocessor_option
Specifies a command-line option associated with the C preprocessor. You must supply the C-
compiler option /E as part of the C_preprocessor_option string.

Examples

midl /cpp_cmd "cl386" /cpp_opt "/E" foo.idl
midl /cpp_cmd "mycpp" /DFLAG=TRUE /Ic:\tmp foo.idl
midl /cpp_opt "/E /DFLAG=TRUE" foo.idl

Remarks

The /cpp_opt switch specifies options to pass to the C preprocessor. The /cpp_opt switch can be
used with or without the /cpp_cmd switch. The following table summarizes how the C-preprocessor
command string is constructed for each combination of /cpp_cmd and /cpp_opt switches:

/
cpp_cm
d
present
?

/cpp_opt
present? Description

Yes Yes Invokes specified C compiler with specified
options; you must supply /E as part of /cpp_opt

Yes No Invokes specified C compiler with settings
obtained from MIDL /I, /D, /U switches; adds C-
compiler /E switch

No Yes Invokes Microsoft C compiler with specified
options; does not use MIDL /I, /D, /U options; you
must supply /E as part of /cpp_opt

No No Invokes Microsoft C compiler with /E option only

When the /cpp_cmd switch is present and the /cpp_opt switch is not, the MIDL compiler concatenates
the string specified by the cpp_cmd switch with the /I, /D, and /U options and uses this concatenated
string to invoke the C preprocessor for each IDL and ACF source file.

When the /cpp_cmd switch is not present, the preprocessor option is sent to the default C
preprocessor. When the /cpp_cmd switch is present, the preprocessor option is sent to the specified C
preprocessor.

See Also

/cpp_cmd, midl, /no_cpp

 /cstub

midl /cstub stub_file_name

stub_file_name
Specifies a filename that overrides the default client stub filename. Filenames can be explicitly
quoted using double quotes (") to prevent the shell from interpreting the special characters.

Example

midl /cstub my_cstub.c foo.idl

Remarks

The /cstub switch specifies the name of the client stub file for an RPC interface. The specified filename
replaces the default filename. By default, the filename is obtained by adding the extension _C.C to the
name of the IDL file. This switch does not affect OLE interfaces.

When you are importing files, the specified filename applies to only one stub file ¾ the stub file that
corresponds to the IDL file specified on the command line.

If stub_file_name does not include an explicit path, the file is written to the current directory or the
directory specified by the /out switch. An explicit path in stub_file_name overrides the /out switch
specification.

The /client none switch takes precedence over the /cstub switch.

See Also

/header, midl, /out, /sstub

 /D

midl /Dname=definition

name
Specifies a defined name that is passed to the C preprocessor when the /cpp_cmd switch is
present and the /cpp_opt switch is not present.

definition
Specifies a value associated with the defined name.

Example

midl -DUNICODE foo.idl

Remarks

The /D switch defines a name and an optional value to be passed to the C preprocessor as if by a
#define directive. Multiple /D directives can be used in a command line. White space between the /D
switch and the defined name is optional.

When the /cpp_cmd switch is present and the /cpp_opt switch is not, the MIDL compiler concatenates
the string specified by the /cpp_cmd switch with the /I, /D, and /U options and uses this concatenated
string to invoke the C preprocessor for each IDL and ACF source file.

The MIDL compiler switch /D is ignored when the MIDL compiler switch /no_cpp or /cpp_opt is
specified.

See Also

/cpp_cmd, /cpp_opt, /I, midl, /no_cpp, /U

 /dlldata

midl /dlldata

Example

midl /dlldata data.c

Remarks

The /dlldata switch is used to specify the filename for the generated dlldata file for a proxy DLL. The
default filename "dlldata.c" is used if the /dlldata switch is not specified.

The dlldata file must be linked to the proxy DLL. The dlldata file contains entry points and data
structures required by the class factory for the proxy DLL. These data structures specify the object
interfaces contained in the proxy DLL. The dlldata file also specifies the class ID of the class factory for
the proxy DLL. This is always the UUID (IID) of the first interface of the first proxy file (by alphabetical
order).

The same dlldata file should be specified when invoking MIDL on all the IDL files that will go into a
particular proxy DLL. The dlldata file is created or updated during each MIDL compilation, incrementally
building a list of the interfaces that will go into the proxy DLL.

See Also

midl

 /env

midl /env { dos | win16 | win32 }

dos
Directs the MIDL compiler to generate stub files for an MS-DOS environment.

win16
Directs the MIDL compiler to generate stub files for the 16-bit Microsoft Windows environment such
as Microsoft Windows 3.x or Microsoft Windows for Workgroups 3.1.

Note The server-stub file is not generated when you use the MIDL compiler switch /env with either
the dos or win16 option.

win32
Directs the MIDL compiler to generate stub files for a 32-bit Microsoft Windows environment such as
Microsoft Windows NT.

Examples

midl /env dos foo.idl
midl /env win32 foo.idl

Remarks

The /env switch selects the environment in which the application runs. The /env switch primarily affects
the packing level used for structures in that environment.

Specify the same packing-level setting for both the MIDL compiler and the C compiler.

The /env switch determines the packing level and other settings as follows:

/env Packing level Description
/env dos 2 or /Zp

setting
_ _far precedes pointer declarations.

/env
win16

2 or /Zp
setting

_ _far precedes pointer declarations.

/env
win32

8 or /Zp
setting

No declaration qualifiers are added.

When dos is selected, _ _far precedes pointer declarations in the generated header file, and the stub
files use packing-level 2 for all types involved in remote operations.

When win16 is selected, _ _far precedes pointer declarations in the generated files, stub files assume
C-compiler packing-level 2 for all types involved in remote operations, and _ _export is applied to
callback stubs on the client side. You must compile the stubs with the /GA option.

When win32 is selected, generated stubs assume C-compiler packing-level 8 for all types involved in
remote operations.

When the 32-bit version of the MIDL compiler runs on Microsoft Windows NT, stubs are generated for
the win32 environment.

The compiler applies packing-level /Zp4 to all types involved in a remote procedure call.

The /pack and /Zp switches take precedence over the /env settings.

See Also

midl, /pack, /Zp

 /error

midl /error { allocation | stub_data | none | all }

allocation
Checks whether midl_user_allocate returns a null value, indicating an out-of-memory error.

stub_data
Generates a stub that catches unmarshalling exceptions on the server side and propogates them
back to the client.

none
Performs no error checking.

all
Performs all error checking.

Examples

midl /error allocation foo.idl
midl /error none foo.idl

Remarks

The /error switch selects the amount of error checking to be performed by the generated stub files.

By default, the MIDL compiler generates code that checks for enum and memory-access errors. Enum
errors are truncation errors caused by conversion between long enum types (32-bit integers) and
short enum types (the network-data representation of enum). Memory-access errors are errors
caused when array indexes are out of bounds or when a pointer exceeds the end of the buffer in
marshalling code.

When you specify /error allocate, the stubs include code that raises an exception when
midl_user_allocate returns 0.

The /error stub_data option prevents client data from crashing the server during unmarshalling; in
effect providing a more robust method of handling the unmarshalling operation.

See Also

midl

 /header

midl /header filename

filename
Specifies a header filename that overrides the default header filename. Filenames can be explicitly
quoted using double quotes (") to prevent the shell from interpreting the special characters.

Example

midl /header "bar.h" foo.idl

Remarks

The /header switch specifies the name of the header file. The specified filename replaces the default
filename. The default filename is obtained by replacing the IDL file extension (usually .IDL) with the
extension .H. For OLE interfaces, the /header switch overrides the default name of the interface
header file.

When you are importing files, the specified filename applies to only one header file¾ the header file
that corresponds to the IDL file specified on the command line.

If filename does not include an explicit path, the file is written to the current directory or the directory
specified by the /out switch. An explicit path in filename overrides the /out switch specification.

See Also

/cstub, midl, /out, /sstub, /proxy

 /help (/?)

midl /help
midl /?

Example

midl /help

Remarks

The /help (/?) switch instructs the compiler to display a usage message detailing all available MIDL
command-line switches and options.

The /confirm switch displays the MIDL compiler switch settings selected by the user.

See Also

/confirm, midl

 /I

midl /Iinclude_path

include_path
Specifies one or more directories that contain import, include, and ACF files. White space between
the /I switch and include_path is optional. Separate multiple directories with a semicolon character
(;).

Example

midl /I c:\include;c:\include\h /I\include2 foo.idl

Remarks

The /I switch specifies directories to be searched for imported IDL files, included header files, and ACF
files. More than one directory can appear with each /I switch, and more than one /I switch can appear
with each MIDL compiler invocation. Directories are searched in the order they are specified.

The /I switch setting is also passed by the MIDL compiler to the C compiler's C preprocessor. When the
/cpp_cmd switch is present and the /cpp_opt switch is not, the MIDL compiler concatenates the string
specified by the /cpp_cmd switch with the /I, /D, and /U options and uses this concatenated string to
invoke the C preprocessor for each IDL and ACF source file. The MIDL compiler switch /I is not passed
to the preprocessor when the MIDL compiler switch /no_cpp or /cpp_opt is specified.

In Microsoft operating-system environments (Windows NT, Windows 3.x, Windows for Workgroups,
and MS-DOS), directories are searched in the following sequence:

1. Current directory
2. Directories specified by the /I switch (in order as they appear following the switch)
3. Directories specified by the INCLUDE environment variable

When directories are specified with the /I switch, the /no_def_idir switch instructs the MIDL compiler to
ignore the current directory, ignore the directories specified by the INCLUDE environment variable, and
search only the specified directories.

When no directories are specified with the /I switch, the /no_def_idir switch instructs the MIDL
compiler to search only the current directory.

See Also

/acf, /cpp_cmd, /cpp_opt, midl, /no_def_idir

 /iid

midl /iid filename

filename
Specifies an interface identifier filename that overrides the default interface identifier filename for an
OLE interface. Filenames can be explicitly quoted using double quotes (") to prevent the shell from
interpreting the special characters.

Example

midl /iid "foo_iid.c" foo.idl

Remarks

The /iid switch specifies the name of the interface identifier file for an OLE interface, overriding the
default name obtained by adding _I.C to the IDL filename. The /iid switch does not affect RPC
interfaces.

If filename does not include an explicit path, the file is written to the current directory or to the directory
specified by the /out switch. An explicit path in filename overrides the /out switch specification.

See Also

/header, midl, /out, /proxy

 /import

This switch is obsolete and if used, results in an error.

 /ms_ext

midl /ms_ext

Examples

midl /ms_ext foo.idl
midl /ms_ext /app_config foo.idl
midl /ms_ext /app_config /c_ext foo.idl

Remarks

The /ms_ext switch enables Microsoft extensions to DCE IDL. The following features are supported in
Microsoft-extensions mode:

· Interface definitions for OLE objects. For more information on the files generated for OLE interfaces,
see midl.

· A callback attribute specifying a static callback function on the client
· cpp_quote(quoted_string) and #pragma midl_echo
· wchar_t wide-character types, constants, and strings
· enum initialization (sparse enumerators)
· Expressions as size and discriminator specifiers
· Handle extensions
· Pointer-attribute type inheritance
· Multiple interfaces
· Definitions outside of the interface block
Note that directional attributes can be omitted when using the /ms_ext mode.

Handle Extensions

The MIDL compiler switch /ms_ext allows Microsoft extensions to the IDL language that support
multiple handle parameters and handle parameters that appear in positions other than the first,
leftmost, parameter.

The following table describes the sequence of steps that the MIDL compiler goes through to resolve the
binding-handle parameter in DCE-compatibility mode and in Microsoft-extensions mode:

DCE-compatibility mode Microsoft-extensions mode
1. Binding handle that appears in first

parameter position
1. Leftmost explicit binding handle

2. Leftmost in, context_handle
parameter

2. Implicit binding handle specified
by implicit_handle or
auto_handle

3. Implicit binding handle specified by
implicit_handle or auto_handle

3. If no ACF present, default to use
of auto_handle

4. If no ACF present, default to use of
auto_handle

DCE IDL compilers look for an explicit binding handle as the first parameter. When the first parameter
is not a binding handle and one or more context handles are specified, the leftmost context handle is
used as the binding handle. When the first parameter is not a handle and there are no context handles,
the procedure uses implicit binding using the ACF attribute implicit_handle or auto_handle.

The Microsoft extension to the IDL allows the binding handle to be in a position other than the first

parameter. The leftmost in explicit-handle parameter, whether it is a primitive, user-defined, or context
handle, is the binding handle. When there are no handle parameters, the procedure uses implicit
binding using the ACF attribute implicit_handle or auto_handle.

The following rules apply to both DCE-compatibility mode and Microsoft-extensions mode:

· Auto-handle binding is used when no ACF is present.
· Explicit in or in, out handles for an individual function pre-empt any implicit binding specified for the

interface.
· Multiple in or in, out primitive handles are not supported.
· Multiple in or in, out explicit context handles are allowed.
· All user-defined handle parameters except the binding-handle parameter are treated as

transmissible data.

The following table contains examples and describes how the binding handles are assigned in each
compiler mode:

Example Description
void proc1(void); No explicit handle is specified. The

implicit binding handle, specified by
implicit_handle or auto_handle, is used.
When no ACF is present, an auto handle
is used.

void proc2([in]
handle_t H,
 [in] short
s);

An explicit handle of type handle_t is
specified. The parameter H is the binding
handle for the procedure.

void proc3([in] short
s,
 [in] handle_t
H);

The first parameter is not a handle.
In DCE-compatibility mode, implicit
binding is used. An error is reported
because the second parameter is
expected to be transmissible, and
handle_t cannot be transmitted. In
Microsoft-extensions mode, the leftmost
handle parameter, H, is the binding
handle.

typedef [handle] short
*
 MY_HDL;

void proc1([in] short
s,
 [in] MY_HDL H
);

The first parameter is not a handle. In
DCE-compatibility mode, implicit binding
is used. The user-defined handle
parameter H is treated as transmissible
data.
In Microsoft-extensions mode, the
leftmost handle parameter, H, is the
binding handle. The stubs call the user-
supplied routines MY_HDL_bind and
MY_HDL_unbind.

typedef [handle] short
*
 MY_HDL;

void proc1([in] MY_HDL
H,
 [in] MY_HDL p

The first parameter is a binding handle.
The parameter H is the binding-handle
parameter. The second user-defined
handle parameter is treated as
transmissible data.

);

typedef
[context_handle]
 void * CTXT_HDL;

void proc1([in] short
s,
 [in] long l,
 [in] CTXT_HDL H ,
 [in] char c);

The binding handle is a context handle.
The parameter H is the binding handle.

Pointer-Attribute Type Inheritance

According to the DCE specification, each IDL file must define attributes for its pointers. If an explicit
attribute is not assigned to a pointer, the pointer uses the value specified by the pointer_default
keyword. DCE does not allow unattributed pointers. If a pointer does not have an explicit attribute, the
IDL file must have a pointer_default specification so that the pointer attribute can be set.

In Microsoft-extensions mode, you can control pointer attributes from the base IDL file. This feature
allows an IDL file to contain pointer types whose pointer attributes are not resolved until that IDL file is
imported by another IDL file. These kinds of pointers are known as unattributed pointers. When neither
the base nor the imported IDL files specify a pointer attribute or pointer default, unattributed pointers
are interpreted as unique pointers.

The MIDL compiler assigns pointer attributes to pointers using the following priority rules (1 is highest):

1. Explicit pointer attributes applied to the pointer at the definition or use site
2. Pointer_default in the IDL file that defines the type
3. Pointer_default in the IDL file that imports the type
4. Unique in Microsoft-extensions mode; ptr in DCE-compatibility mode

Two other switches control MIDL language features: /app_config and /c_ext. These switches can be
used independently of the /ms_ext switch. For more information about these compiler modes, see
/app_config and /c_ext.

See Also

midl

 /ms_union

midl /ms_union

Example

midl /ms_union file.idl

Remarks

The /ms_union switch controls the NDR alignment of non-encapsulated unions.

The MIDL compiler mirrors the behavior of the OSF DCE IDL compiler for non-encapsulated unions.
However, because earlier versions of the MIDL compiler did not do so, the /ms_union switch provides
compatibility with interfaces built on previous versions of the MIDL compiler.

The ms_union feature can be used as a command line switch (/ms_union), an IDL interface attribute,
or as an IDL type attribute.

See Also

IDL, ms_union

 /no_cpp

midl /no_cpp

Example

midl /no_cpp foo.idl

Remarks

The /no_cpp switch specifies that the MIDL compiler does not call the C preprocessor to preprocess
the IDL file.

The /no_cpp switch takes precedence over the /cpp_cmd and /cpp_opt switches.

See Also

/cpp_cmd, /cpp_opt, /D, /I, midl, /U

 /no_default_epv

midl /no_default_epv

Example

midl /no_default_epv foo.idl

Remarks

The /no_default_epv switch directs the MIDL compiler not to generate a default epv. In this case, the
application must register an epv with the RpcServerRegisterIf call. Compare this switch with the
/use_epv switch described earlier in this chapter.

See Also

IDL, / use_epv , RpcServerRegisterIf

 /no_def_idir

midl /no_def_idir

Examples

; search only the current directory
midl /no_def_idir foo.idl
; search only the specified directories
midl /no_def_idir /I c:\c700\include foo.idl

Remarks

When directories are specified with the /I switch, the /no_def_idir switch instructs the MIDL compiler to
search only the directories specified with the /I switch, ignoring the current directory and ignoring the
directories specified by the INCLUDE environment variable.

When no directories are specified with the /I switch, the /no_def_idir switch instructs the MIDL
compiler to search only the current directory.

See Also

/acf, /I, midl

 /no_warn

midl /no_warn

Examples

midl /no_warn foo.idl
midl /W0 foo.idl

Remarks

The /no_warn switch directs the MIDL compiler to suppress warning messages. The use of the
/no_warn switch is equivalent to /W0.

See Also

midl, /W, /WX

 /Oi

midl /Oi
midl /Oi1

Examples

midl /Oi foo.idl
midl /Oi /ms_ext foo.idl
midl /Oi /ms_ext /c_ext foo.idl
midl /Oi1 foo.idl
Remarks

The /Oi switch specifies the fully-interpreted method to marshal stub code passed between client and
server.

The /Oi1 option of this switch can be used to generate interpreted stub code if you are using version
3.51 of Windows NT. Note that this option will not work with the 3.5 version of Windows NT.

Note Stubs generated by the MIDL compiler in the interpreted method using the /Oi switch must be
compiled as either a stdcall or a cdecl procedure during the C compilation. A PASCAL or Fastcall
calling convention will not work. Additionally, the server stub must be compiled as __stdcall.

The number of parameters allowed is limited to 16 parameters on all platforms. Any procedure
containing more than 16 parameters will automatically be processed in /Os mode.

There are important issues to consider before deciding on the method for marshalling code. These
issues concern size and performance. The MIDL 2.0 compiler provides two methods for marshalling
code: fully-interpreted (/Oi) and mixed-mode (/Os). Mixed-mode is the default.

The fully-interpreted method marshals data completely offline. This considerably reduces the size of
the stub code. However, it also results in decreased performance.

If performance is a concern, the mixed-mode (/Os) method can be the best approach. In this mode, the
compiler chooses to marshall some parameters inline in the generated stubs. While this results in
larger stub size, it offers increased performance.

To further define the level of gradiation in how data is marshalled, this version of RPC provides an
optimize attribute. This attribute is used as an ACF interface attribute or operation attribute to select the
marshalling mode.

See Also

/Os, optimize

 /oldnames

midl /oldnames

Example

midl /oldnames foo.idl

Remarks

The /oldnames switch directs the MIDL compiler to generate interface names which do not include the
version number.

The MIDL 2.0 compiler incorporates the version number of the interface into the interface name that is
generated in the stub (for example, foo_v1_0_ServerIfHandle). This naming format is consistent with
the format used by the OSF DCE IDL compiler. However, it differs from the naming format used by the
MIDL 1.0 compiler. The MIDL 1.0 compiler did not include version numbers in interface names (for
example, foo_ServerIfHandle). The /oldnames switch allows you to instruct the MIDL compiler to
generate interface names which do not include the version number. In this way, the format is consistent
with names generated by the MIDL 1.0 compiler.

If you have server application code that was written for use with a stub generated by the MIDL 1.0
compiler, and it refers to the MIDL-generated interface name (for example, in a call to
RpcServerRegisterIf), you must either change it to reference the MIDL 2.0 style of interface name or
use the /oldnames switch when invoking the MIDL compiler.

See Also

IDL

 /Os

midl /Os

Examples

midl /Os foo.idl
midl /Os /ms_ext foo.idl
midl /Os /ms_ext /c_ext foo.idl

Remarks

The /Os switch specifies the mixed-mode method to marshal stub code passed between client and
server.

There are important issues to consider before deciding on the method for marshalling code. These
issues concern size and performance. The MIDL 2.0 compiler provides two methods for marshalling
code: mixed-mode (/Os) and fully-interpreted (/Oi). The fully-interpreted method marshals data
completely offline. This reduces the size of the stub code considerably. However, it also results in
decreased performance.

If performance is an important concern, the mixed-mode method (/Os) can be the best approach. In
this mode, the compiler marshals some parameters inline in the generated stubs. While this results in
larger stub size, it also offers increased performance. Because mixed-mode is the default, you need
not explicitly select the /Os switch to accomplish mixed-mode marshalling.

To further define the level of gradiation in how data is marshalled, this version of RPC provides an
optimize attribute. This attribute is used as an ACF interface attribute or operation attribute to select
the marshalling mode.

See Also

/Oi, optimize

 /out

midl /out path-specification

path-specification
Specifies the path to the directory in which the stub, header, and switch files are generated. A drive
specification, an absolute directory path, or both can be specified. Paths can be explicitly quoted
using double quotes (") to prevent the shell from interpreting the special characters.

Examples

midl /out c:\mydir\mysubdir\subdir2 deeper foo.idl
midl /out c: foo.idl
midl /out \mydir\mysubdir\another foo.idl

Remarks

The /out switch specifies the default directory where the MIDL compiler writes output files. The output
directory can be specified with a drive letter, an absolute path name, or both. The /out option can be
used with any of the switches that enable individual output file specification.

When the /out switch is not specified, files are written to the current directory.

The default directory specified by the /out switch can be overridden by an explicit path name specified
as part of the /cstub, /header, /proxy, or /sstub switch.

See Also

/cstub, /header, midl, /proxy, /sstub

 /pack

midl /pack packing_level

packing_level
Specifies the packing level of structures in the target system. The packing-level value can be set to
1, 2, 4, or 8.

Examples

midl /pack 2 foo.idl
midl /pack 8 bar.idl

Remarks

The /pack switch is the same as the /Zp option. The /pack switch designates the packing level of
structures in the target system. The packing-level value corresponds to the /Zp option value used by
the Microsoft C/C++ version 7.0 compiler. For more information, see your Microsoft C/C++
programming documentation.

Specify the same packing level when you invoke the MIDL compiler and the C compiler. The default is
8.

For a discussion of the potential dangers in using non-standard packing levels, see the /Zp help topic.

See Also

midl, /env, /Zp

 /prefix

midl /prefix { client | server | switch | all }

client
Affects only the client stub routine names.

server
Affects only the routine names called by the server stub routine.

switch
Affects an extra prototype added to the header file.

all
Affects both the client and server stub routine names.

Examples

midl /prefix client "c_" server "s_"
midl /prefix all "foo_"
midl /prefix client "bar_"

Remarks

The /prefix switch directs the MIDL compiler to add prefix strings to the client and/or server stub
routine names. This can be used to allow a single program to be both a client and server of the same
interface, without having the client- and server-side routine names conflict with each other. If the prefix
for the client-side routines is different from the prefix for the server-side routines, the generated header
file will have both client-side routine prototypes and server-side routine prototypes.

The /prefix switch is useful when a single header file will be used with stubs from multiple runs of the
MIDL compiler. This forces additional routine prototypes in the header file.

In all cases, the client, server, and switch prefixes will override an all prefix.

See Also

midl

 /proxy

midl /proxy proxy_file_name

proxy_file_name
Specifies a filename that overrides the default interface proxy filename. Filenames can be explicitly
quoted using double quotes (") to prevent the shell from interpreting the special characters.

Example

midl /proxy my_proxy.c foo.idl

Remarks

The /proxy switch specifies the name of the interface proxy file for an OLE interface. The specified
filename replaces the default filename obtained by adding _P.C to the name of the IDL file. The /proxy
switch does not affect RPC interfaces.

If proxy_file_name does not include an explicit path, the file is written to the current directory or to the
directory specified by the /out switch. An explicit path in proxy_file_name overrides the /out switch
specification.

For a more detailed description of the interface proxy file and other files generated by the MIDL
compiler, see midl.

See Also

/header, /iid, midl, /out

 /rpcss

midl /rpcss

Example

midl /rpcss foo.idl

Remarks

The /rpcss switch, when specified, acts as though the enable_allocate attribute was specified on all
operations of the interface. In osf mode, the server side stub enables the rpcss allocation package.
However, when using the ms_ext mode of operation, the rpcss package is enabled only if either the
procedure or interface has the enable_allocate attribute or the /rpcss switch is specified on the
command line.

See Also

IDL, enable_allocate, /ms_ext

 /saux

This switch is obsolete and if used, results in an error.

 /server

midl /server { stub | none }

stub
Generates the server-side files.

none
Does not generate server-side files.

Examples

midl /server none
midl /server stub

Remarks

When the /server switch is not specified, the MIDL compiler generates the server stub file. This switch
does not affect OLE interfaces.

The none option causes no files to be generated.

The /server switch takes precedence over the /sstub switch.

See Also

/client, midl, /sstub

 /sstub

midl /sstub stub_file_name

stub_file_name
Specifies a filename that overrides the default server stub filename. Filenames can be explicitly
quoted using double quotes (") to prevent the shell from interpreting the special characters.

Example

midl /sstub my_sstub.c foo.idl

Remarks

The /sstub switch specifies the name of the server stub file for an RPC interface. The specified
filename replaces the default filename. By default, the filename is obtained by adding _S.C to the name
of the IDL file. This switch does not affect OLE interfaces.

When you are importing files, the specified filename applies to only one stub file ¾ the stub file that
corresponds to the IDL file specified on the command line.

If stub_file_name does not include an explicit path, the file is written to the current directory or the
directory specified by the /out switch. An explicit path in stub_file_name overrides the /out switch
specification.

The /server none switch takes precedence over the /sstub switch.

See Also

/cstub, /header, /out

 /syntax_check

midl /syntax_check
midl /Zs

Examples

midl /Zs foo.idl
midl /syntax_check foo.idl

Remarks

The /syntax_check switch indicates that the compiler checks only syntax and does not generate
output files. This switch overrides all other switches that specify information about output files.

You can also specify syntax-checking mode with the MIDL compiler option /Zs.

See Also

midl, /Zs

 /U

midl /Uname

name
Specifies a defined name to be passed to the C preprocessor as if by a #undefine directive. The
name is predefined by the C preprocessor or previously defined by the user.

Example

midl /UUNICODE foo.idl

Remarks

The /U switch removes any previous definition of a name by passing the name to the C preprocessor
as if by a #undefine directive. Multiple /U directives can be used in a command line. White space
between the /U switch and the undefined name is optional.

When the /cpp_cmd switch is present and the /cpp_opt switch is not, the MIDL compiler concatenates
the string specified by the /cpp_cmd switch with the /I, /D, and /U options and uses this concatenated
string to invoke the C preprocessor for each IDL and ACF source file. The MIDL compiler switch /U is
ignored when the MIDL compiler switch /no_cpp or /cpp_opt is specified.

See Also

/cpp_cmd, /cpp_opt, /D, /I, midl, /no_cpp

 /use_epv

midl /use_epv

Example

midl /use_epv foo.idl

Remarks

The /use_epv switch directs the MIDL compiler to generate server stub code that calls the server
application routine through an entry point vector (epv), rather than by a static call.

Typically, applications require static linkage to the server application routine. The MIDL compiler
generates such a call by default. However, if an application requires the server stub to call the server
application routine by using the epv, the /use_epv switch must be specified. When the /use_epv
switch is specified, the MIDL compiler generates a default epv. This default epv is then used if the
application does not register another epv through the RpcServerRegisterIf call.

See Also

IDL, /no_default_epv, RpcServerRegisterIf

 /W

midl /Wlevel

level
Specifies the warning level, an integer in the range 0 through 4. There is no space between the /W
switch and the digit indicating the warning-level value.

Examples

midl /W2 foo.idl
midl /W4 bar.idl

Remarks

The /W switch specifies the warning level of the MIDL compiler; the warning level indicates the severity
of the warning. Warning levels range from 1 to 4, with a value of zero meaning to display no warning
information. The highest-severity warning is level 1. The following table describes the warnings for
each warning level:

Warning
level

Description Example

W0 No warnings
W1 Severe warnings that can

cause application errors
No binding handle specified,
unattributed pointers, conflicting
switches

W2 May cause problems in
the user's operating
environment

Identifier length exceeds 31
characters; no default union arm
specified

W3 Reserved
W4 Lowest warning level Non-ANSI C constructs

Warnings are different from errors. Errors cause the MIDL compiler to halt processing of the IDL file.
Warnings cause the MIDL compiler to emit an informational message and continue processing the IDL
file.

The warning level set by the /W switch can be used with the /WX switch to cause the MIDL compiler to
halt processing of the IDL file.

The /W switch behaves the same as the /warn switch.

See Also

midl, /warn,

 /warn

midl /warnlevel

level
Specifies the warning level, an integer in the range 0 through 4. There is no space between the
/warn switch and the digit indicating the warning-level value.

Examples

midl /warn2 foo.idl
midl /warn4 bar.idl

Remarks

The /warn switch specifies the warning level of the MIDL compiler; the warning level indicates the
severity of the warning. Warning levels range from 1 to 4, with a value of zero meaning to display no
warning information. The highest severity warning is level 1. The following table describes the warnings
for each warning level:

Warning
level

Description Example

0 No warnings
1 Severe warnings that can

cause application errors
No binding handle specified,
unattributed pointers, conflicting
switches

2 May cause problems in
the user's operating
environment

Identifier length exceeds 31
characters; no default union arm
specified

3 Reserved
4 Lowest warning level Non-ANSI C constructs

Warnings are different from errors. Errors cause the MIDL compiler to halt processing of the IDL file.
Warnings cause the MIDL compiler to emit an informational message and continue processing the IDL
file.

The warning level set by the /warn switch can be used with the WX switch to cause the MIDL compiler
to halt processing of the IDL file.

The /warn switch behaves the same as the /W switch.

See Also

midl

 /WX

midl /WX

Examples

midl /WX foo.idl
midl /W3 /WX foo.idl

Remarks

The /WX switch instructs the MIDL compiler to handle all errors at the given warning level as errors. If
the /WX switch is specified and the /Wn switch is not specified, all warnings at the default level, level 1,
are treated as errors.

The /Wn switch directs the compiler to display all warnings at level n and /WX directs the compiler to
handle all warnings as errors. The combination of these two switches directs the compiler to handle all
warnings at level n as errors.

Errors are different from warnings. Errors cause the MIDL compiler to halt processing of the IDL file.
Warnings cause the MIDL compiler to emit an informational message and continue processing the IDL
file.

Warning-level zero (0) directs the MIDL compiler to suppress warning information. When the /W0 and
/WX switches are combined, the MIDL compiler suppresses all warning information. In this case, the
/WX switch has no effect.

See Also

midl, /W

 /Zp

midl /Zppacking_level

packing_level
Specifies the packing level of structures in the target system. The packing-level value can be set to
1, 2, 4, or 8.

Example

midl /Zp4 foo.idl

Remarks

The /Zp switch is the same as the /pack option.

The /Zp switch designates the packing level of structures in the target system. The packing-level value
corresponds to the /Zp option value used by the Microsoft C/C++ compiler. For more information, see
your Microsoft C/C++ programming documentation.

Specify the same packing level when you invoke the MIDL compiler and the C compiler.

The default packing level used when you do not specify the /Zp or /pack switch is 8.

Note Do not use /Zp1 or /Zp2 on MIPS or Alpha platforms, and do not use /Zp4 or /Zp8 on 16-bit
platforms. Depending on the data type and memory location assigned by the C compiler at runtime,
this can result in a data misalignment exception on MIPS and Alpha platforms. On MS-DOS
platforms, the C compiler will not ensure the alignment at 4 or 8, and so the application may terminate.

See Also

midl, /pack

 /Zs

midl /Zs
midl /syntax_check

Examples

midl /Zs foo.idl
midl /syntax_check foo.idl

Remarks

The /Zs switch indicates that the compiler only checks syntax and does not generate output files.

This switch overrides all other switches that specify information about output files.

You can also specify syntax-checking mode with the MIDL compiler switch /syntax_check.

See Also

midl, /syntax_check

 MIDL Reference

This section provides a reference entry for each keyword in the Microsoft Interface Definition Language
(MIDL) and application configuration file (ACF). Reference entries are also provided for important
language productions and concepts. Each reference entry includes syntax, examples, descriptions,
and cross-references.

The reference entries are arranged in alphabetical order. To examine the top-level structure of these
files, start with the topics ACF and IDL.

 ACF

[interface-attribute-list] interface interface-name
{

[include filename-list ; ...]
[typedef [type-attribute-list] typename; ...]

[[[function-attribute-list]] function-name(
[[[parameter-attribute-list]] parameter-name]
...

);
]
...

}

.

.

.

interface-attribute-list
Specifies a list of one or more attributes that apply to the interface as a whole. Valid attributes
include auto_handle, implicit_handle, explicit_handle, and optimize, code or nocode. When two
or more interface attributes are present, they must be separated by commas.

interface-name
Specifies the name of the interface. In DCE-compatibility mode, the interface name must match the
name of the interface specified in the IDL file. When you use the MIDL compiler switch /acf, the
interface name in the ACF and the interface name in the IDL file can be different.

filename-list
Specifies a list of one or more C-language header filenames, separated by commas. The full
filename, including the extension, must be supplied.

type-attribute-list
Specifies a list of one or more attributes, separated by commas, that apply to the specified type.
Valid type attributes include allocate or represent_as.

typename
Specifies a type defined in the IDL file. Type attributes in the ACF can only be applied to types
previously defined in the IDL file.

function-attribute-list
Specifies a list of one or more attributes, separated by commas, that apply to the function-return
type. Valid function attributes include allocate, optimize, call_as, code or nocode.

function-name
Specifies the name of the function in the IDL file.

parameter-attribute-list
Specifies a list of zero or more attributes, separated by commas, that apply to the specified
parameter. Valid parameter attributes include byte_count.

parameter-name
Specifies the name of the parameter in the IDL file. Only the name of the parameter must match the
IDL file specification. The sequence of parameters is not significant.

Examples

/* example 1 */
[auto_handle] interface foo1 { }

/* example 2 */
[implicit_handle(handle_t h), code] interface foo2 {}
/* example 3 */
[code]
interface foo3;
{

include "foo3a.h", "foo3b.h";
typedef [allocate(all_nodes)] TREETYPE1;
typedef [allocate(all_nodes, dont_free)] TREETYPE2;
f1([byte_count(length)] pBuffer);

}

Remarks

The application configuration file, or ACF, is one of two files that define the interface for your distributed
application. The second interface-defining file is the IDL file. The IDL file contains type definitions and
function prototypes that describe how data is transmitted on the network. The ACF configures your
application for a particular operating environment without affecting its network characteristics.

By using the IDL and ACF files, you separate the interface specification from environment-specific
settings. The IDL file is meant to be portable to any other computer. When you move your distributed
application to another computer, you should be able to reuse the IDL file. Environment-specific
changes are made in the ACF.

Many distributed applications require no special configuration. For such applications, use the MIDL
compiler switch /app_config to supply the ACF keywords auto_handle and implicit_handle in the IDL
file and omit the ACF.

The ACF corresponds to the IDL file in the following ways:

· The interface name in the ACF must be the same as the interface name in the IDL file unless you
compile with the MIDL compiler switch /acf.

· All type names and function names in the ACF must refer to types and functions defined in the IDL
file.

· Function parameters need not appear in the same sequence in the ACF as in the IDL file, but
parameter names in the ACF must match names in the IDL file.

Like the IDL file, the ACF consists of a header portion and a body portion, and in /ms_ext mode, it can
contain multiple interfaces.

 The ACF Header

The ACF header contains attributes that apply to the interface as a whole. Attributes applied to
individual types and functions in the ACF body override the attributes in the ACF header. No attributes
are required in the ACF header.

The ACF header can include one of the following attributes: auto_handle, implicit_handle, or
explicit_handle. These handle attributes specify the type of handle used for implicit binding when a
remote function does not have an explicit binding-handle parameter. When the ACF is not present or
does not specify an auto, implicit handle, or explicit attribute, MIDL uses auto_handle for implicit
binding.

Either code or nocode can appear in the interface header, and the one you choose can appear only
once. When neither attribute is present, the compiler uses code as a default.

 The ACF Body

The ACF body contains configuration attributes that apply to types and functions defined in the
interface body of the IDL file. The ACF body can contain ACF include, typedef, function, and
parameter attributes. All of these items are optional. The body of the ACF can be empty. Attributes
applied to individual types and functions in the ACF body override attributes in the ACF header.

The ACF include directive specifies header files to appear in the generated header as part of a
standard C-preprocessor #include statement. The ACF keyword include differs from a #include
directive. The ACF keyword include causes the line "#include filename" to appear in the generated
header file, while the C-language directive "#include filename" causes the contents of that file to be
placed in the ACF.

The ACF typedef statement allows you to apply ACF type attributes to types previously defined in the
IDL file. The ACF typedef syntax differs from the C typedef syntax.

The ACF function attributes allow you to specify attributes that apply to the function as a whole. For
more information, see code, optimize, and nocode.

The ACF parameter attributes allow you to specify attributes that apply to individual parameters of the
function. For more information, see byte_count.

See Also

/app_config, auto_handle, code, explicit_handle, IDL, implicit_handle, include, midl, nocode,
optimize, represent_as, typedef

 allocate

typedef [allocate (allocate-option-list) [, type-attribute-list]] type-name;

allocate-option-list
Specifies one or more memory-allocation options. Select one of either single_node or all_nodes, or
one of either free or dont_free, or one from each group. When you specify more than one option,
separate options with commas.

type-attribute-list
Specifies other optional ACF type attributes. When you specify more than one type attribute,
separate options with commas.

type-name
Specifies a type defined in the IDL file.

Examples

/* ACF file */
typedef [allocate(all_nodes, dont_free)] PTYPE1;
typedef [allocate(all_nodes)] PTYPE2;
typedef [allocate(dont_free)] PTYPE3;

Remarks

The ACF type attribute allocate allows you to customize memory allocation and deallocation for a type
defined in the IDL file. Valid options are as follows:

Option Description
all_nodes Makes one call to allocate and free memory for all nodes
single_no
de

Makes many individual calls to allocate and free each node of
memory

free Frees memory on return from the server stub
dont_free Doesn't free memory on return from the server stub

By default, the stubs may allocate storage for data referenced by a unique or full pointer by calling
midl_user_allocate and midl_user_free individually for each pointer.

You can optimize the speed of your application by specifying the option all_nodes. This option directs
the stub to compute the size of all memory referenced through the pointer of the specified type and to
make a single call to midl_user_allocate. The stub releases the memory by making one call to
midl_user_free.

The dont_free option directs the MIDL compiler to generate a server stub that does not call
midl_user_free for the specified type. The dont_free option allows the pointer structures to remain
accessible to the server application after the remote procedure call has completed and returned to the
client.

Note that when applied to types used for in, out parameters, any parameter that is a pointer to a type
qualified with the all_nodes option will cause a reallocation when the data is unmarshalled. It is the
responsibility of the application to free the previously allocated memory corresponding to this
parameter. For example:

typedef struct foo
{
[string] char * PFOO;
} * PFOO
void proc1 ([in,out] PFOO * ppfoo);

The data type PFOO will be reallocated in the out direction by the stub before "unmarshalling."
Therefore, the previously allocated area must be freed by the application. Otherwise, a memory leak
will occur.

See Also

ACF, midl_user_allocate, midl_user_free, typedef

 arrays

typedef [[type-attr-list]] type-specifier [pointer-decl] array-declarator;

typedef [[type-attr-list]] struct [tag] {
[[field-attribute-list]] type-specifier [pointer-decl] array-declarator;
...

}
typedef [[type-attr-list]] union [tag] {

[case (limited-expression [, ...])]
[[field_attribute-list]] type-specifier [pointer-decl] array-declarator;

[[default]
[[field_attribute-list]] type-specifier [pointer-decl] array-declarator;

]

[[function-attribute-list]] type-specifier [pointer-decl] function-name(
[[param-attr-list]] type-specifier [pointer-decl] array-declarator
, ...

);

type-attr-list
Specifies zero or more attributes that apply to the type. Valid type attributes include handle,
switch_type, transmit_as; the pointer attribute ref, unique, or ptr; and the usage attributes
context_handle, string, and ignore. Separate multiple attributes with commas.

type-specifier
Specifies the type identifier, base type, struct, union, or enum type. The type specification can
include an optional storage specification.

pointer-decl
Specifies zero or more pointer declarators. A pointer declarator is the same as the pointer declarator
used in C, constructed from the * designator, modifiers such as far, and the qualifier const.

array-declarator
Specifies the name of the array, followed by one of the following constructs for each dimension of
the array: "[]", "[*]", "[const1]", or "[lower...upper]" where lower and upper are constant values that
represent the lower and upper bounds. The constant lower must evaluate to zero.

tag
Specifies an optional tag for the structure or union.

field-attribute-list
Specifies zero or more field attributes that apply to the structure, union member, or function
parameter. Valid field attributes include first_is, last_is, length_is, max_is, size_is; the usage
attributes string, and ignore; the pointer attributes ref, unique, and ptr; and the union attribute
switch_type. Separate multiple field attributes with commas. Note that of the attributes listed above,
first_is, last_is, and ignore are not valid for unions.

limited-expression
Specifies a C-language expression supported by MIDL. Almost all C-language expressions are
supported: The MIDL compiler supports conditional expressions, logical expressions, relational
expressions, and arithmetic expressions. MIDL does not allow function invocations in expressions
and does not allow pre- and post-increment and -decrement operators.

function-attribute-list
Specifies zero or more attributes that apply to the function. Valid function attributes are callback,
local; the pointer attribute ref, unique, or ptr; and the usage attributes string, and context_handle.

function-name
Specifies the name of the remote procedure.

param-attr-list
Specifies the directional attributes and one or more optional field attributes that apply to the array
parameter. Valid field attributes include max_is, size_is, length_is, first_is, and last_is.

Examples

/* IDL file interface body */
#define MAX_INDEX 10

typedef char ATYPE[MAX_INDEX];
typedef short BTYPE[]; // Equivalent to [*];
typedef long CTYPE[*][10]; // [][10]
typedef float DTYPE[0..10]; // Equivalent to [11]
typedef float ETYPE[0..(MAX_INDEX)];

typedef struct {
 unsigned short size;
 unsigned short length;
 [size_is(size), length_is(length)] char string[*];
} counted_string;

void MyFunction(
 [in, out] short * pSize,
 [in, out, string, size_is(*pSize)] char a[0..*]
);

Remarks

Array declarators appear in the interface body of the IDL file as part of a general declaration, as a
member of a structure or union declarator, or as a parameter to a remote procedure call.

The bounds of each dimension of the array are expressed inside a separate pair of square brackets.
An expression that evaluates to n signifies a lower bound of zero and an upper bound of n - 1. If the
square brackets are empty or contain a single asterisk (*), the lower bound is zero and the upper
bound is determined at run time.

The array can also contain two values separated by an ellipsis that represent the lower and upper
bounds of the array, as in [lower...upper]. Microsoft RPC requires a lower bound of 0. The MIDL
compiler does not recognize constructs that specify nonzero lower bounds.

Arrays can be associated with the field attributes size_is, max_is, length_is, first_is, and last_is to
specify the size of the array or the part of the array that contains valid data. These field attributes
identify the parameter, structure field, or constant that specifies the array dimension or index.

The array must be associated with the identifier specified by the field attribute as follows: When the
array is a parameter, the identifier must also be a parameter to the same function; when the array is a
structure field, the identifier must be another structure field of that same structure.

An array is called "conformant" if the upper bound of any dimension is determined at run time. Only
upper bounds can be determined at run time. To determine the upper bound, the array declaration
must include a size_is or max_is attribute.

An array is called "varying" when its bounds are determined at compile time, but the range of
transmitted elements is determined at run time. To determine the range of transmitted elements, the
array declaration must include a length_is, first_is, or last_is attribute.

A conformant varying array (also called "open") is an array whose upper bound and range of
transmitted elements are determined at run time.

At most, one conformant or conformant varying array can be nested in a C structure and must be the
last element of the structure. Nonconformant varying arrays can occur anywhere in a structure.

Multidimensional Arrays

The user can declare types that are arrays and then declare arrays of objects of such types. The
semantics of m-dimensional arrays of n-dimensional array types are the same as the semantics of
m+n-dimensional arrays.

For example, the type RECT_TYPE can be defined as a two-dimensional array and the variable rect
can be defined as an array of RECT_TYPE. This is equivalent to the three-dimensional array
equivalent_rect:

typedef short int RECT_TYPE[10][20];
RECT_TYPE rect[15];
short int equivalent_rect[15][10][20]; // ~RECT_TYPE rect[15]

Microsoft RPC is C-oriented. Following C-language conventions, only the first dimension of a
multidimensional array can be run-time - determined. Interoperation with DCE IDL arrays that support
other languages is limited to:

· Multidimensional arrays with constant (compile-time - determined) bounds.
· Multidimensional arrays with all constant bounds except the first dimension. The upper bound and

range of transmitted elements of the first dimension are run-time - dependent.
· Any one-dimensional arrays with a lower bound of zero.

When the string attribute is used on multidimensional arrays, the attribute applies to the rightmost
array.

Arrays of Pointers

Reference pointers must point to valid data. The client application must allocate all memory for an in or
in, out array of reference pointers, especially when the array is associated with in, or in, out
length_is, or last_is values. The client application must also initialize all array elements before the
call. Before returning to the client, the server application must verify that all array elements in the
transmitted range point to valid storage.

On the server side, the stub allocates storage for all array elements, regardless of the length_is or
last_is value at the time of the call. This feature can affect the performance of your application.

No restrictions are placed on arrays of unique pointers. On both the client and the server, storage is
allocated for null pointers. When pointers are non-null, data is placed in preallocated storage.

An optional pointer declarator can precede the array declarator.

When embedded reference pointers are out-only parameters, the server-manager code must assign
valid values to the array of reference pointers. For example,

typedef [ref] short * ARefPointer;
typedef ARefPointer ArrayOfRef[10];
void proc1([out] ArrayOfRef Parameter);

The generated stubs allocate the array and assign NULL values to all pointers embedded in the array.

See Also

first_is, IDL, last_is, length_is, max_is, ptr, ref, size_is, string, unique

 auto_handle

[auto_handle [, interface-attribute-list]] interface interface-name

interface-attribute-list
Specifies zero or more attributes that apply to the interface as a whole, such as code or nocode.
Separate interface attributes with commas.

interface-name
Specifies the name of the interface.

Examples

[auto_handle] interface MyInterface { }
[auto_handle, code] interface MyInterface { }

Remarks

The ACF attribute auto_handle directs the stub to automatically establish the binding for a function
that does not have an explicit binding-handle parameter.

The auto_handle attribute appears in the interface header of the ACF. It also appears in the interface
header of the IDL file when you specify the MIDL compiler switch /app_config.

When the client calls a function that uses automatic binding, and no binding to a server exists, the stub
automatically establishes the binding. The binding is reused for subsequent calls to other functions in
the interface that use automatic binding. The client application program does not have to declare or
perform any processing relating to the binding handle.

When the ACF is not present or does not include the implicit_handle attribute, the MIDL compiler uses
auto_handle and issues an informational message. The MIDL compiler also uses auto_handle if
needed to establish the initial binding for a context_handle.

The auto_handle attribute can occur only if the implicit_handle or explicit_handle attribute does not
occur. The auto_handle attribute can occur in the ACF or IDL interface header at most once.

See Also

ACF, /app_config, context_handle, IDL, implicit_handle

 base_types

Remarks

All data transmitted on the network during a remote procedure call must resolve to a base type or
predefined type.

MIDL supports the following base types: boolean, byte, char, double, float, handle_t, hyper, long,
short, small, and void *. The keywords signed and unsigned can be used to qualify integer and
character types. MIDL also provides the predefined types error_status_t and wchar_t.

Base types can appear as type specifiers in const declarations, typedef declarations, general
declarations, and as parameter type specifiers in function declarators.

The base and predefined types have the following default signs and default sizes:

Base type Default sign Description
boolean unsigned 8-bit data item
byte - (not applicable) 8-bit data item
char unsigned 8-bit unsigned data item
double - 64-bit floating-point number
float - 32-bit floating-point number
handle_t - Primitive handle type
hyper signed 64-bit signed integer
long signed 32-bit signed integer
short signed 16-bit signed integer
small signed 8-bit signed integer
void * - 32-bit context handle pointer type
wchar_t unsigned 16-bit unsigned data item

Any other types in the interface must be derived from these base or predefined types. This requirement
has the following two important effects:

· The type int cannot appear in remote functions without a size qualifier such as short, small, long or
hyper.

· The type void * cannot appear in remote functions except when it is used to define a context handle.

DCE IDL compilers do not recognize the keyword signed. You can only use the keyword unsigned
when you use the MIDL compiler in DCE-compatibility mode.

See Also

byte, char, handle_t, long, /ms_ext, short, small, wchar_t

 boolean

Remarks

The keyword boolean indicates that the expression or constant expression associated with the
identifier takes the value TRUE or FALSE.

The boolean type is one of the base types of the IDL language. The boolean type can appear as a
type specifier in const declarations, typedef declarations, general declarations, and function
declarators (as a function-return-type specifier and as a parameter-type specifier). For the context in
which type specifiers appear, see IDL.

See Also

base_types, IDL

 broadcast

[[[IDL-operation-attributes]]] operation-attribute , ...

IDL-operation-attributes
Specifies zero or more IDL operation attributes, such as broadcast and idempotent. Operation
attributes are enclosed in square brackets.

Remarks

The keyword broadcast specifies that remote procedure calls be sent to all servers on a local network.
Rather than being delivered to one particular server, the routine is always broadcast to all the servers
on the network. The client receives output from the first reply to return successfully. Subsequent replies
are discarded.

The broadcast attribute specifies that the routine can be called multiple times and at the same time be
sent to multiple servers as the result of one RPC. This is different from the idempotent attribute, which
specifies that a call can be retried if it does not complete. However, an operation with the broadcast
attribute is implicitly an idempotent operation. It ensures that the data for an RPC is received and
processed zero or more times.

The broadcast attribute is supported only by connectionless protocols (datagrams). If a remote
procedure broadcasts its call to all hosts on a local network, it must use the datagram protocol
sequence ncadg_ip_udp. Note that the size of a broadcast packet is determined by the datagram
service in use.

See Also

idempotent, IDL, maybe, non-idempotent

 byte

Remarks

The byte keyword specifies an 8-bit data item.

A byte data item does not undergo any conversion for transmission on the network, as can occur for a
char type.

The byte type is one of the base types of the interface definition language (IDL). The byte type can
appear as a type specifier in const declarations, typedef declarations, general declarations, and
function declarators (as a function-return-type specifier and as a parameter-type specifier). For the
context in which type specifiers appear, see IDL.

See Also

base_types, char

 byte_count

[function-attribute-list] function-name(
[byte_count(length-variable-name)] pointer-parameter-name);
...

);

function-attribute-list
Specifies zero or more ACF function attributes.

function-name
Specifies the name of the function defined in the IDL file. The function name is required.

length-variable-name
Specifies the name of the in-only parameter that specifies the size, in bytes, of the memory area
referenced by pointer-parameter-name.

pointer-parameter-name
Specifies the name of the out-only pointer parameter defined in the IDL file.

Examples

/* IDL file */
void proc1([in] unsigned long length, [out] struct foo * pFoo);
/* ACF file */
proc1([byte_count(length)] pFoo);

Remarks

Note The ACF attribute byte_count represents a Microsoft extension to DCE IDL.

The byte_count attribute is a parameter attribute that associates a size, in bytes, of the memory area
indicated by the pointer.

Memory referenced by the pointer parameter is contiguous and is not allocated or freed by the client
stubs. This feature of the byte_count attribute allows you to create a persistent buffer area in client
memory that can be reused during more than one call to the remote procedure.

The ability to turn off the client stub memory allocation allows you to tune the application for efficiency.
For example, the byte_count attribute can be used by service-provider functions that use Microsoft
RPC. When a user application calls the service-provider API and provides a pointer to a buffer, the
service provider can pass the buffer pointer on to the remote function and reuse the buffer during
multiple remote calls without forcing the user to reallocate the memory area.

The memory area can contain complex data structures that consist of multiple pointers. Because the
memory area is contiguous, the application does not have to make many calls to individually free each
pointer and structure. The memory area can be allocated or freed with one call to the memory
allocation or free routine.

The buffer must be an out-only parameter. The buffer length in bytes must be an in-only parameter.

Note Specify a buffer that is large enough to contain all the out parameters. Pointers are
unmarshalled on a 4-byte aligned boundary. Therefore, alignment padding that the stubs will perform
must be accounted for in the space for the buffer. In addition, packing levels used during C-language
compilation can vary. Use a byte count value that accounts for additional packing bytes added for the
packing level used during C-language compilation.

See Also

ACF, in, length_is, out, size_is

 call_as

[call_as (local-proc), [, operation-attribute-list]] operation-name ;

local-proc
Specifies an operation-defined routine.

operation-attribute-list
Specifies one or more attributes that apply to the operation. Separate multiple attributes with
commas.

operation-name
Specifies the named operation presented to the application.

Remarks

The call_as attribute enables a non-remotable function to be mapped to a remote function. This is
particularly helpful in interfaces that have numerous non-remotable types as parameters. Rather than
using many represent_as and transmit_as types, you can combine all the conversions using call_as
routines. You supply the two call_as routines (client side and server side) to bind the routine between
the application calls and the remote calls. The call_as attribute can be used for object interfaces,
where the interface definition can be used for local calls as well as remote calls because it allows a
non-remotable interface to be remoted transparently. The call_as attribute can only be used for
/ms_ext mode.

For example, assume that the routine f1 in object interface IFace requires numerous conversions
between the user calls and what is actually transmitted. The following examples describe the IDL and
ACF files for interface IFace:

In the IDL file for interface IFace:

[local] HRESULT f1 (<users parameter list>)
[call_as(f1)] long Remf1 (<remotable parameter list>);

In the ACF for interface IFace:

[call_as(f1)] Remf1();

This would cause the generated header file to define the interface using the definition of f1, yet it would
also provide stubs for Remf1:

Generated Vtable in the header file for interface IFace:

struct IFace_vtable {
...
HRESULT (* f1) (<users parameter list>);
...
};

The client-side proxy would then have a typical MIDL-generated proxy for Remf1, while the server side
stub for Remf1 would be the same as the typical MIDL-generated stub:

void IFace_Remf1_Stub (. . .)
{
...
invoke IFace_f1_Stub (<remotable parameter list>) /* instead

 of IFace_f1 */
...
}

Then, the two call_as bond routines (client side and server side) must be manually coded:

HRESULT f1_Proxy (<users parameter list>)
{
...
Remf1_Proxy (<remotable parameter list>);
...
}

long IFace_f1_Stub (<remotable parameter list>)
{
...
IFace_f1 (<users parameter list>);
...
}

For object interfaces, the prototypes for the bond routines are:

For client side:

<local_return_type> <interface>_<local_routine>_proxy
(<local_parameter_list>);

For server side:

<remote_return_type> <interface>_<local_routine>_stub
(<remote_parameter_list>);

For non-object interfaces, the prototypes for the bond routines are:

For client side:

<local_return_type> <local_routine> (<local_parameter_list>);

For server side:

<local_return_type> <interface>_v<maj>_<min>_<local_routine>
(<remote_parameter_list>);

See Also

represent_as, transmit_as

 callback

[callback [, function-attr-list]] type-specifier [ptr-declarator] function-name(
[[parameter-attribute-list]] type-specifier [declarator]
, ...

);

function-attr-list
Specifies zero or more attributes that apply to the function. Valid function attributes are local; the
pointer attribute ref, unique, or ptr; and the usage attributes string, ignore, and context_handle.
Separate multiple attributes with commas.

type-specifier
Specifies a base_type, struct, union, enum type, or type identifier. An optional storage
specification can precede type-specifier.

ptr-declarator
Specifies zero or more pointer declarators. A pointer declarator is the same as the pointer declarator
used in C; it is constructed from the * designator, modifiers such as far, and the qualifier const.

function-name
Specifies the name of the remote procedure.

parameter-attribute-list
Specifies zero or more directional attributes, field attributes, usage attributes, and pointer attributes
appropriate for the specified parameter type. Separate multiple attributes with commas.

declarator
Specifies a standard C declarator such as identifiers, pointer declarators, and array declarators. For
more information, see pointers and arrays. The parameter-name identifier is optional.

Example

[callback] void DisplayString([in, string] char * p1);

Remarks

The callback attribute declares a static callback function that exists on the client side of the distributed
application. Callback functions provide a way for the server to execute code on the client.

The callback function is useful when the server must obtain information from the client. If server
applications were supported on Windows 3.x, the server could make a call to a remote procedure on
the Windows 3.x server to obtain the needed information. The callback function accomplishes the
same purpose. The callback allows the server to query the client for information in the context of the
original call.

Callbacks are special cases of remote calls that execute as part of a single thread. A callback is issued
in the context of a remote call. Any remote procedure defined as part of the same interface as the static
callback function can call the callback function.

Handles cannot be used as parameters in callback functions. Because callbacks always execute in the
context of a call, the binding handle used by the client to make the call to the server is also used as the
binding handle from the server to the client.

Callbacks can nest to any depth.

See Also

IDL, /ms_ext

 char

Remarks

The keyword char identifies a data item that has 8 bits. To the MIDL compiler, a char is unsigned by
default and is synonymous with unsigned char.

In this version of Microsoft RPC, the character translation tables that convert between ASCII and
EBCDIC are built into the run-time libraries and cannot be changed by the user.

The char type is one of the base types of the interface definition language (IDL). The char type can
appear as a type specifier in const declarations, typedef declarations, general declarations, and
function declarators (as a function-return-type specifier and a parameter-type specifier). For the context
in which type specifiers appear, see IDL.

DCE IDL compilers do not accept the keyword signed applied to char types. To allow this construct,
use the MIDL compiler /ms_ext switch.

See Also

base_types, byte, /char, /ms_ext, signed, string, wchar_t

 code

[code [, ACF-interface-attributes]] interface interface-name
{

[include filename-list ;] ...
[typedef [type-attribute-list] typename;] ...

[[code [, ACF-function-attributes]] function-name (
[ACF-parameter-attributes] parameter-name ;
...
);

]
...

}

ACF-interface-attributes
Specifies a list of one or more attributes that apply to the interface as a whole. Valid attributes
include either auto_handle or implicit_handle and either code, nocode, or optimize. When two or
more interface attributes are present, they must be separated by commas.

interface-name
Specifies the name of the interface. In DCE-compatibility mode, the interface name must match the
name of the interface specified in the IDL file. When you use the MIDL compiler switch /acf, the
interface name in the ACF and the interface name in the IDL file can be different.

filename-list
Specifies a list of one or more C-header filenames, separated by commas. You must supply the full
filename, including the extension.

type-attribute-list
Specifies a list of one or more attributes, separated by commas, that apply to the specified type.
Valid type attributes include allocate and represent_as.

typename
Specifies a type defined in the IDL file. Type attributes in the ACF can only be applied to types
previously defined in the IDL file.

ACF-function-attributes
Specifies zero or more other attributes that apply to the function as a whole, such as comm_status.
Function attributes are enclosed in square brackets. Separate multiple function attributes with
commas.

function-name
Specifies the name of the function as defined in the IDL file.

ACF-parameter-attributes
Specifies ACF attributes that apply to a parameter. Note that 0, 1, or more attributes can be applied
to the parameter. Separate multiple parameter attributes with commas. ACF parameter attributes are
enclosed in square brackets.

parameter-name
Specifies a parameter of the function as defined in the IDL file. Each parameter for the function must
be specified in the same sequence and using the same name as defined in the IDL file.

Remarks

The code attribute can appear in the ACF header, or it can be applied to an individual function.

When the code attribute appears in the ACF header, client stub code is generated for all remote
functions that do not have the nocode function attribute. You can override the code attribute in the
header for an individual function by specifying the nocode attribute as a function attribute.

When the code attribute appears in the remote function's attribute list, client stub code is generated for
the function.

Client stub code is not generated when:

· The ACF header includes the nocode attribute.
· The nocode attribute is applied to the function.
· The local attribute applies to the function in the interface file.

Either code or nocode can appear in the interface or function attribute list, and the one you choose
can appear exactly once in the list.

See Also

ACF, nocode

 comm_status

[comm_status [, ACF-function-attributes]] function-name(
[[ACF-parameter-attributes]] parameter-name
, ...

);

[[ACF-function-attributes]] function-name(
[comm_status [, ACF-parameter-attributes]] parameter-name
...);

ACF-function-attributes
Specifies zero or more ACF function attributes, such as comm_status and nocode. Function
attributes are enclosed in square brackets. Note that 0, 1, or more attributes can be applied to a
function. Separate multiple function attributes with commas. Note that if comm_status appears as a
function attribute, it cannot also appear as a parameter attribute.

function-name
Specifies the name of the function as defined in the IDL file.

ACF-parameter-attributes
Specifies attributes that apply to a parameter. Note that 0, 1, or more attributes can be applied to the
parameter. Separate multiple parameter attributes with commas. Parameter attributes are enclosed
in square brackets. IDL parameter attributes, such as directional attributes, are not allowed in the
ACF. Note that if comm_status appears as a parameter attribute, it cannot also appear as a
function attribute.

parameter-name
Specifies the parameter for the function as defined in the IDL file. Each parameter for the function
must be specified in the same sequence, using the same name as defined in the IDL file.

Remarks

The comm_status attribute can be used as either a function attribute or as a parameter attribute, but it
can appear only once per function. It can be applied either to the function or to one parameter in each
function.

The comm_status attribute can only be applied to functions that return the type error_status_t. When
a communication error occurs during the execution of the function, an error code is returned.

When comm_status is used as a parameter attribute, the parameter must be defined in the IDL file
and must be an out parameter of type error_status_t. When a communication error occurs during the
execution of the function, the parameter is set to the error code. When the remote call completes
successfully, the procedure sets the value.

It is possible for both the comm_status and fault_status attributes to appear in a single function,
either as function attributes or parameter attributes. If both attributes are function attributes or if they
apply to the same parameter, and no error occurs, the function or parameter has the value
error_status_ok. Otherwise, it contains the appropriate comm_status or fault_status value. Because
values returned for comm_status are different from the values returned for fault_status, the returned
values are readily interpreted.

See Also

ACF, error_status_t, fault_status,

 const

const const-type identifier = const-expression ;

/* IDL file typedef syntax */
[typedef [, type-attribute-list]] const const-type declarator-list;
[typedef [, type-attribute-list]] pointer-type const declarator-list;

[[function-attr-list]] type-specifier [ptr-decl] function-name(
[[parameter-attribute-list]] const const-type [declarator],
[[parameter-attribute-list]] pointer-type const [declarator]
, ...

);

const-type
Specifies a valid MIDL integer, character, string, or boolean type. Valid MIDL types include small,
short, long, char, char *, wchar_t, wchar_t *, byte, byte *, and void *. The integer and character
types can be signed or unsigned.

identifier
Specifies a valid MIDL identifier. Valid MIDL identifiers consist of up to 31 alphanumeric and/or
underscore characters and must start with an alphabetic or underscore character.

const-expression
Specifies an expression, identifier, or numeric or character constant appropriate for the specified
type: constant integer literals or constant integer expressions for integer constants; boolean
expressions that can be computed at compilation for boolean types; single-character constants for
character types; and string constants for string types. The void * type can be initialized only to
NULL.

type-attribute-list
Specifies one or more attributes that apply to the type.

pointer-type
Specifies a valid MIDL pointer type.

declarator and declarator-list
Specifies standard C declarators, such as identifiers, pointer declarators, and array declarators. For
more information, see pointers and arrays. The declarator-list consists of one or more declarators,
separated by commas. The parameter-name identifier in the function declarator is optional.

function-attr-list
Specifies zero or more attributes that apply to the function. Valid function attributes are callback,
local; the pointer attribute ref, unique, or ptr; and the usage attributes string, ignore, and
context_handle.

type-specifier
Specifies a base_type, struct, union, enum type, or type identifier. An optional storage
specification can precede type-specifier.

ptr-decl
Specifies zero or more pointer declarators. A pointer declarator is the same as the pointer declarator
used in C. It is constructed from the * designator, modifiers such as far, and the qualifier const.

function-name
Specifies the name of the remote procedure.

parameter-attribute-list
Specifies zero or more directional attributes, field attributes, usage attributes, and pointer attributes
appropriate for the specified parameter type. Separate multiple attributes with commas.

Examples

const void * p1 = NULL;

const char my_char1 = 'a';
const char my_char2 = my_char1;
const wchar_t my_wchar3 = L'a';
const wchar_t * pszNote = L"Note";
const unsigned short int x = 123;

typedef [string] const char *LPCSTR;

HRESULT GetName([out] wchar_t * const pszName);

Remarks

MIDL allows you to declare constant integer, character, string, and boolean types in the interface body
of the IDL file. You can use the const keyword to modify the type of a type declaration or the type of a
function parameter. Const type declarations are reproduced in the generated header file as #define
directives.

DCE IDL compilers do not support constant expressions. To enable constant expressions, use the
MIDL compiler switch /ms_ext.

A previously defined constant can be used as the assigned value of a subsequent constant.

The value of a constant integral expression is automatically converted to the respective integer type in
accordance with C conversion rules.

The value of a character constant must be a single-quoted ASCII character. When the character
constant is the single-quote character itself ('), the backslash character (\) must precede the single-
quote character, as in \'.

The value of a character-string constant (char *) must be a double-quoted string. Within a string, the
backslash (\) character must precede a literal double-quote character ("), as in \". Within a string, the
backslash character (\) represents an escape character. String constants can consist of up to 255
characters.

The value NULL is the only valid value for constants of type void *.

Any attributes associated with the const declaration are ignored.

The MIDL compiler does not check for range errors in const initialization. For example, when you
specify "const short x = 0xFFFFFFFF;" the MIDL compiler does not report an error and the initializer is
reproduced in the generated header file.

See Also

base_types, IDL, /ms_ext

 context_handle

typedef [context_handle [, type-attribute-list]] type-specifier declarator-list;

[context_handle [, function-attr-list]] type-specifier [ptr-decl] function-name(
[[parameter-attribute-list]] type-specifier [declarator]
, ...

);

[[function-attr-list]] type-specifier [ptr-decl] function-name(
[context_handle [, parameter-attribute-list]] type-specifier [declarator]
, ...

);

[void __RPC_USER context-handle-type_rundown (context-handle-type);]

type-attribute-list
Specifies one or more attributes that apply to the type.

type-specifier
Specifies a pointer type or a type identifier. An optional storage specification can precede type-
specifier.

declarator and declarator-list
Specifies standard C declarators, such as identifiers, pointer declarators, and array declarators. The
declarator for a context handle must include at least one pointer declarator. For more information,
see pointers and arrays. The declarator-list consists of one or more declarators, separated by
commas. The parameter-name identifier in the function declarator is optional.

function-attr-list
Specifies zero or more attributes that apply to the function. Valid function attributes are callback,
local; the pointer attribute ref, unique, or ptr; and the usage attributes string, ignore, and
context_handle.

ptr-decl
Specifies zero or more pointer declarators. A pointer declarator is the same as the pointer declarator
used in C; it is constructed from the * designator, modifiers such as far, and the qualifier const.

function-name
Specifies the name of the remote procedure.

parameter-attribute-list
Specifies zero or more directional attributes, field attributes, usage attributes, and pointer attributes
appropriate for the specified parameter type. Separate multiple attributes with commas.

context-handle-type
Specifies the identifier that specifies the context handle type as defined in a typedef declaration that
takes the context_handle attribute. The rundown routine is optional.

Example

typedef [context_handle] void * PCONTEXT_HANDLE_TYPE;
short RemoteFunc1([out] PCONTEXT_HANDLE_TYPE * pCxHandle);
short RemoteFunc2([in, out] PCONTEXT_HANDLE_TYPE * pCxHandle);
void __RPC_USER PCONTEXT_HANDLE_TYPE_rundown (PCONTEXT_HANDLE_TYPE);

Remarks

The context_handle attribute identifies a binding handle that maintains context, or state information,
on the server between remote procedure calls. The attribute can appear as an IDL typedef type
attribute, as a function return type attribute, or as a parameter attribute.

DCE IDL compilers restrict context handles to pointers of type void *. When you use the MIDL compiler
switch /ms_ext to specify the Microsoft-extensions mode, a context handle can be any pointer type
selected by the user, as long as it complies with the requirements for context handles described
following. The data associated with such a context handle type is not transmitted on the network, and
so should only be manipulated by the server application.

Like other handle types, the context handle is opaque to the client application. Any data associated
with the context handle type is not transmitted. On the server, the context handle serves as a handle on
active context and all data associated with the context handle type is accessible.

To create a context handle, the client passes to the server an out, ref pointer to a context handle. (The
context handle itself can have a null or non-null value, as long as its value is consistent with its pointer
attributes. For example, when the context handle type has the ref attribute applied to it, it cannot have
a null value.) Another binding handle must be supplied to accomplish the binding until the context
handle is created. When no explicit handle is specified, implicit binding is used. When no
implicit_handle attribute is present, an auto handle is used.

The remote procedure on the server creates an active context handle. The client must use that context
handle as an in or in, out parameter in subsequent calls. An in-only context handle can be used as a
binding handle, so it must have a non-null value. An in-only context handle does not reflect state
changes on the server.

On the server, the called procedure can interpret the context handle as needed. For example, the
called procedure can allocate heap storage and use the context handle as a pointer to this storage.

To close a context handle, the client passes the context handle as an in, out argument. The server
must return a null context handle when it is no longer maintaining context on behalf of the caller. For
example, if the context handle represents an open file and the call closes the file, the server must set
the context handle to NULL and return it to the client. A null value is invalid as a binding handle on
subsequent calls.

A context handle is only valid for one server. When a function has two handle parameters and the
context handle is not null, the binding handles must refer to the same address space.

When a function has an in or an in, out context handle, its context handle can be used as the binding
handle. In this case, implicit binding is not used and the implicit_handle or auto_handle attribute is
ignored.

The following restrictions apply to context handles:

· Context handles cannot be array elements, structure members, or union members. They can only be
parameters.

· Context handles cannot have the transmit_as or represent_as attribute.
· Parameters that are pointers to out context handles must be ref pointers.
· An in context handle can be used as the binding handle and cannot be null.
· An in, out context handle can be null on input, but only if the procedure has another explicit handle

parameter.
· A context handle cannot be used with callbacks.

 Server Context Rundown Routine

If communication breaks down while the server is maintaining context on behalf of the client, a cleanup
routine may be needed to reset the context information. This cleanup routine is called a "context
rundown routine."

The context rundown routine is optional. When it is supplied, it is called when the client terminates
without requesting that the server free the context. This can occur when the client does not close the
context handle, or when the client terminates abnormally.

When no context rundown routine is needed, the context_handle attribute can be applied to
parameters.

When a context rundown routine is needed, the context_handle attribute must be used in a type
definition. The type name determines the name of the context rundown routine. Given a context handle
of type type-id, the server application must supply the context rundown routine named type-
id_rundown. The signature of the routine is as follows:

void __RPC_USER type-id_rundown (type-id);

When the server terminates the context and fails to return a null context handle, the context rundown
routine is not called and memory allocated by the run-time library for the maintenance of the context is
not released.

 Client Context Reset

When the server becomes unavailable and the client application wants to reset its context data, the
client calls the RPC function RpcSsDestroyClientContext.

See Also

auto_handle, handle, handles

 cpp_quote

cpp_quote("string")

string
Specifies a quoted string that is emitted in the generated header file. The string must be quoted to
prevent expansion by the C preprocessor.

Examples

cpp_quote("#include \"foo.h\" ")
cpp_quote("#define UNICODE")

Remarks

The cpp_quote keyword instructs MIDL to emit the specified string, without the quote characters, into
the generated header file.

C-language preprocessing directives that appear in the IDL file are eaten (that is, processed) by the C
compiler's preprocessor. The #define directives in the IDL file are available during MIDL compilation
but are not available to the C compiler.

For example, when the preprocessor encounters the directive "#define WINDOWS 4", the
preprocessor replaces all occurrences of "WINDOWS" in the IDL file with "4". The symbol "WINDOWS"
is not available during C-language compilation.

To allow the C-preprocessor macro definitions to pass through the MIDL compiler to the C compiler,
use the #pragma midl_echo or cpp_quote directive. These directives instruct the MIDL compiler to
generate a header file that contains the parameter string with the quotation marks removed. The
#pragma midl_echo and cpp_quote directives are equivalent.

The MIDL compiler places the strings specified in the cpp_quote and pragma directives in the header
file in the sequence in which they are specified in the IDL file and relative to other interface components
in the IDL file. The strings should usually appear in the IDL file interface body section after all import
operations.

See Also

IDL, pragma

 decode

[decode [, interface-attribute-list]] interface interface-name
[decode [, op-attribute-list]] proc-name
typedef [decode [, type-attribute-list]] type-name

interface-attribute-list
Specifies other attributes that apply to the interface as a whole.

interface-name
Specifies the name of the interface.

op-attribute-list
Specifies other operational attributes that apply to the procedure, such as encode.

proc-name
Specifies the name of the procedure.

type-attribute-list
Specifies other attributes, such as encode and allocate.

typename
Specifies a type defined in the IDL file.

Remarks

The decode attribute specifies that a procedure or a type needs de-serialization support. This attribute
causes the MIDL compiler to generate code that an application can use to retrieve serialized data from
a buffer. The encode attribute provides serialization support, generating the code to serialize data into
a buffer.

Use the encode and decode attributes in an ACF to generate serialization code for procedures or
types defined in the IDL file of an interface. When used as an interface attribute, decode applies to all
types and procedures defined in the IDL file. When used as a type attribute, decode applies only to the
specified type. When used as an operational attribute, decode applies only to that procedure.

For more information about using this serialization support, see Using Encoding Services and encode.

 double

Remarks

The double keyword designates a 64-bit floating-point number.

The double type is one of the base types of the interface definition language (IDL). The double type
can appear as a type specifier in typedef declarations, general declarations, and function declarators
(as a function-return-type specifier and a parameter-type specifier). For the context in which type
specifiers appear, see IDL.

The double type cannot appear in const declarations.

See Also

base_types, float

 enable_allocate

Remarks

The keyword enable_allocate specifies that the server stub code should enable the stub memory
management environment. In default mode, the stub enables this environment automatically when the
remote operation includes full pointers, or pointers that provide for the stub or the user to allocate
memory, or on request when the enable_allocate attribute is used. When using ms_ext mode, the
server stub enables the memory environment only when the enable_allocate attribute is used. The
memory management environment must be enabled before memory can be allocated using
RpcSmAllocate.

The client side stub may be sensitive to the Rpcss memory management environment. If a sensitive
client stub is executed when the Rpcss package is disabled, the default user allocator/deallocators are
called (for example, midl_user_allocate/midl_user_free). When enabled, the Rpcss package uses
the allocator/deallocator pair from the package. In the default mode, the client is always sensitive to the
Rpcss memory management environment and therefore, the enable_allocate attribute will not affect
the client stubs. In the /ms_ext mode, the client is sensitive only when the enable_allocate attribute is
used. Typically, the client side stub operates in the disabled environment.

See Also

ACF, RpcSmDisableAllocate, RpcSmEnableAllocate, RpcSmFree

 encapsulated_union

typedef [[type-attribute-list]]
union [struct-name] switch (switch-type switch-name) [union-name] {

[case (limited-expression-list)]
[[field-attribute-list]] type-specifier declarator-list ;

...
}

type-attribute-list
Specifies zero or more other attributes that apply to the union type. Valid type attributes include
handle, transmit_as; the pointer attribute ref, unique, or ptr; and the usage attributes
context_handle and ignore. Separate multiple attributes with commas.

struct-name
Specifies an optional tag that names the structure generated by the MIDL compiler.

switch-type
Specifies an int, char, enum type, or an identifier that resolves to one of these types.

switch-name
Specifies the name of the variable of type switch-type that acts as the union discriminant.

union-name
Specifies an optional identifier that names the union in the structure, generated by the MIDL
compiler, that contains the union and the discriminant.

limited-expression-list
Specifies one or more C-language expressions that are supported by MIDL. Almost all C-language
expressions are supported: The MIDL compiler supports conditional expressions, logical
expressions, relational expressions, and arithmetic expressions. MIDL does not allow function
invocations in expressions and does not allow pre- and post-increment and -decrement operators.

field-attribute-list
Specifies zero or more field attributes that apply to the union member. Valid field attributes include
first_is, last_is, length_is, max_is, size_is; the usage attributes string, ignore, and
context_handle; the pointer attribute unique or ptr; and, for members that are themselves
nonencapsulated unions, the union attribute switch_type. Separate multiple field attributes with
commas.

type-specifier
Specifies a base_type, struct, union, enum type, or type identifier. An optional storage
specification can precede type-specifier.

declarator-list
One or more standard C declarators, such as identifiers, pointer declarators, and array declarators.
(Function declarators and bit-field declarations are not allowed in unions that are transmitted in
remote procedure calls. When you use the MIDL compiler switch /ms_ext, these declarators are
allowed in unions that are not transmitted.) Separate multiple declarators with commas.

Examples

typedef union _S1_TYPE switch (long l1) U1_TYPE {
 case 1024:
 float f1;
 case 2048:
 double d2;
} S1_TYPE;

/* in generated header file */
typedef struct _S1_TYPE {

 long l1;
 union {
 float f1;
 double d2;
 } U1_TYPE;
} S1_TYPE;

Remarks

The encapsulated union is indicated by the presence of the switch keyword. This type of union is so
named because the MIDL compiler automatically encapsulates the union and its discriminant in a
structure for transmission during a remote procedure call.

If the union tag is missing (U1_TYPE in the example above), the compiler will generate the structure
with the union field named tagged_union.

The shape of unions must be the same across platforms to ensure interconnectivity.

See Also

IDL, ms_union, non-encapsulated_union, switch_is, switch_type, union

 encode

[encode [, interface-attribute-list]] interface interface-name
[encode [, op-attribute-list]] proc-name
typedef [encode [, type-attribute-list]] type-name

interface-attribute-list
Specifies other attributes that apply to the interface as a whole.

interface-name
Specifies the name of the interface.

op-attribute-list
Specifies other operational attributes that apply to the procedure, such as decode.

proc-name
Specifies the name of the procedure.

type-attribute-list
Specifies other attributes that apply to the type, such as decode and allocate.

typename
Specifies a type defined in the IDL file.

Examples

/*
 ACF file example;
 Assumes MyType1, MyType2, MyType3, MyProc1, MyProc2, MyProc3 defined

in IDL file
 MyType1, MyType2, MyProc1, MyProc2 have encode and decode

serialization support
 MyType3 and MyProc3 have encode serialization support only
*/
[encode, implicit_handle(handle_t bh)] interface regress
{

typedef [decode] MyType1;
typedef [encode, decode] MyType2;
[decode] MyProcc1();
[encode] MyProc2();

}

Remarks

The encode attribute specifies that a procedure or a data type needs serialization support. This
attribute causes the MIDL compiler to generate code that an application can use to serialize data into a
buffer. The decode attribute provides deserialization support, generating the code for retrieving data
from a buffer.

Use the encode and decode attributes in an ACF to generate serialization code for procedures or
types defined in the IDL file of an interface. When used as an interface attribute, encode applies to all
the types and procedures defined in the IDL file. When used as an operational attribute, encode
applies only to the specified procedure. When used as a type attribute, encode applies only to the
specified type.

When the encode or decode attribute is applied to a procedure, the MIDL compiler generates a
serialization stub in a similar fashion as remote stubs are generated for remote routines. A procedure
can be either a remotable or a serializing procedure, but it cannot be both. The prototype of the
generated routine is sent to the STUB.H file, while the stub itself goes into the STUB_C.C file.

The MIDL compiler generates two functions for each type the encode attribute applies to, and one

additional function for each type the decode attribute applies to. For example, for a user-defined type
named MyType, the compiler generates code for the MyType_Encode, MyType_Decode, and
MyType_AlignSize functions. For these functions, the compiler writes prototypes to STUB.H and
source code to STUB_C.C.

For additional information about serialization handles and encoding or decoding data, see Using
Encoding Services.

See Also

decode

 endpoint

endpoint("protocol-sequence:[endpoint-port]" [, ...])

protocol-sequence
Specifies a valid transport family name. The following names are recognized by the run-time libraries
provided with Microsoft RPC:

Family string Description
ncacn_ip_tcp TCP/IP
ncacn_nb_nb NetBIOS over Microsoft NetBEUI
ncacn_nb_tcp NetBIOS over TCP
ncacn_np Named pipes
ncacn_spx Connection-oriented SPX
ncadg_ip_upd Datagram-oriented TCP/IP
ncadg_ipx Datagram-oriented IPX
ncalrpc Local RPC communication

Note Windows 95 does not support ncalrpc. The ncacn_np protocol is supported only on the client
side.

endpoint-port
Specifies a string that represents the endpoint designation for the specified protocol family. The
syntax of the port string is specific to each protocol sequence.

Examples

endpoint("ncacn_np:[\\pipe\\rainier]")

endpoint("ncacn_ip_tcp:[1044]", "ncacn_np:[\\pipe\\shasta]")

Remarks

The endpoint attribute specifies a well-known port or ports (communication endpoints) on which
servers of the interface listen for calls.

The endpoint specifies a transport family such as the TCP/IP connection-oriented protocol, a NetBIOS
connection-oriented protocol, or the named-pipe connection-oriented protocol.

The protocol-sequence value determines the valid values for the endpoint-port. The MIDL compiler
checks only general syntax for the endpoint-port entry. Port specification errors are reported by the run-
time libraries. For information about the allowed values for each protocol sequence, see the topic for
that protocol sequence.

The following protocol sequences specified by DCE are not supported by the MIDL compiler provided
with Microsoft RPC: ncacn_osi_dna and ncadg_dds.

The user must correctly quote backslash characters in endpoints. This commonly occurs when the
endpoint is a named pipe.

Endpoint information specified in the IDL file is used by the RPC run-time functions
RpcServerUseProtseqIf and RpcServerUseAllProtseqsIf.

See Also

IDL, ncacn_dnet_nsp, ncacn_nb_nb, ncacn_np, ncacn_spx, ncalrpc

 enum

enum [tag] { identifier [=integer-value] [, ...] }

tag
Specifies an optional tag for the enumerated type.

identifier
Specifies the particular enumeration.

integer-value
Specifies a constant integer value.

Examples

typedef enum {Monday=2, Tuesday, Wednesday, Thursday, Friday} workdays;

typedef enum {Clemens=21, Palmer=22, Ryan=34} pitchers;

Remarks

The keyword enum is used to identify an enumerated type. Enum types can appear as type specifiers
in typedef declarations, general declarations, and function declarators (either as the function-return-
type or as a parameter-type specifier). For the context in which type specifiers appear, see IDL.

With Microsoft RPC, you can assign integer values to enumerators. To enable this mode, compile with
the switch /ms_ext.

When assignment operators are not provided, identifiers are mapped to consecutive integers from left
to right, starting with 0. When assignment operators are provided, assigned values start from the most
recently assigned value.

Like C-language enumerators, enumerator names must be unique but the enumerator values need not
be.

The maximum number of identifiers is 65,535. Objects of type enum are int types, and their size is
system-dependent. However, for transmission over the network, objects of enum types are treated as
2-byte objects of type unsigned short and must be positive values less than or equal to 32,767.
Values outside this range cause the run-time exception RPC_X_ENUM_VALUE_OUT_OF_RANGE.

See Also

IDL, typedef, v1_enum

 error_status_t

Remarks

The error_status_t keyword designates a type for an object that contains communication-status or
fault-status information.

The error_status_t type is used as a part of the exception handling architecture in IDL. This type maps
to an unsigned long. Applications that catch error situations have an out parameter or a return type of a
procedure specified as error_status_t, and qualify the error_status_t with the comm_status or
fault_status attributes in the ACF. If the parameter or return type was not qualified with the
comm_status or fault_status attributes, then the parameter operates as though it were an unsigned
long.

The MIDL 2.0 compiler generates stubs that contain the proper error handling architecture. However,
earlier versions of the MIDL compiler handled a parameter or return type of error_status_t as though
the comm_status and fault_status attributes were applied, even if they were not. With the MIDL 2.0
compiler, you must explicitly apply the comm_status and fault_status attributes to the parameter or
procedure in the ACF.

The error_status_t type is one of the predefined types of the interface definition language. Predefined
types can appear as type specifiers in typedef declarations, in general declarations, and in function
declarators (either as the function-return-type or as parameter-type specifiers).

See Also

comm_status, fault_status, IDL

 explicit_handle

[explicit_handle] {...}

Example

/* ACF File */
[explicit_handle]
{
};

Remarks

The explicit_handle attribute specifies that each procedure has, as its first parameter, a primitive
handle, such as a handle_t type. This is the case even if the IDL file does not contain the handle in its
parameter list. The prototypes emitted to the header file and stub routines contain the additional
parameter, and that parameter is used as the handle for directing the remote call. The explicit_handle
attribute affects both remote procedures and serialization procedures. For type serialization, the
support routines are generated with the initial parameter as an explicit (serialization) handle. If the
explicit_handle attribute is not used, the application can still specify that an operation have an explicit
handle (binding or serialization) directing the call. To do so, a prototype with the first argument
containing a handle type is supplied to the IDL file. Note that in /ms_ext mode, an argument that does
not appear first can also be used as a handle directing the call. So, while the explicit_handle attribute
is a way of giving the IDL prototype a primitive explicit_handle attribute, it doesn't necessarily require
a change to the IDL file.

The explicit_handle attribute can be used as either an interface attribute or an operation attribute. As
an interface attribute, it affects all the operations in the interface and all the types that require
serialization support. If, however, it is used as an operation attribute, it affects only that particular
operation.

See Also

ACF, auto_handle, implicit_handle

 fault_status

[fault_status [, ACF-function-attributes]] function-name(
[[ACF-parameter-attributes]] parameter-name
, ...

);

[[ACF-function-attributes]] function-name(
[fault_status [, ACF-parameter-attributes]] parameter-name
...);

ACF-function-attributes
Specifies zero or more ACF function attributes, such as fault_status and nocode. Function
attributes are enclosed in square brackets. Note that zero or more attributes can be applied to a
function. Separate multiple function attributes with commas. Note that if fault_status appears as a
function attribute, it cannot also appear as a parameter attribute.

function-name
Specifies the name of the function as defined in the IDL file.

ACF-parameter-attributes
Specifies attributes that apply to a parameter. Note that zero or more attributes can be applied to the
parameter. Separate multiple parameter attributes with commas. Parameter attributes are enclosed
in square brackets. IDL parameter attributes, such as directional attributes, are not allowed in the
ACF. Note that if fault_status appears as a parameter attribute, it cannot also appear as a function
attribute.

parameter-name
Specifies the parameter for the function as defined in the IDL file. Each parameter for the function
must be specified in the same sequence, using the same name as defined in the IDL file.

Remarks

The fault_status attribute can be used as either a function attribute or as a parameter attribute, but it
can appear only once per function. It can be applied either to the function or to one parameter in each
function.

The fault_status attribute can only be applied to functions that return the type error_status_t. When
the remote procedure fails in a way that causes a fault PDU to be returned, an error code is returned.

When fault_status is used as a parameter attribute, the parameter must be an out parameter of type
error_status_t. If a server error occurs, the parameter is set to the error code. When the remote call
completes successfully, the procedure sets the value.

The parameter associated with the fault_status attribute does not have to be specified in the IDL file.
When the parameter is not specified, a new out parameter of type error_status_t is generated
following the last parameter defined in the DCE IDL file.

It is possible for both the fault_status and comm_status attributes to appear in a single function,
either as function attributes or parameter attributes. If both attributes are function attributes or if they
apply to the same parameter, and no error occurs, the function or parameter has the value
error_status_ok. Otherwise, it contains the appropriate status code value. Because values returned
for fault_status are different from the values returned for comm_status, the returned values are
readily interpreted.

See Also

ACF, comm_status, error_status_t

 field_attributes

[[field-attribute-list]] type-specifier declarator-list;

field-attribute-list
Specifies zero or more field attributes that apply to the structure or union member, array, or function
parameter. Valid field attributes include first_is, last_is, length_is, max_is, size_is; the usage
attributes string, ignore, and context_handle; the pointer attribute ref, unique, or ptr; and the
union attribute switch_type. Separate multiple field attributes with commas.

type-specifier
Specifies a base_type, struct, union, or enum type or type identifier. An optional storage
specification can precede type-specifier.

declarator-list
Specifies one or more standard C declarators, such as identifiers, pointer declarators, and array
declarators. Separate multiple declarators with commas.

Remarks

Field attributes are used in structure, union, array, and function-parameter declarators to define
transmission characteristics of the declarator during a remote procedure call.

Field-attribute keywords include size_is, max_is, length_is, first_is, and last_is; the usage attributes
string, ignore, and context_handle; the union switch switch_is;and the pointer attributes ref,
unique, and ptr.

The field attributes size_is, max_is, length_is, first_is, and last_is specify the size or range of valid
data for the declarator. These field attributes associate another parameter, structure member, union
member, or constant expression with the declarator.

Field attributes that are parameters must associate with declarators that are parameters; field attributes
that are members of structures or unions must associate with declarators that are members of the
same structure or union.

For information about the context in which field attributes appear, see arrays, struct, and union.

See Also

arrays, first_is, IDL, last_is, length_is, max_is, size_is

 first_is

first_is(limited-expression-list)

limited-expression-list
Specifies one or more C-language expressions supported by MIDL. The expression evaluates to an
integer that represents the array index of the first array element to be transmitted. Separate multiple
expressions with commas.

Example

void Proc1(
[in] short First,
[first_is(iFirst)] A[10]);

Remarks

The first_is attribute specifies the index of the first array element to be transmitted. If the first_is
attribute is not present, or if the specified index is a negative number, array element 0 is the first
element transmitted.

The first_is attribute can also help determine the values of the array indexes corresponding to the
last_is or length_is attribute when these attributes are not specified. The relationship between these
array indexes is as follows:

length = last - first + 1

The following relationship must also hold:

0 <= first_is <= max_is

The following relationship must hold when max_is <= 0:

first_is == 0

The first_is attribute cannot be used at the same time as the string attribute.

See Also

field_attributes, IDL, last_is, length_is, max_is, min_is, size_is

 float

Remarks

The float keyword designates a 32-bit floating-point number.

The float type is one of the base types of the interface definition language (IDL). The float type can
appear as a type specifier in typedef declarations, general declarations, and function declarators (as a
function-return-type specifier and a parameter-type specifier). For the context in which type specifiers
appear, see IDL.

The float type cannot appear in const declarations.

See Also

base_types, double.

 handle

typedef [handle] typename;
handle_t __RPC_USER typename_bind (typename);
void __RPC_USER typename_unbind (typename, handle_t);

typename
Specifies the name of the user-defined binding-handle type.

Examples

typedef [handle] struct {
 char machine[8];
 char nmpipe[256];
 } h_service;

handle_t __RPC_USER h_service_bind(h_service);
void __RPC_USER h_service_unbind(h_service, handle_t);

Remarks

The handle attribute specifies a user-defined or "customized" handle type. User-defined handles
permit developers to design handles that are meaningful to the application.

A user-defined handle can only be defined in a type declaration, not in a function declarator.

A parameter of a type defined by the handle attribute is used to determine the binding for the call and
is transmitted to the called procedure.

The user must provide binding and unbinding routines to convert between primitive and user-defined
handle types. Given a user-defined handle of type typename, the user must supply the routines
typename_bind and typename_unbind. For example, if the user-defined handle type is named
MYHANDLE, the routines are named MYHANDLE_bind and MYHANDLE_unbind.

If successful, the typename_bind routine should return a valid primitive binding handle and if
unsuccessful, a NULL. If the routine returns NULL, the typename_unbind routine will not be called. If
the binding routine returns an invalid binding handle different from NULL, the stub behavior is
undefined.

When the remote procedure has a user-defined handle as a parameter or as an implicit handle, the
client stubs call the binding routine before calling the remote procedure. The client stubs call the
unbinding routine after the remote call.

In DCE IDL, a parameter with the handle attribute must appear as the first parameter in the remote
procedure argument list. Subsequent parameters, including other handle attributes, are treated as
ordinary parameters. Microsoft supports an extension to DCE IDL that allows the user-defined handle
parameter to appear in positions other than the first parameter.

See Also

handles, IDL, implicit_handle, typedef

 handles

Remarks

Binding handles are data objects that represent the binding between the client and the server.

MIDL supports the base type handle_t. Handles of this type are known as "primitive handles."

You can define your own handle types using the handle attribute. Handles defined in this way are
known as "user-defined or customized handles" or "generic handles."

You can also define a handle that maintains state information using the context_handle attribute.
Handles defined in this way are known as "context handles."

If no state information is needed and you do not choose to call the RPC run-time libraries to manage
the handle, you can request that the run-time libraries provide automatic binding. This is done by using
the ACF keyword auto_handle.

You can specify a global variable as the binding handle by using the ACF keyword implicit_handle.

The explicit_handle keyword is used to state that each remote function has an explicitly specified
handle.

See Also

auto_handle, base_types, context_handle, explicit_handle, handle, handle_t, implicit_handle

 handle_t

Remarks

The handle_t keyword declares an object to be of the primitive handle type handle_t. A primitive
binding handle is a data object that can be used by the application to represent the binding.

The handle_t type is one of the predefined types of the interface definition language (IDL). It can
appear as a type specifier in typedef declarations, general declarations, and function declarators (as a
function-return-type specifier and a parameter-type specifier). For the context in which type specifiers
appear, see IDL

In Microsoft RPC, parameters of type handle_t can occur only as in parameters. Primitive handles
cannot have the unique or ptr attribute.

Parameters of type handle_t (primitive handle parameters) are not transmitted on the network.

See Also

base_types, handles

 heap

The DCE ACF keyword heap is not implemented in Microsoft RPC.

 hyper

Remarks

The keyword hyper indicates a 64-bit integer that can be declared as either signed or unsigned.

The hyper type is one of the base types of the interface definition language (IDL). The hyper type can
appear as a type specifier in const declarations, typedef declarations, general declarations, and
function declarators (as a function-return-type specifier and as a parameter-type specifier). For the
context in which type specifiers appear, see IDL.

Note For 16-bit platforms, the MIDL compiler replaces unsigned hyper integers with MIDL_uhyper.
This allows interfaces with unsigned hyper integers to be defined on platforms that do not directly
support 64-bit integers. MIDL_uhyper is defined in the RPC header files.

See Also

base_types

 idempotent

[[[IDL-operation-attributes]]] operation-attribute , ...

IDL-operation-attributes
Specifies zero or more IDL operation attributes, such as idempotent and broadcast. Operation
attributes are enclosed in square brackets.

Remarks

An idempotent operation is one that does not modify state information and returns the same results
each time it is performed. Performing the routine more than once has the same effect as performing it
once.

RPC supports two types of remote call semantics: calls to idempotent operations and calls to non-
idempotent operations. An idempotent operation can be carried out more than once with no ill effect.
Conversely, a non-idempotent operation (at-most-once) cannot be executed more than once because
it will either return different results each time or because it modifies some state.

To ensure that a procedure is automatically re-executed if the call does not complete, use the
idempotent attribute. If the idempotent, broadcast, or maybe attributes are not present, the
procedure will use non-idempotent semantics by default. In this case, the operation is executed only
once.

See Also

broadcast, IDL, maybe, non-idempotent

 IDL

[interface-attribute-list] interface interface-name
{

[import import-file-list ; ...]
[cpp_quote("string") ...]

[const const-type identifier = const-expression ; ...]

[[typedef] [[type-attribute-list]] type-specifier declarator-list; ...]

[[[function-attr-list]] type-specifier [pointer-declarator] function-name(
[[parameter-attribute-list]] type-specifier [declarator]
, ...

);
...
]

}

.

.

.

interface-attribute-list
Specifies either the attribute uuid or the attribute local and other optional attributes that apply to the
interface as a whole. The attributes endpoint, version, and pointer_default are optional. When you
compile with the /app_config switch, either implicit_handle or auto_handle can also be present.
Separate multiple attributes with commas. The interface-attribute-list does not have to be present for
imported IDL files but must be present for the base IDL file.

interface-name
Specifies the name of the interface. The identifier must be unique or different from any type names.
It also must be 17 characters or less because it is used to form the name of the interface handle.
The same interface name must be supplied in the ACF, except when you compile with the /acf
switch.

import-file-list
Specifies one or more IDL files to import. Separate filenames with commas.

string
Specifies a string that is emitted in the generated header file.

const-type
Specifies the name of an integer, character, boolean, void *, byte, or string (char *, byte *, wchar_t
*) type. Only these types can be assigned const values in the IDL file.

identifier
Specifies a valid MIDL identifier. Valid MIDL identifiers consist of up to 31 alphanumeric and/or
underscore characters and must start with an alphabetic or underscore character.

const-expression
Specifies a constant declaration. The const-expression must evaluate to the type specified by const-
type. For more information, see const.

type-attribute-list
Specifies one or more attributes that apply to the type. Valid type attributes include handle,
switch_type, transmit_as; the pointer attribute ref, unique, or ptr; and the usage attributes
context_handle, ignore, and string. Separate multiple attributes with commas.

type-specifier
Specifies a base_type, struct, union, enum type, or type identifier. An optional storage

specification can precede type-specifier.
declarator and declarator-list

Specify standard C declarators, such as identifiers, pointer declarators, and array declarators. For
more information, see pointers and arrays. The declarator-list consists of one or more declarators
separated by commas. The parameter declarator in the function declarator, such as the parameter
name, is optional.

function-attr-list
Specifies zero or more attributes that apply to the function. Valid function attributes are callback,
local; the pointer attribute ref, unique, or ptr; and the usage attributes string, ignore, and
context_handle.

pointer-declarator
Specifies zero or more pointer declarators. A pointer declarator is the same as the pointer declarator
used in C; it is constructed from the * designator, modifiers such as far, and the qualifier const.

function-name
Specifies the name of the remote procedure.

parameter-attribute-list
Specifies zero or more attributes appropriate for the specified parameter type. Parameter attributes
can take the directional attributes in and out; the field attributes first_is, last_is, length_is,
max_is, size_is, and switch_type; the pointer attribute ref, unique, or ptr; and the usage attributes
context_handle and string. The usage attribute ignore cannot be used as a parameter attribute.
Separate multiple attributes with commas.

Examples

[uuid(12345678-1234-1234-1234-123456789ABC),
 version(3.1),
 pointer_default(unique)
] interface IdlGrammarExample
{
import "windows.idl", "other.idl";
const wchar_t * NAME = L"Example Program";
typedef char * PCHAR;

void DictCheckSpelling(
 [in, string] PCHAR word, // word to look up
 [out] short * isPresent // 0 if not present
);
}

Remarks

The IDL file contains the specification for the interface. The interface includes the set of data types and
the set of functions to be executed from a remote location. Interfaces specify the function prototypes for
remote functions and for many aspects of their behavior from the point of view of interface users.

Another file, the application configuration file (ACF), contains attributes that tailor the application for a
specific operating environment. For more information, see ACF.

An interface specification consists of an interface header followed by an interface body. The interface
header includes an attribute list describing characteristics that apply to the interface as a whole. The
interface body contains the remote data types and function prototypes.

The interface body contains zero or more import lists, constant declarations, general declarations, and
function declarators.

In /ms_ext mode, an IDL file can contain multiple interfaces. Type definitions, construct declarations,

and imports can occur outside of the interface body. All definitions from the main IDL file will appear in
the generated header file, and all the procedures from all the interfaces in the main IDL file will
generate stub routines. This enables applications that support multiple interfaces to merge IDL files into
a single, combined IDL file. As a result, it requires less time to compile the files and also allows MIDL to
reduce redundancies in the generated stubs. This can significantly improve object interfaces by the
ability to share common code for base interfaces and derived interfaces. For non-object interfaces, the
procedure names must be unique across all the interfaces. For object interfaces, the procedure names
need only be unique within an interface.

The syntax for declarative constructs in the IDL file is similar to that for C. MIDL supports all Microsoft
C version 7.0 declarative constructs except:

· Older style declarators that allow a declarator to be specified without a type specifier, such as:
x (y)
short x (y)

· Declarations with initializers (MIDL only accepts declarations that conform to the MIDL const syntax)
· Floating-point constants

The import keyword specifies the names of one or more IDL files to import. The import directive is
similar to the C include directive, except that only data types are assimilated into the importing IDL file.

The constant declaration specifies boolean, integer, character, wide-character, string, and void *
constants. For more information, see const.

A general declaration is similar to the C typedef statement with the addition of IDL type attributes. In
/ms_ext mode, the MIDL compiler also allows an implicit declaration in the form of a variable definition.

The function declarator is a special case of the general declaration. You can use IDL attributes to
specify the behavior of the function return type and each of the parameters.

See Also

arrays, const, enum, import, in, interface, midl, out, pointers, struct, union

 ignore

[ignore] pointer-member-type pointer-name;

pointer-member-type
Specifies the type of the pointer member of the structure or union.

pointer-name
Specifies the name of the pointer member that is to be ignored during marshalling.

Example

typedef struct _DBL_LINK_NODE_TYPE {
 long value;
 struct _DBL_LINK_NODE_TYPE * next;
 [ignore] struct _DBL_LINK_NODE_TYPE * previous;
} DBL_LINK_NODE_TYPE;

Remarks

The ignore attribute designates that a pointer contained in a structure or union and the object indicated
by the pointer is not transmitted. The ignore attribute is restricted to pointer members of structures or
unions.

The value of a structure member with the ignore attribute is undefined at the destination. An in
parameter is not defined at the remote computer. An out parameter is not defined at the local
computer.

The ignore attribute allows you to prevent transmisison of data. This is useful in situations such as a
double-linked list. The following example includes a double-linked list that introduces data aliasing:

/* IDL file */
typedef struct _DBL_LINK_NODE_TYPE {
 long value;
 struct _DBL_LINK_NODE_TYPE * next;
 struct _DBL_LINK_NODE_TYPE * previous;
} DBL_LINK_NODE_TYPE;

void remote_op([in] DBL_LINK_NODE_TYPE * list_head);

/* application */
DBL_LINK_NODE_TYPE * p, * q

p = (DBL_LINK_NODE_TYPE *)
midl_user_allocate(sizeof(DBL_LINK_NODE_TYPE));

q = (DBL_LINK_NODE_TYPE *)
midl_user_allocate(sizeof(DBL_LINK_NODE_TYPE));

p->next = q;
q->previous = p;
p->previous = q->next = NULL;
...
remote_op(p);

Aliasing occurs in the preceding example because the same memory area is available from two
different pointers in the function p and p->next->previous.

Note that ignore cannot be used as a type attribute.

See Also

pointers, ptr, ref, unique

 iid_is

[iid_is(limited-expression)]

limited-expression
Specifies a limited expression. MIDL does not allow function invocations in expressions and does
not allow pre- and post-increment and -decrement operators.

Example

HRESULT CreateInstance(
[in] REFIID riid,
[out, iid_is(riid)] IUnknown ** ppvObject);

Remarks

The iid_is pointer attribute specifies the IID of the OLE interface pointed to by an interface pointer. You
can use iid_is in attribute lists for function parameters and for structure or union members. The stubs
use the IID to determine how to marshal the interface pointer. This is useful for an interface pointer that
is typed as a base class parameter.

Files that use the iid_is attribute must be compiled with the MIDL compiler switch /ms_ext.

See Also

object, uuid

 implicit_handle

implicit_handle(handle-type handle-name)

handle-type
Specifies the handle data type, such as the base type handle_t or a user-defined handle type.

handle-name
Specifies the name of the handle.

Example

/* ACF file */
[implicit_handle(handle_t hMyHandle)]
{
}

Remarks

The implicit_handle attribute specifies the handle used for functions that do not include an explicit
handle as a procedure parameter. If the procedure is remote, the handle will be used as the binding
handle for the remote call. The implicit handle may also be used to establish an initial binding for a
function that uses a context handle. If the procedure is a serializing procedure, the handle is used as a
serializing handle controlling the operation. In the case of type serialization, the handle is used as the
serialization handle for all the serialized types.

The implicit_handle attribute specifies a global variable that contains a handle used by any function
needing implicit handles.

The implicit binding handle type must be either handle_t (or a type based on handle_t) or a user-
defined handle type specified with the handle attribute. The implicit serializing handle must be a type
based on handle_t.

If the implicit handle type is not defined in the IDL file or in any files included and imported by the IDL
file for the MIDL computer, you must supply the file containing the handle-type definition when you
compile the stubs. Use the ACF include statement to include the file containing the handle-type
definition.

The implicit_handle attribute can occur once, at most. The implicit_handle attribute can occur only if
the auto_handle or explicit_handle attribute does not occur.

See Also

ACF, auto_handle, explicit_handle, include

 import

import "filename" [, ...] ;

filename
Specifies the name of the IDL file to import.

Example

import "foo1.idl";
import "foo2.idl", "foo3.idl", "foo4.idl";

Remarks

The import directive is similar to the C-language preprocessor macro #include. The import directive
directs the compiler to include data types defined in the imported IDL files. In contrast to the C-
language #include macro, the import directive ignores procedure prototypes.

The import keyword is optional and can appear zero or more times in the IDL file. Each import
keyword can be associated with more than one filename. Multiple filenames are separated by comma
characters. You must enclose the filename within quotation marks and end the import statement with
the semicolon character (;). Note that an interface without attributes can be imported into a base IDL
file. However, the interface must contain only datatypes with no procedures. If even one procedure is
contained in the interface, a local or UUID attribute must be specified.

The C-language header (.H) file generated for the interface does not directly contain the imported types
but instead generates a #include directive for the header file corresponding to the imported interface.
For example, when FOO.IDL imports BAR.IDL, the generated header file FOO.H includes BAR.H
(FOO.H contains the directive #include BAR.H).

The import function is idempotent ¾ that is, importing an interface more than once has the same
effect as importing it once.

The behavior of the import directive is independent of the MIDL compiler mode switches /ms_ext,
/c_ext, and /app_config.

See Also

IDL

 in

[[function-attribute-list]] type-specifier [pointer-declarator] function-name(
[in [, parameter-attribute-list]] type-specifier [declarator]
, ...

);

function-attribute-list
Specifies zero or more attributes that apply to the function. Valid function attributes are callback,
local, the pointer attribute ref, unique, or ptr, and the usage attributes string, ignore, and
context_handle.

type-specifier
Specifies a base_type, struct, union, or enum type or type identifier. An optional storage
specification can precede type-specifier.

pointer-declarator
Specifies zero or more pointer declarators. A pointer declarator is the same as the pointer declarator
used in C; it is constructed from the * designator, modifiers such as far, and the qualifier const.

function-name
Specifies the name of the remote procedure.

parameter-attribute-list
Specifies zero or more attributes appropriate for the specified parameter type. Parameter attributes
with the in attribute can also take the directional attribute out; the field attributes first_is, last_is,
length_is, max_is, size_is and switch_type; the pointer attribute ref, unique, or ptr; and the
usage attributes context_handle and string. The usage attribute ignore cannot be used as a
parameter attribute. Separate multiple attributes with commas.

declarator
Specifies standard C declarators, such as identifiers, pointer declarators, and array declarators. For
more information, see pointers and arrays. The parameter declarator in the function declarator,
such as the parameter name, is optional.

Example

void MyFunction([in] short count);

Remarks

The in attribute indicates that a parameter is to be passed from the calling procedure to the called
procedure.

A related attribute, out, indicates that a parameter is to be returned from the called procedure to the
calling procedure. The in and out attributes are known as directional parameter attributes because
they specify the direction in which parameters are passed. A parameter can be defined as in, out, or
in, out.

The in attribute identifies parameters that are marshalled by the client stub for transmission to the
server.

The in attribute is applied to a parameter by default when no directional parameter attribute is
specified.

See Also

IDL, midl_user_allocate, out

 include

include filenames;

filenames
Specifies the name of one or more C-language header files. The .H extension must be supplied in
the MS-DOS, Windows, and Windows NT environments. Separate multiple C-language header
filenames with commas.

Remarks

The body of the ACF can contain include directives, ACF typedef attributes, and ACF function and
parameter attributes.

The ACF include statement specifies one or more header files included in the generated stub code.
The stub code contains a C-preprocessor #include statement, and the user supplies the C-language
header file when compiling the stubs. Include statements rely on the C-compiler mechanism of
searching the directory structure for included files.

Note Use the import directive rather than the include directive for system files, such as
WINDOWS.H, that contain data types you want to make available to the IDL file. The import directive
ignores function prototypes and allows you to use MIDL compiler switches that optimize the generation
of support routines.

See Also

ACF, import, typedef

 in_line

The DCE IDL keyword in_line is not supported in Microsoft RPC.

See Also

IDL

 int

[type-specifier] [signed | unsigned] integer-modifier [int] declarator-list;

type-specifier
Specifies a base_type, struct, union, enum type, or type identifier. An optional storage
specification can precede type-specifier.

integer-modifier
Specifies the keyword small, short, long, or hyper, which selects the size of the integer data. The
size qualifier must be present.

declarator-list
Specifies one or more standard C declarators, such as identifiers, pointer declarators, and array
declarators. (Function declarators and bit-field declarations are not allowed in structures that are
transmitted in remote procedure calls. These declarators are allowed in structures that are not
transmitted.) Separate multiple declarators with commas.

Examples

signed short int i = 0;
short int j = i;
typedef struct {
 small int i1;
 short i2;
 unsigned long int i3;
} INTSIZETYPE;

void MyFunc([in] long int lCount);

Remarks

The keyword int is an optional keyword that can accompany the keywords small, short, and long.

Integer types are among the base types of the interface definition language (IDL). They can appear as
type specifiers in typedef declarations, general declarations, and function declarators (as a function-
return-type specifier and as a parameter-type specifier). For the context in which type specifiers
appear, see IDL.

The keyword int cannot be used alone. It must always appear with one of the valid integer modifiers.
These modifiers specify the number of bits used to describe the integer data.

If no integer sign specification is provided, the integer type defaults to signed.

DCE IDL compilers do not allow the keyword signed to specify the sign of integer types. To allow the
use of the keyword signed, use the MIDL compiler switch /ms_ext.

See Also

base_types, long, /ms_ext, short, small

 __int64

The keyword __int64 specifies a valid integer supported by the MIDL compiler. For a discussion of how
to use __int64, see hyper.

See Also

IDL, int

 interface

[interface-attribute-list] interface interface-name [: base-interface]

/*IDL file typedef syntax */
typedef interface interface-name declarator-list

interface-attribute-list

Specifies attributes that apply to the interface as a whole. Valid interface attributes for an IDL file
include endpoint, local, object, pointer_default, uuid, and version. Valid interface attributes for
an ACF include encode, decode, either auto_handle or implicit_handle, and either code or
nocode.

interface-name
Specifies the name of the interface. The identifier must start with an alphabetic or underscore
character and can consist of up to 17 alphanumeric and underscore characters. The identifier must
be 17 characters or less because it is used to form the name of the interface handle.

base-interface
Specifies the name of an interface from which this derived interface inherits member functions,
status codes, and interface attributes. The derived interface does not inherit type definitions. To do
this, use the import keyword to import the IDL file of the base interface.

declarator-list
Specifies standard C declarators, such as identifiers, pointer declarators, and array declarators. For
more information, see pointers and arrays. The declarator-list consists of one or more declarators,
separated by commas.

Examples

/* use of interface keyword in IDL file for an RPC interface */
 [uuid (00000000-0000-0000-0000-000000000000),
 version (1.0)]
 interface remote_if_2
 {
 }

/* use of interface keyword in ACF for an RPC interface */
 [implicit_handle(handle_t xa_bhandle)]
 interface remote_if_2
 {
 }

/* use of interface keyword in IDL file for an OLE interface */
 [object, uuid (00000000-0000-0000-0000-000000000000)]
 interface IDerivedInterface : IBaseInterface
 {
 import "base.idl"
 Save();
 }

/* use of interface keyword to define an interface pointer type */
 typedef interface IStorage *LPSTORAGE;

Remarks

The interface keyword specifies the name of the interface. The interface name must be provided in

both the IDL file and the ACF.

The interface names in the IDL file and ACF must be the same, except when you use the MIDL
compiler switch /acf. For more information, see /acf.

The interface name forms the first part of the name of interface-handle data structures that are
parameters to the RPC run-time functions. For more information, see RPC_IF_HANDLE.

If the interface header includes the object attribute to indicate an OLE interface, it must also include
the uuid attribute and must specify the base OLE interface from which it is derived. For more
information about OLE interfaces, see object.

You can also use the interface keyword with the typedef keyword to define an interface data type.

See Also

ACF, endpoint, IDL, local, pointer_default, uuid, version

 last_is

[last_is(limited-expression-list)]

limited-expression-list
Specifies one or more C-language expressions supported by MIDL. The expression evaluates to an
integer that represents the array index of the last array element to be transmitted. Separate multiple
expressions with commas.

Example

proc1(
[in] short Last,
[in, last_is(Last)] short asNumbers[MAXSIZE]);

Remarks

The field attribute last_is specifies the index of the last array element to be transmitted. When the
specified index is zero or negative, no array elements are transmitted.

The last_is attribute determines the value of the array index corresponding to the length_is attribute
when length_is is not specified. The relationship between these array indexes is as follows:

length = last - first + 1

If the value of the array index specified by first_is is larger than the value specified by last_is, zero
elements are transmitted.

The last_is attribute can be used only if the array has a fixed allocation size. The last_is attribute
cannot be used as a field attribute at the same time as the string attribute.

When the value specified by max_is is equal to or greater than zero, the following relationship must be
true:

0 <= last_is <= max_is

When min_is is greater than or equal to max_is, the following relationship must be free:

last_is <= max_is

See Also

field_attributes, first_is, IDL, length_is, max_is, size_is

 length_is

[length_is(limited-expression-list)]

limited-expression-list
Specifies one or more C-language expressions that are supported by MIDL. The expression
evaluates to an integer that represents the number of array elements to be transmitted. Separate
multiple expressions with commas.

Examples

/* counted string holding at most "size" characters */
typedef struct {
 unsigned short size;
 unsigned short length;
 [size_is(size), length_is(length)] char string[*];
 } COUNTED_STRING_TYPE;

/* counted string holding at most 80 characters */
typedef struct {
 unsigned short length;
 [length_is(length)] char string[80];
 } STATIC_COUNTED_STRING_TYPE;

void Proc1(
[in] short iLength;
[in, length_is(iLength)] short asNumbers[10];

Remarks

The length_is attribute specifies the number of array elements to be transmitted. A non-negative value
must be specified.

The length_is attribute determines the value of the array indexes corresponding to the last_is attribute
when last_is is not specified. The relationship between these array indexes is as follows:

length = last - first + 1

The length_is attribute cannot be used at the same time as the last_is attribute or the string attribute.

To define a counted string with a length_is or last_is attribute, use a character array or pointer without
the string attribute.

See Also

field_attributes, first_is, IDL, last_is, max_is, min_is, size_is

 local

[local [, interface-attribute-list]] interface interface-name

[object, uuid(string-uuid), local [, interface-attribute-list]]
 interface interface-name

[local [, function-attribute-list]] function-declarator ;

interface-attribute-list
Specifies other attributes that apply to the interface as a whole. The attributes endpoint, version,
and pointer_default are optional. When you compile with the /app_config switch, either
implicit_handle or auto_handle can also be present. Separate multiple attributes with commas.

interface-name
Specifies the name of the interface.

string-uuid
Specifies a UUID string generated by the uuidgen utility. You can enclose the UUID string in quotes
when you use the MIDL compiler switch /ms_ext.

function-attribute-list
Specifies zero or more attributes that apply to the function. Valid function attributes are callback; the
pointer attribute ref, unique, or ptr; and the usage attributes string, ignore, and context_handle.
Separate multiple attributes with commas.

function-declarator
Specifies the type specifier, function name, and parameter list for the function.

Examples

/* IDL file #1 */
[local] interface local_procs
{ void MyLocalProc(void);}

/* IDL file #2 */
[object,
 uuid(12345678-1234-1234-123456789ABC),
 local] interface local_object_procs
{ void MyLocalObjectProc(void);}

/* IDL file #3 */
[uuid(12345678-1234-1234-123456789ABC)]
interface mixed_procs
{
[local] void MyLocalProc(void);
void MyRemoteProc([in] short sParam);
}

Remarks

The local attribute can be applied to individual functions or to the interface as a whole.

When used in the interface header, the local attribute allows you to use the MIDL compiler as a header
generator. The compiler does not generate stubs for any functions and does not ensure that the header
can be transmitted.

For an RPC interface, the local attribute cannot be used at the same time as the uuid attribute. Either
uuid or local must be present in the interface header, and the one you choose must occur exactly

once.

For an OLE interface (identified by the object interface attribute), the interface attribute list can include
the local attribute even though the uuid attribute is present.

When used in an individual function, the local attribute designates a local procedure for which no stubs
are generated. Using local as a function attribute is a Microsoft extension to DCE IDL and requires the
MIDL compiler switch /ms_ext.

Note that an interface without attributes can be imported into a base IDL file. However, the interface
must contain only datatypes with no procedures. If even one procedure is contained in the interface, a
local or UUID attribute must be specified.

See Also

IDL, /ms_ext, object, uuid

 long

The long keyword designates a 32-bit integer. It can be preceded by either the keyword signed or the
keyword unsigned. The int keyword is optional and can be omitted. To the MIDL compiler, a long
integer is signed by default and is synonymous with signed long int.

The long integer type is one of the base types of the IDL language. The long integer type can appear
as a type specifier in const declarations, typedef declarations, general declarations, and function
declarators (as a function-return-type specifier and as a parameter-type specifier). For the context in
which type specifiers appear, see IDL.

See Also

base_types, hyper, int, short, small

 max_is

[max_is(limited-expression-list)]

limited-expression-list
Specifies one or more C-language expressions that are supported by MIDL. The expression
evaluates to an integer that represents the highest valid array index. Separate multiple expressions
with commas.

Examples

void Proc1(
[in] short m,
[in, max_is(m)] short a[]); /* if m = 10,

there are 11 transmitted values of (a[0]...a[10])*/
void Proc2(

[in] short m,
[in, max_is(m)] short b[][20]; /* if m = 10,

the valid range for b is b[0...10][20] */

Remarks

The max_is attribute designates the maximum value for a valid array index. For an array of size n in C,
where the first array element is element number 0, the maximum value for a valid array index is n-1.

The max_is attribute cannot be used as a field attribute at the same time as the size_is attribute.

See Also

field_attributes, IDL, min_is, size_is

 maybe

[[[IDL-operation-attributes]]] operation-attribute , ...

IDL-operation-attributes
Specifies zero or more IDL operation attributes, such as maybe and idempotent. Operation
attributes are enclosed in square brackets.

Remarks

The keyword maybe indicates that the remote procedure call does not need to execute every time it is
called and the client does not expect a response. Note that the maybe protocol ensures neither
delivery nor completion of the call.

A call with the maybe attribute cannot contain output parameters and is implicitly an idempotent call.

See Also

broadcast, idempotent, IDL, non-idempotent

 midl_user_allocate

void __RPC_FAR * __RPC_API midl_user_allocate (size_t cBytes);

cBytes
Specifies the count of bytes to allocate.

Example

void __RPC_FAR * __RPC_API midl_user_allocate(size_t cBytes)
{
 return(malloc(cBytes));
}

Remarks

The midl_user_allocate function must be supplied by both client applications and server applications.
Applications and generated stubs call midl_user_allocate when dealing with objects referenced by
pointers:

· The server application should call midl_user_allocate to allocate memory for the application ¾ for
example, when creating a new node.

· The server stub calls midl_user_allocate when unmarshalling pointed-at data into the server
address space.

· The client stub calls midl_user_allocate when unmarshalling data from the server that is referenced
by an out pointer. Note that for in, out, and unique pointers, the client stub calls
midl_user_allocate only if the unique pointer value was NULL on input and changes to a non-null
value during the call. If the unique pointer was non-null on input, the client stub writes the
associated data into existing memory.

If midl_user_allocate fails to allocate memory, it must return a null pointer.

It is recommended that midl_user_allocate return a pointer that is 8 bytes aligned.

See Also

allocate, midl_user_free, pointers, ptr, ref, unique

 midl_user_free

void __RPC_API midl_user_free(void __RPC_FAR * p);

Example

void __RPC_API midl_user_free(void __RPC_FAR * p)
{
 free(p);
}

Remarks

The midl_user_free function must be supplied by both client applications and server applications. The
midl_user_free function must be able to free all storage allocated by midl_user_allocate.

Applications and stubs call midl_user_free when dealing with objects referenced by pointers:

· The server application should call midl_user_free to free memory allocated by the application ¾ for
example, when deleting a specified node.

· The server stub calls midl_user_free to release memory on the server after marshalling all out
arguments, in, out arguments, and the return value.

See Also

midl_user_allocate, pointers, unique

 min_is

The DCE IDL attribute min_is is not implemented in Microsoft RPC. The value of the minimum valid
array index is zero.

See Also

arrays, IDL, max_is

 ms_union

[..., ms_union, ...] interface-name {...}

interface-name
Specifies the name of the interface.

Example

[ms_union] long procedure (...);

Remarks

The keyword ms_union is used to control the NDR alignment of non-encapsulated unions.

The MIDL compiler in this version of Microsoft RPC mirrors the behavior of the OSF DCE IDL compiler
for non-encapsulated unions. However, because earlier versions of the MIDL compiler did not do so,
the /ms_union switch provides compatibility with interfaces built on previous versions of the MIDL
compiler.

The ms_union feature can be used as an IDL interface attribute, an IDL type attribute, or as a
command-line switch (/ms_union).

See Also

IDL, /ms_union

 ncacn_dnet_nsp

endpoint("ncacn_dnet_nsp:server-name[port-name]")

server-name
Specifies the name or internet address for the server, or host, computer. The name is a character
string.

port-name
Specifies a DECnet object name or object number. The object name can consist of up to 16
characters. Object numbers can be prefixed by the pound sign (#).

Examples

[uuid(12345678-4000-2006-0000-20000000001a),
 version(1.1),
 endpoint("ncacn_dnet_nsp:node[RPC0034501]")

[uuid(12345678-4000-2006-0000-20000000001a),
 version(1.1),
 endpoint("ncacn_dnet_nsp:node[#41]")
]

Remarks

The ncacn_dnet_nsp keyword identifies DECnet as the protocol family for the endpoint.

The syntax of the DECnet transport port string, like all port strings, is defined independently of the IDL
specification. The compiler performs some syntax checking but does not guarantee that the endpoint
specification is correct. Some errors may be reported at run time.

See Also

endpoint, ncacn_ip_tcp, ncacn_nb_nb, ncacn_nb_tcp, ncacn_np, ncacn_spx, ncalrpc,
string_binding

 ncacn_ip_tcp

endpoint("ncacn_ip_tcp:server-name[port-name]")

server-name
Specifies the name or Internet address for the server, or host, computer. The name is a character
string. The Internet address is a common Internet address notation.

port-name
Specifies an optional 16-bit number. Values of less than 1024 are usually reserved. If no value is
specified, the endpoint-mapping service selects a valid port-name value.

Example

[uuid(12345678-4000-2006-0000-20000000001a),
 version(1.1),
 endpoint("ncacn_ip_tcp:rainier[1404]")
] interface foo

endpoint("ncacn_ip_tcp:128.10.2.30[1404]")

Remarks

The ncacn_ip_tcp keyword identifies TCP/IP as the protocol family for the endpoint.

Only the ncacn_spx and ncacn_ip_tcp protocols support cancels. For all other protocols, the cancel
routines will return RPC_S_OK, but there will be no effect. Specifically:

RpcCancelThread will alert the specified thread, but will not interrupt a pending RPC.
RpcTestCancel will return RPC_S_OK if the current thread has been alerted.
RpcMgmtSetCancelTimeout has no visible effect.

RpcCancelThread, RpcTestCancel, and RpcMgmtSetCancelTimeout are only supported on
Windows NT platforms; all other platforms return RPC_S_CANNOT_SUPPORT.

The syntax of the TCP/IP transport port string, like all port strings, is defined independently of the IDL
specification. The compiler performs some syntax checking but does not guarantee that the endpoint
specification is correct. Some errors may be reported at run time rather than during compilation.

See Also

endpoint, IDL, ncacn_nb_tcp, ncacn_np, ncacn_spx, ncalrpc, string_binding

 ncacn_nb_nb

endpoint("ncacn_nb_nb:[port-name]")

port-name
Specifies an optional 8-bit value ranging from 0 to 255. Values of less than 0x20 are reserved. If the
port-name value is not specified, the endpoint-mapping service selects the port value.

Example

[uuid(12345678-4000-2006-0000-20000000001a),
 version(1.1),
 endpoint("ncacn_nb_nb:[100]")
]

Remarks

The ncacn_nb_nb keyword identifies NetBEUI over NetBIOS as the protocol family for the endpoint.

The syntax of the NetBIOS port string, like all port strings, is defined by the transport implementation
and is independent of the IDL specification. The MIDL compiler performs limited syntax checking but
does not guarantee that the endpoint specification is correct. Some classes of errors may be reported
at run time rather than during compilation.

See Also

endpoint, IDL, ncacn_ip_tcp, ncacn_nb_tcp, ncacn_np, ncacn_spx, ncalrpc, string_binding

 ncacn_nb_tcp

endpoint("ncacn_nb_tcp:[port-name]")

port-name
Specifies an optional 8-bit value ranging from 0 to 255. Values of less than 0x20 are reserved. If the
port-name value is not specified, the endpoint-mapping service selects the port value.

Example

[uuid(12345678-4000-2006-0000-20000000001a),
 version(1.1),
 endpoint("ncacn_nb_tcp:[100]")
]

Remarks

The ncacn_nb_tcp keyword is used to identify TCP over NetBIOS as the protocol family for the
endpoint.

The syntax of the NetBIOS port string, like all port strings, is defined by the transport implementation
and is independent of the IDL specification. The MIDL compiler performs limited syntax checking but
does not guarantee that the endpoint specification is correct. Some classes of errors may be reported
at run time rather than compile time.

See Also

endpoint, IDL, ncacn_ip_tcp, ncacn_nb_nb, ncacn_np, ncacn_spx, ncalrpc, string_binding

 ncacn_np

endpoint("ncacn_np:server-name[\\pipe\\pipe-name]")

server-name
Specifies the name of the server. The server-name is optional. If the server-name is present, it must
be preceded by four backslash characters, as in "\\\\myserver".

pipe-name
Specifies a valid pipe name. A valid pipe name is a string containing identifiers separated by
backslash characters. The first identifier must be pipe. Each identifier must be separated by two
backslash characters.

Example

[uuid(12345678-4000-2006-0000-20000000001a),
 version(1.1),
 endpoint("ncacn_np:[\\pipe\\stove\\hat]")
]

Remarks

The ncacn_np keyword identifies named pipes as the protocol family for the endpoint.

Note For Windows 95 platforms, ncacn_np is not supported.

The syntax of the named-pipe port string, like all port strings, is defined by the transport implementation
and is independent of the IDL specification. The MIDL compiler performs limited syntax checking but
does not guarantee that the endpoint specification is correct. Some classes of errors may be reported
at run time rather than during compilation.

See Also

endpoint, IDL, ncacn_ip_tcp, ncacn_nb_nb, ncacn_nb_tcp, ncalrpc, string_binding

 ncacn_spx

endpoint("ncacn_spx:link-address[port-name]")

link-address
Specifies 8 hexadecimal digits (4 bytes) that represent the network address and 12 hexadecimal
digits (6 bytes) that represent the node address. A null string specifies the local computer.

port-name
Specifies an optional 16-bit number that represents the socket address. Values can range from 1 to
65,535. When no value is specified, the endpoint-mapping service selects a valid port-name value.

Example

[uuid(12345678-4000-2006-0000-20000000001a),
 version(1.1),
 endpoint("ncacn_spx:[1000]")
] interface foo

Remarks

The ncacn_spx keyword identifies SPX as the protocol family for the endpoint.

The syntax of the SPX transport port string, like all port strings, is defined independently of the IDL
specification. The compiler performs some syntax checking but does not guarantee that the endpoint
specification is correct. Some errors may be reported at run time rather than during compilation.

When using the ncacn_spx transport, the server name is exactly the same as the Windows NT server
name. However, since the names are distributed using Novell protocols, they must conform to the
Novell naming conventions. If a server name is not a valid Novell name, servers will not be able to
create endpoints with the ncacn_spx transport. The following is a partial list of characters prohibited in
Novell server names:

" * + . / : ; < = > ? [] \ |

The ncacn_spx transport is not supported by the version of NWLink supplied with MS Client 3.0.

Only the ncacn_spx and ncacn_ip_tcp protocols support cancels. For all other protocols, the cancel
routines will return RPC_S_OK, but there will be no effect. Specifically:

RpcCancelThread will alert the specified thread, but will not interrupt a pending RPC.
RpcTestCancel will return RPC_S_OK if the current thread has been alerted.
RpcMgmtSetCancelTimeout has no visible effect.

RpcCancelThread, RpcTestCancel, and RpcMgmtSetCancelTimeout are only supported on
Windows NT platforms; all other platforms return RPC_S_CANNOT_SUPPORT.

Note The network and node addresses that specify the network-address portion of the ncacn_spx
endpoint specification are available from the comcheck utility. With Windows NT, the network address
is stored in the registry and the node address is displayed by the command net config rdr.

See Also

endpoint, IDL, ncacn_ip_tcp, ncacn_nb_nb, ncacn_nb_tcp, ncacn_np, ncalrpc, string_binding

 ncadg_ip_udp

endpoint("ncadg_ip_udp:server-name[port-name]")

server-name
Specifies the name or internet address for the server, or host, computer. The name is a character
string. The internet address is a common internet address notation.

port-name
Specifies an optional 16-bit number. Values of less than 1024 are usually reserved. If no value is
specified, the endpoint-mapping service selects a valid port-name value.

Example

[uuid(12345678-4000-2006-0000-20000000001a),
 version(1.1),
 endpoint("ncadg_ip_udp:rainier[1404]")
] interface foo

endpoint("ncadg_ip_udp:128.10.2.30[1404]")

Remarks

The ncadg_ip_udp keyword identifies the datagram version of TCP/IP as the protocol family for the
endpoint.

The datagram protocols (ncadg_ipx and ncadg_ip_udp) have the following limitations:

They do not support callbacks. Any functions using the callback attribute will fail.
They do not support the RPC security API (RpcBindingSetAuthInfo, RpcImpersonateClient, etc.).

The syntax of the TCP/IP transport port string, like all port strings, is defined independently of the IDL
specification. The compiler performs some syntax checking but does not guarantee that the endpoint
specification is correct. Some errors may be reported at run time rather than during compilation.

See Also

endpoint, IDL, ncacn_nb_tcp, ncacn_np, ncacn_spx, ncalrpc, string_binding

 ncadg_ipx

endpoint("ncadg_ipx:link-address[port-name]")

link-address
Specifies eight hexadecimal digits (4 bytes) that represent the network address and 12 hexadecimal
digits (6 bytes) that represent the node address. A null string specifies the local computer.

port-name
Specifies an optional 16-bit number that represents the socket address. Values can range from 1 to
65535. When no value is specified, the endpoint-mapping service selects a valid port-name value.

Example

[uuid(12345678-4000-2006-0000-20000000001a),
 version(1.1),
 endpoint("ncadg_ipx:[1000]")
] interface foo

Remarks

The ncadg_ipx keyword identifies IPX as the protocol family for the endpoint.

The syntax of the IPX transport port string, like all port strings, is defined independently of the IDL
specification. The compiler performs some syntax checking but does not guarantee that the endpoint
specification is correct. Some errors may be reported at run time rather than during compilation.

When using the ncadg_ipx transport, the server name is exactly the same as the Windows NT server
name. However, since the names are distributed using Novell protocols, they must conform to the
Novell naming conventions. If a server name is not a valid Novell name, servers will not be able to
create endpoints with the ncadg_ipx transport. The following is a partial list of characters prohibited
in Novell server names:

" * + . / : ; < = > ? [] \ |

The ncadg_ipx transport is supported by the version of NWLink supplied with MS Client 3.0.

The datagram protocols (ncadg_ipx and ncadg_ip_udp) have the following limitations:

They do not support callbacks. Any functions using the callback attribute will fail.
They do not support the RPC security API (RpcBindingSetAuthInfo, RpcImpersonateClient, etc.).

Only the ncacn_spx and ncacn_ip_tcp protocols support cancels. For all other protocols, the cancel
routines will return RPC_S_OK, but there will be no effect. Specifically:

RpcCancelThread will alert the specified thread, but will not interrupt a pending RPC.
RpcTestCancel will return RPC_S_OK if the current thread has been alerted.
RpcMgmtSetCancelTimeout has no visible effect.

RpcCancelThread, RpcTestCancel, and RpcMgmtSetCancelTimeout are only supported on
Windows NT platforms; all other platforms return RPC_S_CANNOT_SUPPORT.

Note The network and node addresses that specify the network-address portion of the ncadg_ipx
endpoint specification are available from the comcheck utility. With Windows NT, the network address
is stored in the registry and the node address is displayed by the command net config rdr.

See Also

endpoint, IDL, ncacn_ip_tcp, ncacn_nb_nb, ncacn_nb_tcp, ncacn_np, ncalrpc, string_binding

 ncalrpc

endpoint("ncalrpc:[port-name]")

port-name
Specifies a string that represents a Windows NT object name. The string should not contain any
backslash (\) characters.

Example

[uuid(12345678-4000-2006-0000-20000000001a),
 version(1.1),
 endpoint("ncalrpc:[myapplicationname]")
]

Remarks

The ncalrpc keyword identifies local interprocess communication as the protocol family for the
endpoint. This keyword is one of the valid protocol family names that must be used with the endpoint
attribute.

Note The ncalrpc endpoint is only supported by Windows NT systems. It is not supported by
Windows 95.

The computer name must not be used with the ncalrpc keyword.

The syntax of the local interprocess-communication port string, like all port strings, is defined by the
transport implementation and is independent of the IDL specification. The MIDL compiler performs
limited syntax checking but does not guarantee that the endpoint specification is correct. Some classes
of errors may be reported at run time rather than during compilation.

See Also

endpoint, IDL, ncacn_ip_tcp, ncacn_nb_nb, ncacn_nb_tcp, ncacn_np, ncacn_spx,
string_binding

 nocode

[nocode [, ACF-interface-attributes]] interface interface-name
{

[include filename-list ;] ...
[typedef [type-attribute-list] typename;] ...

[[nocode [, ACF-function-attributes]] function-name (
[ACF-parameter-attributes] parameter-name ;
...
);

]
...

}

ACF-interface-attributes
Specifies a list of one or more attributes that apply to the interface as a whole. Valid attributes
include either auto_handle or implicit_handle and either code or nocode. When two or more
interface attributes are present, they must be separated by commas.

interface-name
Specifies the name of the interface. In DCE-compatibility mode, the interface name must match the
name of the interface specified in the IDL file. When you use the MIDL compiler switch /acf, the
interface name in the ACF and the interface name in the IDL file can be different.

filename-list
Specifies a list of one or more C-language header filenames, separated by commas. The full
filename, including the extension, must be supplied.

type-attribute-list
Specifies a list of one or more attributes, separated by commas, that apply to the specified type.
Valid type attributes include allocate.

typename
Specifies a type defined in the IDL file. Type attributes in the ACF can only be applied to types
previously defined in the IDL file.

ACF-function-attributes
Specifies attributes that apply to the function as a whole, such as comm_status. Function attributes
are enclosed in square brackets. Separate multiple function attributes with commas.

function-name
Specifies the name of the function as defined in the IDL file.

ACF-parameter-attributes
Specifies ACF attributes that apply to a parameter. Note that zero or more attributes can be applied
to the parameter. Separate multiple parameter attributes with commas. ACF parameter attributes are
enclosed in square brackets.

parameter-name
Specifies a parameter of the function as defined in the IDL file. Each parameter for the function must
be specified in the same sequence and using the same name as defined in the IDL file.

Remarks

The nocode attribute can appear in the ACF header, or it can be applied to an individual function.

When the nocode attribute appears in the ACF header, client stub code is not generated for any
remote function unless it has the code function attribute. You can override the nocode attribute in the
header for an individual function by specifying the code attribute as a function attribute.

When the nocode attribute appears in the function's attribute list, no client stub code is generated for

the function.

Client stub code is not generated when:

· The ACF header includes the nocode attribute.
· The nocode attribute is applied to the function.
· The local attribute applies to the function in the interface file.

Either code or nocode can appear in a function's attribute list, and the one you choose can appear
exactly once.

The nocode attribute is ignored when server stubs are generated. You cannot apply it when generating
server stubs in DCE-compatibility mode.

See Also

ACF, code

 non-encapsulated_union

typedef [switch_type(switch-type-specifier) [, type-attr-list]] union [tag] {
[case (limited-expr-list)]

[[field-attribute-list]] type-specifier declarator-list ;
[[default]

[[field-attribute-list]] type-specifier declarator-list ;
]

}

switch-type-specifier
Specifies an integer, character, or enum type or an identifier of such a type.

type-attr-list
Specifies zero or more other attributes that apply to the union type. Valid type attributes include
handle, transmit_as; the pointer attribute unique, or ptr; and the usage attributes context_handle
and ignore. Separate multiple attributes with commas.

tag
Specifies an optional tag.

limited-expr-list
Specifies one or more C-language expressions that are supported by MIDL. Almost all C
expressions are supported. The MIDL compiler supports conditional expressions, logical
expressions, relational expressions, and arithmetic expressions. MIDL does not allow function
invocations in expressions and does not allow pre- and post-increment and -decrement operators.

field-attribute-list
Specifies zero or more field attributes that apply to the union member. Valid field attributes include
first_is, last_is, length_is, max_is, size_is; the usage attributes string, ignore, and
context_handle; the pointer attribute ref, unique, or ptr; and, for members that are themselves
unions, the union attribute switch_type. Separate multiple field attributes with commas.

type-specifier
Specifies a base_type, struct, union, enum type, or type identifier. An optional storage
specification can precede type-specifier.

declarator-list
Specifies one or more standard C declarators, such as identifiers, pointer declarators, and array
declarators. (Function declarators and bit-field declarations are not allowed in unions that are
transmitted in remote procedure calls. These declarators are allowed in unions that are not
transmitted.) Separate multiple declarators with commas.

Remarks

The non-encapsulated union is indicated by the presence of the type attribute switch_type and the
field attribute switch_is.

The shape of unions must be the same across platforms to ensure interconnectivity.

For more information, see switch_is and switch_type.

See Also

field_attributes, IDL, union

 non-idempotent

Non-idempotent (at most once) indicates that the remote procedure call cannot be executed more
than once because it will return a different value or change a state. Non-idempotent is the default for
remote procedure calls.

All non-idempotent calls are executed by the server "at most once"; that is, not at all or exactly once.
The protocol used to enforce this is the callback function. Non-idempotent requests require the
server to perform a callback when it receives a request from a client about which it has no information.
The server makes the callback request by issuing a remote procedure call to the client. When it
receives the callback, the server's boot time and the client's sequence number are used as the basis
of comparison to validate the request. If a match is made, the server executes the original request.
Otherwise, the request is ignored.

A non-idempotent call ensures that the data is received and processed at most one time.

See Also

broadcast, callback, idempotent, IDL, maybe

 notify

[notify] ... ;

Example

[notify] ProcedureFoo;
Remarks

The notify attribute instructs the MIDL compiler to generate a server stub that contains a call to a
specially-named procedure on the server side of the application. This procedure is called the notify
procedure. It is called after all the output arguments have been marshalled and any memory
associated with the parameters is freed.

The notify attribute is useful to develop applications acquiring resources in the server manager routine.
These resources are then freed in the notify procedure after the output parameters are fully
marshalled.

The notify procedure name is the name of the remote procedure suffixed by _notify. The notify
procedure does not require any parameters and does not return a result. A prototype of this procedure
is also generated in the header file. For example, if the IDL file contains the following:

ProcedureFoo [in] short S);

Specify the following in the ACF for MIDL to generate the notify call:

[notify] ProcedureFoo();

The generated code will contain the following call to the notify procedure:

ProcedureFoo_notify();

The header file will contain a prototype:

void ProcedureFoo_notif(void);

See Also

ACF

 object

[object, uuid(string-uuid)[, interface-attribute-list]]
interface interface-name : base-interface

string-uuid
Specifies a UUID string generated by the uuidgen utility. You can enclose the UUID string in quotes
when you use the MIDL compiler switch /ms_ext.

interface-attribute-list
Specifies other attributes that apply to the interface as a whole.

interface-name
Specifies the name of the interface.

base-interface
Specifies the name of an OLE interface from which this derived interface inherits member functions,
status codes, and interface attributes. All OLE interfaces are derived from the IUnknown interface or
some other OLE interface.

Remarks

The object interface attribute identifies a custom OLE interface. An interface attribute list that does not
include the object attribute indicates a DCE RPC interface. An interface attribute list for an OLE
interface must include the uuid attribute, but it cannot include the version attribute.

By default, compiling an OLE interface with the MIDL compiler generates the files needed to build a
proxy DLL that contains the code to support the use of the custom OLE interface by both client
applications and object servers. However, if the interface attribute list for an OLE interface specifies the
local attribute, the MIDL compiler generates only the interface header file.

The MIDL compiler automatically generates an interface data type for an OLE interface. As an
alternative, you can use typedef with the interface keyword to explicitly define an interface data type.
The interface specification can then use the interface data type in function parameters and return
values, struct and union members, and other type declarations. The following example illustrates the
use of an automatically generated IStream data type:

[object, uuid (ABCDEFOO-1234-1234-5678-ABCDEF123456]
interfaace IStream{

typedef IStream * LPSTREAM;
}
}

In an OLE interface, all the interface member functions are assumed to be virtual functions. A virtual
function has an implicit this pointer as the first parameter. The virtual function table contains an entry
for each interface member function.

Files that use the object attribute must be compiled with the /ms_ext MIDL compiler switch.

See Also

IDL, iid_is, local, /ms_ext, uuid, version

 optimize

optimize ("optimization-options")

optimization-options
Specifies the method of marshalling data. Use either "s" for mixed-mode marshalling or "i" for
interpreted marshalling.

Examples

optimize ("s") void FasterProcedure(...);
optimize ("i") void SmallerProcedure(...);
{
};

Remarks

The keyword optimize is used to fine-tune the level of gradation for marshalling data.

This version of RPC provides two methods for marshalling data: mixed-mode ("s") and interpreted ("i").
These methods correspond to the /Os and /Oi command-line switches. The interpreted method
marshals data completely offline. While this can reduce the size of the stub considerably, performance
can be affected.

If performance is a concern, the mixed-mode method can be the best approach. Mixed-mode allows
the MIDL compiler to make the determination between which data will be marshalled inline and which
will be marshalled by a call to an offline dynamic-link library. If many procedures use the same data
types, a single procedure can be called repeatedly to marshal the data. In this way, data that is most
suited to inline marshalling is processed inline while other data can be more efficiently marshalled
offline.

Note that the optimize attribute can be used as an interface attribute or as an operation attribute. If it is
used as an interface attribute, it sets the default for the entire interface, overriding command-line
switches. If, however, it is used as an operation attribute, it affects only that operation, overriding
command-line switches and the interface default.

See Also

ACF, /Oi, /Os

 out

[[function-attribute-list]] type-specifier [pointer-declarator] function-name(
[out [, parameter-attribute-list]] type-specifier [declarator]
, ...

);

function-attribute-list
Specifies zero or more attributes that apply to the function. Valid function attributes are callback,
local; the pointer attribute ref, unique, or ptr; and the usage attributes string, ignore, and
context_handle.

type-specifier
Specifies a base_type, struct, union, or enum type or type identifier. An optional storage
specification can precede type-specifier.

pointer-declarator
Specifies zero or more pointer declarators. A pointer declarator is the same as the pointer declarator
used in C; it is constructed from the * designator, modifiers such as far, and the qualifier const.

function-name
Specifies the name of the remote procedure.

parameter-attribute-list
Specifies zero or more attributes appropriate for a specified parameter type. Parameter attributes
with the out attribute can also take the directional attribute out; the field attributes first_is, last_is,
length_is, max_is, size_is, and switch_type; the pointer attribute ref, unique, or ptr; and the
usage attributes context_handle and string. The usage attribute ignore cannot be used as a
parameter attribute. Separate multiple attributes with commas.

declarator
Specifies standard C declarators, such as identifiers, pointer declarators, and array declarators. For
more information, see pointers and arrays. The parameter declarator in the function declarator,
such as the parameter name, is optional.

Example

void MyFunction([out] short * pcount);

Remarks

The out attribute identifies pointer parameters that are returned from the called procedure to the calling
procedure (from the server to the client).

The out attribute indicates that a parameter that acts as a pointer and its associated data in memory
are to be passed back from the called procedure to the calling procedure.

The out attribute must be a pointer. DCE IDL compilers require the presence of an explicit * as a
pointer declarator in the parameter declaration. Microsoft IDL offers an extension that drops this
requirement and allows an array or a previously defined pointer type.

A related attribute, in, indicates that the parameter is passed from the calling procedure to the called
procedure. The in and out attributes specify the direction in which the parameters are passed. A
parameter can be defined as in-only, out-only, or in, out.

An out-only parameter is assumed to be undefined when the remote procedure is called and memory
for the object is allocated by the server. Since top-level pointer/parameters must always point to valid
storage, and therefore cannot be null, out cannot be applied to top-level unique or ptr pointers.
Parameters that are ref pointers must be either in or in, out parameters.

See Also

in, ref

 out_of_line

The DCE IDL keyword out_of_line is not supported in Microsoft RPC.

See Also

IDL

 pipe

The DCE IDL keyword pipe is not supported in Microsoft RPC.

See Also

IDL

 pointer_default

pointer_default (ptr | ref | unique)

Example

[uuid(6B29FC40-CA47-1067-B31D-00DD010662DA),
version(3.3),
pointer_default(unique)]
interface dictionary

Remarks

The pointer_default attribute specifies the default pointer attribute for all pointers except top-level
pointers that appear in parameter lists. This includes embedded pointers ¾ pointers that appear in
structures, unions, and arrays. The pointer_default attribute can also apply to pointers returned by
functions.

MIDL generates an error during compilation when you do not supply a pointer attribute in an interface
that includes embedded pointers.

The default does not apply to pointers that appear as top-level parameters, such as individual pointers
used as function parameters. A pointer attribute must be supplied for these pointers. The default is
always overridden when a pointer attribute is supplied. If all pointers are supplied with pointer
attributes, the default attribute is ignored.

The pointer_default attribute is an optional attribute in the IDL file. The pointer_default attribute is
required only in the interface header when:

· A parameter with more than one asterisk (*) appears in a function.
· A structure member or union arm with a pointer declarator does not have a pointer attribute.
· A function returns a pointer type and does not have a pointer attribute as a function attribute.

If the pointer_default attribute appears in the interface header and is not required, it is ignored.

See Also

interface, pointers, ptr, ref, unique

 pointers

MIDL supports three kinds of pointers: reference pointers, unique pointers, and full pointers. These
pointers are specified by the pointer attributes ref, unique, and ptr.

A pointer attribute can be applied as a type attribute; as a field attribute that applies to a structure
member, union member, or parameter; or as a function attribute that applies to the function return type.
The pointer attribute can also appear with the pointer_default keyword.

To allow a pointer parameter to change in value during a remote function, you must provide another
level of indirection by supplying multiple pointer declarators. The explicit pointer attribute applied to the
parameter affects only the rightmost pointer declarator for the parameter. When there are multiple
pointer declarators in a parameter declaration, the other declarators default to the pointer attribute
specified by the pointer_default attribute. To apply different pointer attributes to multiple pointer
declarators, you must define intermediate types that specify the explicit pointer attributes.

Default Pointer-Attribute Values

When no pointer attribute is associated with a pointer that is a parameter, the pointer is assumed to be
a ref pointer.

When no pointer attribute is associated with a pointer that is a member of a structure or union, the
MIDL compiler assigns pointer attributes using the following priority rules (1 is highest):

1. Attributes explicitly applied to the pointer type
2. Attributes explicitly applied to the pointer parameter or member
3. Pointer_default attribute in the IDL file that defines the type
4. Pointer_default attribute in the IDL file that imports the type
5. Ptr (DCE-compatibility mode); unique (Microsoft-extensions mode)

When the IDL file is compiled using Microsoft-extensions (/ms_ext) mode, imported files can inherit
pointer attributes from importing files. For more information, see import.

Function Return Types

A pointer returned by a function must be a unique pointer or a full pointer. The MIDL compiler reports
an error if a function result is a reference pointer, either explicitly or by default. The returned pointer
always indicates new storage.

Functions that return a pointer value can specify a pointer attribute as a function attribute. If a pointer
attribute is not present, the function-result pointer uses the value provided as the pointer_default
attribute.

Pointer Attributes in Type Definitions

When you specify a pointer attribute at the top level of a typedef statement, the specified attribute is
applied to the pointer declarator, as expected. When no pointer attribute is specified, pointer
declarators at the top level of a typedef statement inherits the pointer attribute type when used.

DCE IDL does not allow the same pointer attribute to be explicitly applied twice ¾ for example, in both
the typedef declaration and the parameter attribute list. When you use the Microsoft-extensions mode
of the MIDL compiler (/ms_ext), this constraint is relaxed.

See Also

allocate, IDL, import, /ms_ext, pointer_default, ptr, ref, unique

 pragma

#pragma midl_echo("string")
#pragma token-sequence
#pragma pack (n)
#pragma pack ([push] [, id] [, n})
#pragma pack ([pop] [, id] [, n})

string
Specifies a string that is inserted into the generated header file. The quotation marks are removed
during the insertion process.

token-sequence
Specifies a sequence of tokens that are inserted into the generated header file as part of a #pragma
directive without processing by the MIDL compiler.

n
Specifies the current pack size. Valid values are 1, 2, 4, 8, and 16.

id
Specifies the user id.

Examples

/* IDL file */
#pragma midl_echo("#define UNICODE")
cpp_quote("#define __DELAYED_PREPROCESSING__ 1")
#pragma hdrstop
#pragma check_pointer(on)

/* generated header file */
#define UNICODE
#define __DELAYED_PREPROCESSING__ 1
#pragma hdrstop
#pragma check_pointer(on)

Remarks

The #pragma midl_echo directive instructs MIDL to emit the specified string, without the quote
characters, into the generated header file.

C-language preprocessing directives that appear in the IDL file are processed by the C compiler's
preprocessor. The #define directives in the IDL file are available during MIDL compilation, although not
to the C compiler.

For example, when the preprocessor encounters the directive "#define WINDOWS 4", the
preprocessor replaces all occurrences of "WINDOWS" in the IDL file with "4". The symbol "WINDOWS"
is not available at C-compile time.

To allow the C-preprocessor macro definitions to pass through the MIDL compiler to the C compiler,
use the #pragma midl_echo or cpp_quote directive. These directives instruct the MIDL compiler to
generate a header file that contains the parameter string with the quotation marks removed. The
#pragma midl_echo and cpp_quote directives are equivalent.

The #pragma pack directive is used by the MIDL compiler to control the packing of structures. It
overrides the /Zp command-line switch. The pack (n) option sets the current pack size to a specific
value: 1, 2, 4, 8, or 16. The pack (push) and pack (pop) options have the following characteristics:

· The compiler maintains a packing stack. The elements of the packing stack include a pack size and
an optional id. The stack is limited only by available memory with the current pack size at the top of

the stack.
· Pack (push) results in the current pack size pushed onto the packing stack. The stack is limited by

available memory.
· Pack (push, n) is the same as pack (push) followed by pack (n).
· Pack (push, id) also pushes id onto the packing stack along with the pack size.
· Pack (push, id, n) is the same as pack (push, id) followed by pack (n).
· Pack (pop) results in popping the packing stack. Unbalanced pops cause warnings and set the

current pack size to the command-line value.
· If pack (pop, id, n) is specified, then n is ignored.

The MIDL compiler places the strings specified in the cpp_quote and pragma directives in the header
file in the sequence in which they are specified in the IDL file and relative to other interface components
in the IDL file. The strings should usually appear in the interface-body section of the IDL file after all
import operations.

The MIDL compiler does not attempt to process #pragma directives that do not start with the prefix
"midl_." Other #pragma directives in the IDL file are passed into the generated header file without
changes.

See Also

cpp_quote, IDL, /Zp

 ptr

pointer_default(ptr)

typedef [ptr [, type-attribute-list]] type-specifier declarator-list;

typedef struct-or-union-declarator {
[ptr [, field-attribute-list]] type-specifier declarator-list;
...}

[ptr [, function-attribute-list]] type-specifier ptr-decl function-name(
[[parameter-attribute-list]] type-specifier [declarator]
, ...

);
[[function-attribute-list]] type-specifier [ptr-decl] function-name(

[ptr [, parameter-attribute-list]] type-specifier [declarator]
, ...

);

type-attribute-list
Specifies one or more attributes that apply to the type. Valid type attributes include handle,
switch_type, transmit_as; the pointer attribute ref, unique, or ptr; and the usage attributes
context_handle, string, and ignore. Separate multiple attributes with commas.

type-specifier
Specifies a base_type, struct, union, or enum type or type identifier. An optional storage
specification can precede type-specifier.

declarator and declarator-list
Specifies standard C declarators, such as identifiers, pointer declarators, and array declarators. For
more information, see pointers and arrays. The declarator-list consists of one or more declarators
separated by commas. The parameter-name identifier in the function declarator is optional.

struct-or-union-declarator
Specifies a MIDL struct or union declarator. field-attribute-list

Specifies zero or more field attributes that apply to the structure or union member or function
parameter. Valid field attributes include first_is, last_is, length_is, max_is, size_is; the usage
attributes string, ignore, and context_handle; the pointer attribute ref, unique, or ptr; and the
union attribute switch_type. Separate multiple field attributes with commas.

function-attribute-list
Specifies zero or more attributes that apply to the function. Valid function attributes are callback,
local; the pointer attribute ref, unique, or ptr; and the usage attributes string, ignore, and
context_handle.

ptr-decl
Specifies at least one pointer declarator to which the ptr attribute applies. A pointer declarator is the
same as the pointer declarator used in C; it is constructed from the * designator, modifiers such as
far, and the qualifier const.

function-name
Specifies the name of the remote procedure.

parameter-attribute-list
Consists of zero or more attributes appropriate for the specified parameter type. Parameter
attributes can take the directional attributes in and out; the field attributes first_is, last_is,
length_is, max_is, size_is, and switch_type; the pointer attribute ref, unique, or ptr; and the
usage attributes context_handle and string. The usage attribute ignore cannot be used as a
parameter attribute. Separate multiple attributes with commas.

Examples

pointer_default(ptr)

typedef [ptr, string] unsigned char * MY_STRING_TYPE;

[ptr] char * MyFunction([in, out, unique] long * plNumber);

Remarks

The ptr attribute designates a pointer as a full pointer. The full pointer approaches the full functionality
of the C-language pointer. The full pointer can have the value NULL and can change during the call
from null to non-null. Storage pointed to by full pointers can be reached by other names in the
application supporting aliasing and cycles. This functionality requires more overhead during a remote
procedure call to identify the data referred to by the pointer, determine whether the value is NULL, and
to discover if two pointers point to the same data.

Use full pointers for:

· Remote return values.
· Double pointers, when the size of an output parameter is not known.
· NULL pointers.

Full (and unique) pointers cannot be used to describe the size of an array or union because these
pointers can have the value NULL. This restriction by MIDL prevents an error that can result when a
NULL value is used as the size.

Reference and unique pointers are assumed to cause no aliasing of data. A directed graph obtained by
starting from a unique or reference pointer and following only unique or reference pointers contains
neither reconvergence nor cycles.

To avoid aliasing, all pointer values should be obtained from an input pointer of the same class of
pointer. If more than one pointer points to the same memory location, all such pointers must be full
pointers.

In some cases, full and unique pointers can be mixed. A full pointer can be assigned the value of a
unique pointer, as long as the assignment does not violate the restrictions on changing the value of a
unique pointer. However, when you assign a unique pointer the value of a full pointer, you may cause
aliasing.

Mixing full and unique pointers can cause aliasing, as demonstrated in the following example:

typedef struct {
 [ptr] short * pdata; // full pointer
} GRAPH_NODE_TYPE;

typedef struct {
 [unique] graph_node * left; // unique pointer
 [unique] graph_node * right; // unique pointer
} TREE_NODE_TYPE;

// application code:
short a = 5;
TREE_NODE_TYPE * t;
GRAPH_NODE_TYPE g, h;

g.pdata = h.pdata = &a;
t->left = &g;
t->right = &h;

// t->left->pdata == t->right->pdata == &a

Although "t->left" and "t->right" point to unique memory locations, "t->left->pdata" and "t->right->pdata"
are aliased. For this reason, aliasing-support algorithms must follow all pointers (including unique and
reference pointers) that may eventually reach a full pointer.

See Also

IDL, pointer_default, pointers, ref, unique

 ref

pointer_default(ref)

typedef [ref [, type-attribute-list]] type-specifier declarator-list;

typedef struct-or-union-declarator {
[ref [, field-attribute-list]] type-specifier declarator-list;
...}

[[function-attribute-list]] type-specifier [ptr-decl] function-name(
[ref [, parameter-attribute-list]] type-specifier [declarator]
, ...

);

type-attribute-list
Specifies one or more attributes that apply to the type. Valid type attributes include handle,
switch_type, transmit_as; the pointer attributes ref, unique, or ptr; and the usage attributes
context_handle, string, and ignore. Separate multiple attributes with commas.

type-specifier
Specifies a base_type, struct, union, or enum type or type identifier. An optional storage
specification can precede type-specifier.

declarator and declarator-list
Specifies standard C declarators, such as identifiers, pointer declarators, and array declarators. For
more information, see pointers and arrays. The declarator-list consists of one or more declarators
separated by commas. The parameter-name identifier in the function declarator is optional.

struct-or-union-declarator
Specifies a MIDL struct or union declarator.

field-attribute-list
Specifies zero or more field attributes that apply to the structure, union member, or function
parameter. Valid field attributes include first_is, last_is, length_is, max_is, size_is; the usage
attributes string, ignore, and context_handle; the pointer attribute ref, unique, or ptr; and the
union attribute switch_type. Separate multiple field attributes with commas.

function-attribute-list
Specifies zero or more attributes that apply to the function. Valid function attributes are callback,
local; the pointer attribute ref, unique, or ptr; and the usage attributes string, ignore, and
context_handle.

ptr-decl
Specifies at least one pointer declarator to which the ref attribute applies. A pointer declarator is the
same as the pointer declarator used in C; it is constructed from the * designator, modifiers such as
far, and the qualifier const.

function-name
Specifies the name of the remote procedure.

parameter-attribute-list
Consists of zero or more attributes appropriate for the specified parameter type. Parameter
attributes can take the directional attributes in and out; the field attributes first_is, last_is,
length_is, max_is, size_is, and switch_type; the pointer attribute ref, unique, or ptr; and the
usage attributes context_handle and string. The usage attribute ignore cannot be used as a
parameter attribute. Separate multiple attributes with commas.

Example

[unique] char * GetFirstName(

[in, ref] char * pszFullName
);

Remarks

The ref attribute identifies a reference pointer. It is used simply to represent a level of indirection.

A pointer attribute can be applied as a type attribute, as a field attribute that applies to a structure
member, union member, or parameter; or as a function attribute that applies to the function return type.
The pointer attribute can also appear with the pointer_default keyword.

A reference pointer has the following characteristics:

· Always points to valid storage; never has the value NULL. A reference pointer can always be
dereferenced.

· Never changes during a call. A reference pointer always points to the same storage on the client
before and after the call.

· Does not allocate new memory on the client. Data returned from the server is written into existing
storage specified by the value of the reference pointer before the call.

· Does not cause aliasing. Storage pointed to by a reference pointer cannot be reached from any
other name in the function.

A reference pointer cannot be used as the type of a pointer returned by a function.

If no attribute is specified for a top-level pointer parameter, it is treated as a reference pointer.

See Also

pointers, ptr, unique

 represent_as

typedef [represent_as(repr-type) [, type-attribute-list]]
named-type;

void __RPC_USER named-type_from_local (
repr-type __RPC_FAR * ,
named-type __RPC_FAR * __RPC_FAR *);

void __RPC_USER named-type_to_local (
named-type __RPC_FAR * ,
repr-type __RPC_FAR *);

void __RPC_USER named-type_free_inst (
named-type __RPC_FAR *);

void __RPC_USER named-type_free_local (
repr-type__RPC_FAR *);

named-type
Specifies the named transfer data type that is transferred between client and server.

type-attribute-list
Specifies one or more attributes that apply to the type. Valid type attributes include handle,
switch_type; the pointer attribute ref, unique, or ptr; and the usage attributes string and ignore.
Separate multiple attributes with commas.

repr-type
Specifies the represented local type in the target language that is presented to the client and server
applications.

Examples

typedef struct _TREE_NODE_TYPE {
 unsigned short data;
 struct _TREE_NODE_TYPE * left;
 struct _TREE_NODE_TYPE * right;
} TREE_NODE_TYPE;

typedef [represent_as(TREE_NAMED_TYPE)] TREE_TYPE; /*in ACF */

void __RPC_USER TREE_TYPE_from_local(
TREE_TYPE __RPC_FAR * ,
TREE_NAMED_TYPE __RPC_FAR * __RPC_FAR *);

void __RPC_USER TREE_TYPE_to_local (
TREE_NAMED_TYPE __RPC_FAR *,
TREE_TYPE __RPC_FAR *);

void __RPC_USER TREE_TYPE_free_inst(
TREE_NAMED_TYPE __RPC_FAR *);

void __RPC_USER TREE_TYPE_free_local(
TREE_TYPE __RPC_FAR *);

Remarks

The represent_as attribute associates a named local type in the target language repr-type with a
transfer type named-type that is transferred between client and server. You must supply routines that

convert between the local and the transfer types and that free memory used to hold the converted data.
The represent_as attribute instructs the stubs to call the user-supplied conversion routines.

The transferred type named-type must resolve to a MIDL base type, predefined type, or to a type
identifier. For more information, see base_types.

The user must supply the following routines:

Routine name Description
named_type_from_loca
l

Allocates an instance of the network type and
converts from the local type to the network type

named_type_to_local Converts from the network type to the local type
named_type_free_local Frees memory allocated by a call to the

named_type_to_local routine, but not the type
itself

named_type_free_inst Frees storage for the network type (both sides)

The client stub calls named-type_from_local to allocate space for the transmitted type and to translate
the data from the local type to the network type. The server stub allocates space for the original data
type and calls named-type_to_local to translate the data from the network type to the local type.

Upon return from the application code, the client and server stubs call named-type_free_inst to
deallocate the storage for network type. The client stub calls named-type_free_local to deallocate
storage returned by the routine.

The following types cannot have a represent_as attribute:

· Pipe types.
· Types used as the base type in a pipe definition.
· Conformant, varying, or conformant varying arrays.
· Structures in which the last member is a conformant array (a conformant structure).
· Pointers or types that contain a pointer.
· Predefined types handle_t, void.

See Also

ACF, arrays, base_types, typedef

 shape

The DCE IDL keyword shape is not supported in Microsoft RPC.

See Also

IDL

 short

The short keyword designates a 16-bit integer. The short keyword can be preceded by either the
keyword signed or the keyword unsigned. The int keyword is optional and can be omitted. To the
MIDL compiler, a short integer is signed by default and is synonymous with signed short int.

The short integer type is one of the base types of the IDL language. The short integer type can appear
as a type specifier in const declarations, typedef declarations, general declarations, and function
declarators (as a function-return-type specifier and a parameter-type specifier). For the context in
which type specifiers appear, see IDL.

See Also

base_types, IDL, int, long, small

 signed

The signed keyword indicates that the most significant bit of an integer variable represents a sign bit
rather than a data bit. This keyword is optional and can be used with any of the character and integer
types char, wchar_t, long, short, and small.

When you use the MIDL compiler switch char, character and integer types that appear in the IDL file
without explicit sign keywords can appear with the signed or unsigned keywords in the generated
header file. To avoid confusion, explicitly specify the sign of the integer and character types.

See Also

base_types, IDL, int, long, short, small, unsigned

 size_is

[size_is(limited-expression)]

limited-expression
Specifies a C-language expression that evaluates to an integer that represents the maximum
allocation size, in elements, of the leftmost dimension of an array. The MIDL compiler supports
conditional expressions, logical expressions, relational expressions, and arithmetic expressions.
MIDL does not allow function invocations in expressions and does not allow pre- and post-increment
and -decrement operators.

Examples

void Proc1(
[in, short] m;
[in, size_is(m)] short a[]); /* if m = 10, a[10] */

void Proc2(
[in, short] m;
[in, size_is(m)] short b[][20]); /* if m = 10, b[10][20] */

Remarks

The size_is attribute is used to specify an expression or identifier that designates the maximum size, in
elements, of an array dimension. The specified value must be non-negative. You can use either size_is
or max_is (but not both in the same attribute list) to specify the size of an array whose upper bounds
are determined at run time. Note, however, that the size_is attribute cannot be used on array
dimensions that are fixed. The max_is attribute specifies the maximum valid array index. As a result,
specifying size_is(n) is equivalent to specifying max_is(n-1).

An in or in, out conformant-array parameter with the string attribute need not have the size_is or
max_is attribute. In this case, the size of the allocation is determined from the null terminator of the
input string. All other conformant arrays with the string attribute must have a size_is or max_is
attribute.

In an OLE interface (when the object interface attribute is specified), you can use the size_is attribute
with a void * type. In this case, the declarator is treated as a pointer to an array of bytes. This usage
requires using the MIDL compiler with the /ms_ext switch.

See Also

arrays, field_attributes, first_is, IDL, last_is, length_is, max_is, min_is

 small

The small keyword designates an 8-bit integer number. The small keyword can be preceded by either
the keyword signed or the keyword unsigned. The int keyword is optional and can be omitted. To the
MIDL compiler, a small integer is signed by default and is synonymous with signed small int.

The small integer type is one of the base types of the IDL language. The small integer type can
appear as a type specifier in const declarations, typedef declarations, general declarations, and
function declarators (as a function-return-type specifier and as a parameter-type specifier). For the
context in which type specifiers appear, see IDL.

The sign of the small type can be modified by the MIDL compiler switch /char. To avoid confusion,
specify the sign of the integer type with the keywords signed and unsigned.

See Also

/char, int, long, short

 string

typedef [string [, type-attribute-list]] type-specifier declarator-list;

typedef struct-or-union-declarator {
[string [, field-attribute-list]] type-specifier declarator-list;
...}

[string [, function-attribute-list]] type-specifier ptr-decl function-name(
[[parameter-attribute-list]] type-specifier [declarator]
, ...

);
[[function-attribute-list]] type-specifier [ptr-decl] function-name(

[string [, parameter-attribute-list]] type-specifier [declarator]
, ...

);

type-attribute-list
Specifies one or more attributes that apply to a type. Valid type attributes include handle,
switch_type, transmit_as; the pointer attribute ref, unique, or ptr; and the usage attributes
context_handle, string, and ignore. Separate multiple attributes with commas.

type-specifier
Specifies a base_type, struct, union, or enum type or type identifier. An optional storage
specification can precede type-specifier.

declarator and declarator-list
Specify standard C declarators, such as identifiers, pointer declarators, and array declarators. For
more information, see pointers and arrays. The declarator-list consists of one or more declarators
separated by commas. The parameter-name identifier in the function declarator is optional.

struct-or-union-declarator
Specifies a MIDL struct or union declarator.

field-attribute-list
Specifies zero or more field attributes that apply to the structure, union member, or function
parameter. Valid field attributes include first_is, last_is, length_is, max_is, size_is; the usage
attributes string, ignore, and context_handle, the pointer attribute ref, unique, or ptr, and the
union attribute switch_type. Separate multiple field attributes with commas.

function-attribute-list
Specifies zero or more attributes that apply to the function. Valid function attributes are callback,
local; the pointer attribute ref, unique, or ptr; and the usage attributes string, ignore, and
context_handle.

ptr-decl
Specifies an optional pointer declarator to which the string attribute applies. A pointer declarator is
the same as the pointer declarator used in C; it is constructed from the * designator, modifiers such
as far, and the qualifier const.

function-name
Specifies the name of the remote procedure.

parameter-attribute-list
Consists of zero or more attributes appropriate for the specified parameter type. Parameter
attributes can take the directional attributes in and out; the field attributes first_is, last_is,
length_is, max_is, size_is, and switch_type; the pointer attribute ref, unique, or ptr; and the
usage attributes context_handle and string. The usage attribute ignore cannot be used as a
parameter attribute. Separate multiple attributes with commas.

Example

/* a string type that can hold up to 80 characters */
typedef [string] char line[81];

void Proc1([in, string] char * pszName);

Remarks

The string attribute indicates that the one-dimensional char, wchar_t, byte (or equivalent) array or the
pointer to such an array must be treated as a string.

The string can also be an array (or a pointer to an array) of constructs whose fields are all of the type
"byte."

If the string attribute is used with an array whose bounds are determined at run time, you must also
specify a size_is or max_is attribute.

The string attribute cannot be used with attributes that specify the range of transmitted elements, such
as first_is, last_is, and length_is.

When used on multidimensional arrays, the string attribute applies to the rightmost array.

To define a counted string, do not use the string attribute. Use a character array or character-based
pointer such as the following:

typedef struct {
 unsigned short size;
 unsigned short length;
 [size_is(size), length_is(length)] char string[*];
} counted_string;

The string attribute specifies that the stub should use a language-supplied method to determine the
length of strings.

When declaring strings in C, you must allocate space for an extra character that marks the end of the
string.

See Also

arrays, char, wchar_t

 struct

struct [struct-tag] {
[[field-attribute-list]] type-specifier declarator-list;
...

}

struct-tag
Specifies an optional tag for the structure.

field-attribute-list
Specifies zero or more field attributes that apply to the structure member. Valid field attributes
include first_is, last_is, length_is, max_is, size_is; the usage attributes string, ignore, and
context_handle; the pointer attribute ref, unique, or ptr; and the union attribute switch_type.
Separate multiple field attributes with commas.

type-specifier
Specifies a base_type, struct, union, or enum type or type identifier. An optional storage
specification can precede type-specifier.

declarator-list
Specifies one or more standard C declarators, such as identifiers, pointer declarators, and array
declarators. (Function declarators and bit-field declarations are not allowed in structures that are
transmitted in remote procedure calls. These declarators are allowed in structures that are not
transmitted.) Separate multiple declarators with commas.

Example

typedef struct _PITCHER_RECORD_TYPE {
 short flag;
 [switch_is(flag)] union PITCHER_STATISTICS_TYPE p;
} PITCHER_RECORD_TYPE;

Remarks

The struct keyword is used in a structure type specifier. The IDL structure type specifier differs from
the standard C type specifier in the following ways:

· Each structure member can be associated with optional field attributes that describe characteristics
of that structure member for the purposes of a remote procedure call.

· Bit fields and function declarators are not allowed in structures that are used in remote procedure
calls. These standard C declarator constructs can be used only if the structure is not transmitted on
the network.

The shape of structures must be the same across platforms to ensure interconnectivity.

See Also

arrays, base_types, /c_ext, IDL, /ms_ext, pointers

 switch

switch (switch-type switch-name)

switch-type
Specifies an int, char, enum type, or an identifier that resolves to one of these types.

switch-name
Specifies the name of the variable of type switch-type that acts as the union discriminant.

Examples

typedef union _S1_TYPE switch (long l1) U1_TYPE {
 case 1024:
 float f1;
 case 2048:
 double d2;
} S1_TYPE;

/* in generated header file */
typedef struct _S1_TYPE {
 long l1;
 union {
 float f1;
 double d2;
 } U1_TYPE;
} S1_TYPE;

Remarks

The switch keyword selects the discriminant for an encapsulated_union.

See Also

IDL, non-encapsulated_union, switch_is, switch_type, union

 switch_is

typedef struct [struct-tag] {
[switch_is(limited-expr) [, field-attr-list]] union-type-specifier declarator;
...

}

[[function-attribute-list]] type-specifier [pointer-declarator] function-name(
[switch_is(limited-expr) [, param-attr-list]] union-type [declarator]
, ...

);

struct-tag
Specifies an optional tag for a structure.

limited-expr
Specifies a C-language expression supported by MIDL. Almost all C-language expressions are
supported. The MIDL compiler supports conditional expressions, logical expressions, relational
expressions, and arithmetic expressions. MIDL does not allow function invocations in expressions
and does not allow pre- and post-increment and -decrement operators.

field-attr-list
Specifies zero or more field attributes that apply to a union member. Valid field attributes include
first_is, last_is, length_is, max_is, size_is; the usage attributes string, ignore, and
context_handle; the pointer attribute ref, unique, or ptr; and for members that are themselves
unions, the union attribute switch_type. Separate multiple field attributes with commas.

union-type-specifier
Specifies the union type identifier. An optional storage specification can precede type-specifier.

declarator and declarator-list
Specifies a standard C declarator, such as an identifier, pointer declarator, and array declarator.
(Function declarators and bit-field declarations are not allowed in unions that are transmitted in
remote procedure calls. These declarators are allowed in unions that are not transmitted.) Separate
multiple declarators with commas.

function-attribute-list
Specifies zero or more attributes that apply to the function. Valid function attributes are callback,
local; the pointer attribute ref, unique, or ptr; and the usage attributes string, ignore, and
context_handle.

type-specifier
Specifies a base_type, struct, union, enum type, or type identifier. An optional storage
specification can precede type-specifier.

pointer-declarator
Specifies zero or more pointer declarators. A pointer declarator is the same as the pointer declarator
used in C; it is constructed from the * designator, modifiers such as far, and the qualifier const.

function-name
Specifies the name of the remote procedure.

param-attr-list
Specifies zero or more attributes appropriate for the specified parameter type. Parameter attributes
can take the directional attributes in and out, the field attributes first_is, last_is, length_is,
max_is, size_is, and switch_type; the pointer attribute ref, unique, or ptr; and the usage attributes
context_handle and string. The usage attribute ignore cannot be used as a parameter attribute.
Separate multiple attributes with commas.

union-type
Identifies the union type specifier.

Examples

typedef [switch_type(short)] union _WILLIE_UNION_TYPE {
 [case(24)]
 float fMays;
 [case(25)]
 double dMcCovey;
 [default]
 ;
} WILLIE_UNION_TYPE;

typedef struct _WINNER_TYPE {
 [switch_is(sUniformNumber)] union WILLIE_UNION_TYPE w;
 short sUniformNumber;
} WINNER_TYPE;

Remarks

The switch_is attribute specifies the expression or identifier acting as the union discriminant that
selects the union member. The discriminant associated with the switch_is attribute must be defined at
the same logical level as the union:

· When the union is a parameter, the union discriminant must be another parameter.
· When the union is a field of a structure, the discriminant must be another field of the same structure.

The sequence in a structure or a function parameter list is not significant. The union can either precede
or follow the discriminant.

The switch_is attribute can appear as a field attribute or as a parameter attribute.

See Also

encapsulated_union, non-encapsulated_union, switch_type, union

 switch_type

switch_type(switch-type-specifier)

switch-type-specifier
Specifies an integer, character, boolean, or enum type, or an identifier of such a type.

Examples

typedef [switch_type(short)] union _WILLIE_UNION_TYPE {
 [case(24)]
 float fMays;
 [case(25)]
 double dMcCovey;
 [default]
 ;
} WILLIE_UNION_TYPE;

typedef struct _WINNER_TYPE {
 [switch_is(sUniformNumber)] union WILLIE_UNION_TYPE w;
 short sUniformNumber;
} WINNER_TYPE;

Remarks

The switch_type attribute identifies the type of the variable used as the union discriminant. The switch
type can be an integer, character, boolean, or enum type.

The switch_is attribute specifies the name of the parameter that is the union discriminant. The
switch_is attribute applies to parameters or members of structures or unions.

The union and its discriminant must be specified at the same logical level. When the union is a
parameter, the union discriminant must be another parameter. When the union is a field of a structure,
the discriminant must be another field of the structure at the same level as the union field.

See Also

encapsulated_union, IDL, non-encapsulated_union, switch_is, union

 transmit_as

typedef [transmit_as(xmit-type) [, type-attribute-list]]
type-specifier declarator-list;

void __RPC_USER type-id_to_xmit (
type-id __RPC_FAR *,
xmit-type __RPC_FAR * __RPC_FAR *);

void __RPC_USER type-id_from_xmit (
xmit-type __RPC_FAR *,
type-id __RPC_FAR *);

void __RPC_USER type-id_free_inst (
type-id __RPC_FAR *);

void __RPC_USER type-id_free_xmit (
xmit-type__RPC_FAR *);

xmit-type
Specifies the data type that is transmitted between client and server.

type-attribute-list
Specifies one or more attributes that apply to the type. Valid type attributes include handle,
switch_type; the pointer attribute ref, unique, or ptr; and the usage attributes string and ignore.
Separate multiple attributes with commas.

type-specifier
Specifies a base_type, struct, union, enum type, or type identifier. An optional storage
specification can precede type-specifier.

declarator-list
Specifies standard C declarators, such as identifiers, pointer declarators, and array declarators. For
more information, see pointers and arrays. The declarator-list consists of one or more declarators
separated by commas. The parameter declarator in the function declarator, such as the parameter
name, is optional.

type-id
Specifies the name of the data type that is presented to the client and server applications.

Examples

typedef struct _TREE_NODE_TYPE {
 unsigned short data;
 struct _TREE_NODE_TYPE * left;
 struct _TREE_NODE_TYPE * right;
} TREE_NODE_TYPE;

typedef [transmit_as(TREE_XMIT_TYPE)] TREE_NODE_TYPE * TREE_TYPE;

void __RPC_USER TREE_TYPE_to_xmit(
TREE_TYPE __RPC_FAR * ,
TREE_XMIT_TYPE __RPC_FAR * __RPC_FAR *);

void __RPC_USER TREE_TYPE_from_xmit (
TREE_XMIT_TYPE __RPC_FAR *,
TREE_TYPE __RPC_FAR *);

void __RPC_USER TREE_TYPE_free_inst(
TREE_TYPE __RPC_FAR *);

void __RPC_USER TREE_TYPE_free_xmit(
TREE_XMIT_TYPE __RPC_FAR *);

Remarks

The transmit_as attribute instructs the compiler to associate type-id, a presented type that client and
server applications manipulate, with a transmitted type xmit-type. The user must supply routines that
convert data between the presented and the transmitted types; these routines must also free memory
used to hold the converted data. The transmit_as attribute instructs the stubs to call the user-supplied
conversion routines.

The transmitted type xmit-type must resolve to a MIDL base type, predefined type, or a type identifier.
For more information, see base_types.

The user must supply the following routines:

Routine name Description
type-id_to_xmit Converts data from the presented type to the

transmitted type
type-id_from_xmit Converts data from the transmitted type to the

presented type
type-id_free_inst Frees storage used by the callee for the presented

type
type-id_free_xmit Frees storage used by the caller for the transmitted

type

The client stub calls type-id_to_xmit to allocate space for the transmitted type and to translate the data
into objects of type xmit-type. The server stub allocates space for the original data type and calls type-
id_from_xmit to translate the data from its transmitted type to the presented type.

Upon return from the application code, the server stub calls type-id_free_inst to deallocate the storage
for type-id on the server side. The client stub calls type-id_free_xmit to deallocate the xmit-type
storage on the client side.

The following types cannot have a transmit_as attribute:

· Context handles (types with the context_handle type attribute and types that are used as
parameters with the context_handle attribute)

· Parameters that are conformant, varying, or open arrays
· Structures that contain conformant arrays
· The predefined type handle_t, void

When a pointer attribute appears as one of the type attributes with the transmit_as attribute, the
pointer attribute is applied to the xmit_type parameter of the type-id-to_xmit and type-id-from_xmit
routines.

See Also

arrays, base_types, context_handle, IDL, typedef

 typedef

/* IDL file typedef syntax */
typedef [[idl-type-attribute-list]] type-specifier declarator-list;

/* ACF typedef syntax */
typedef [acf-type-attribute-list] typename;

idl-type-attribute-list
Specifies one or more attributes that apply to the type. Valid type attributes in an IDL file include
handle, switch_type, transmit_as; the pointer attribute ref, unique, or ptr; and the usage
attributes context_handle, string, and ignore. Separate multiple attributes with commas.

type-specifier
Specifies a base_type, struct, union, enum type, or type identifier. An optional storage
specification can precede type-specifier. The const keyword can precede type-specifier.

declarator-list
Specifies standard C declarators, such as identifiers, pointer declarators, and array declarators. For
more information, see pointers and arrays. The declarator-list consists of one or more declarators,
separated by commas.

acf-type-attribute-list
Specifies one or more attributes that apply to the type. Valid type attributes in an ACF include
allocate, encode, and decode.

typename
Specifies a type defined in the IDL file.

Remarks

The IDL typedef keyword allows typedef declarations that are very similar to
C-language typedef declarations. The IDL typedef declaration is augmented to allow you to associate
type attributes with the defined types. Valid type attributes include handle, switch_type, transmit_as;
the pointer attribute ref, unique, or ptr; and the usage attributes context_handle, string, and ignore.

The typedef keyword in an ACF applies attributes to types that are defined in the corresponding IDL
file. For example, the allocate type attribute allows you to customize memory allocation and
deallocation by both the application and the stubs.

The ACF typedef statement appears as part of the ACF_body. Note that the ACF typedef syntax is
different from the IDL typedef syntax and the C-language typedef syntax. No new types can be
introduced in the ACF.

See Also

ACF, allocate, decode, encode, IDL

 union

The union keyword appears in functions that relate to discriminated unions.

MIDL supports two types of discriminated unions: encapsulated unions and non-encapsulated unions.
The encapsulated union is compatible with previous implementations of RPC (NCA version 1). The
non-encapsulated union eliminates some of the restrictions of the encapsulated union and provides a
more visible discriminant than the encapsulated union.

The encapsulated union is identified by the switch keyword and the absence of other union-related
keywords.

The non-encapsulated union, also known as a union, is identified by the presence of the switch_is and
switch_type keywords, which identify the discriminant and its type.

When you use in, out unions, be aware that changing the value of the union switch during the call can
make the remote call behave differently from a local call. On return, the stubs copy the in, out
parameter into memory that is already present on the client. When the remote procedure modifies the
value of the union switch and consequently changes the data object's size, the stubs can overwrite
valid memory with the out value. When the union switch changes the data object from a base type to a
pointer type, the stubs can overwrite valid memory when they copy the pointer referent into the
memory location indicated by the in value of a base type.

The shape of unions must be identical across platforms to ensure interconnectivity.

See Also

encapsulated_union, IDL, non-encapsulated_union, switch_is, switch_type

 unique

pointer_default(unique)

typedef [unique [, type-attribute-list]] type-specifier declarator-list;

typedef struct-or-union-declarator {
[unique [, field-attribute-list]] type-specifier declarator-list;
...}

[unique [, function-attribute-list]] type-specifier ptr-decl function-name(
[[parameter-attribute-list]] type-specifier [declarator]
, ...

);
[[function-attribute-list]] type-specifier [ptr-decl] function-name(

[unique [, parameter-attribute-list]] type-specifier [declarator]
, ...

);

type-attribute-list
Specifies one or more attributes that apply to the type. Valid type attributes include handle,
switch_type, transmit_as; the pointer attribute ref, unique, or ptr; and the usage attributes
context_handle, string, and ignore. Separate multiple attributes with commas.

type-specifier
Specifies a base_type, struct, union, enum type, or type identifier. An optional storage
specification can precede type-specifier.

declarator and declarator-list
Specifies standard C declarators, such as identifiers, pointer declarators, and array declarators. For
more information, see pointers and arrays. The declarator-list consists of one or more declarators
separated by commas. The parameter-name identifier in the function declarator is optional.

struct-or-union-declarator
Specifies a MIDL struct or union declarator. field-attribute-list

Specifies zero or more field attributes that apply to the structure member, union member, or function
parameter. Valid field attributes include first_is, last_is, length_is, max_is, size_is; the usage
attributes string, ignore, and context_handle; the pointer attribute ref, unique, or ptr; and the
union attribute switch_type. Separate multiple field attributes with commas.

function-attribute-list
Specifies zero or more attributes that apply to the function. Valid function attributes are callback,
local; the pointer attribute ref, unique, or ptr; and the usage attributes string, ignore, and
context_handle.

ptr-decl
Specifies at least one pointer declarator to which the unique attribute applies. A pointer declarator is
the same as the pointer declarator used in C; it is constructed from the * designator, modifiers such
as far, and the qualifier const.

function-name
Specifies the name of the remote procedure.

parameter-attribute-list
Consists of zero or more attributes appropriate for the specified parameter type. Parameter
attributes can take the directional attributes in and out; the field attributes first_is, last_is,
length_is, max_is, size_is, and switch_type; the pointer attribute ref, unique, or ptr; and the
usage attributes context_handle and string. The usage attribute ignore cannot be used as a
parameter attribute. Separate multiple attributes with commas.

Example

pointer_default(unique)

typedef [unique, string] unsigned char * MY_STRING_TYPE;

[unique] char * MyFunction([in, out, unique] long * plNumber);

Remarks

The unique attribute specifies a unique pointer.

Pointer attributes can be applied as a type attribute; as a field attribute that applies to a structure
member, union member, or parameter; or as a function attribute that applies to the function return type.
The pointer attribute can also appear with the pointer_default keyword.

A unique pointer has the following characteristics:

· Can have the value NULL.
· Can change during a call from NULL to non-null, from non-null to NULL, or from one non-null value

to another.
· Can allocate new memory on the client. When the unique pointer changes from NULL to non-null,

data returned from the server is written into new storage.
· Can use existing memory on the client without allocating new memory. When a unique pointer

changes during a call from one non-null value to another, the pointer is assumed to point to a data
object of the same type. Data returned from the server is written into existing storage specified by
the value of the unique pointer before the call.

· Can orphan memory on the client. Memory referenced by a non-null unique pointer may never be
freed if the unique pointer changes to NULL during a call and the client does not have another
means of dereferencing the storage.

· Does not cause aliasing. Like storage pointed to by a reference pointer, storage pointed to by a
unique pointer cannot be reached from any other name in the function.

The stubs call the user-supplied memory-management functions midl_user_allocate and
midl_user_free to allocate and deallocate memory required for unique pointers and their referents.

The following restrictions apply to unique pointers:

· The unique attribute cannot be applied to binding-handle parameters (handle_t) and context-handle
parameters.

· The unique attribute cannot be applied to out-only top-level pointer parameters (parameters that
have only the out directional attribute).

· Unique pointers cannot be used to describe the size of an array or union arm because unique
pointers can have the value NULL. This restriction prevents the error that results if a null value is
used as the array size or the union-arm size.

See Also

pointer_default, pointers, ptr, ref

 unsigned

The unsigned keyword indicates that the most significant bit of an integer variable represents a data
bit rather than a signed bit. This keyword is optional and can be used with any of the character and
integer types char, wchar_t, long, short, and small.

When you use the MIDL compiler switch /char, character and integer types that appear in the IDL file
without explicit sign keywords can appear with the signed or unsigned keyword in the generated
header file. To avoid confusion, explicitly specify the sign of the integer and character types.

See Also

base_types, /char, IDL, int, long, short, signed, small

 uuid

uuid (string_uuid)
uuid ("string-uuid")

string-uuid
Specifies a string consisting of eight hexadecimal digits followed by a hyphen, then three groups of
four hexadecimal digits each followed by a hyphen, then twelve hexadecimal digits. You can enclose
the UUID string in quotes when you use the MIDL compiler switch /ms_ext.

Examples

uuid(6B29FC40-CA47-1067-B31D-00DD010662DA)

uuid("6B29FC40-CA47-1067-B31D-00DD010662DA")

Remarks

The uuid interface attribute designates a universally unique identifier (UUID) that is assigned to the
interface and that distinguishes it from other interfaces. The run-time library uses the interface UUID to
help establish communication between the client and server applications.The uuid attribute can appear
in the interface attribute list for either an RPC interface or an OLE interface.

For an RPC interface, the interface attribute list must include either the uuid attribute or the local
attribute, and the one you choose must occur exactly once. If the list includes the uuid attribute, it can
also include the version attribute.

For an OLE interface (identified by the object interface attribute), the interface attribute list must
include the uuid attribute, but it cannot include the version attribute. The list for an OLE interface can
include the local attribute even though the uuid attribute is present.

Microsoft RPC supports an extension to DCE IDL that allows the UUID to be enclosed in double
quotation marks. The quoted form is needed for
C-compiler preprocessors that interpret UUID numbers as floating-point numbers.

All UUID values should be computer-generated to guarantee uniqueness. Use the uuidgen utility to
generate unique UUID values.

The UUID and version numbers of the interface are used to determine whether the client can bind to
the server. For the client to bind to the server, the UUID specified in the client and server interfaces
must be the same.

Note that an interface without attributes can be imported into a base IDL file. However, the interface
must contain only datatypes with no procedures. If even one procedure is contained in the interface, a
local or UUID attribute must be specified.

See Also

IDL, interface, local, /ms_ext, version

 v1_enum

[v1_enum] enum {...}

Example

typedef [v1_enum] enum {label1, label2, ...};

Remarks

The keyword v1_enum is used to specify enumerations to be transmitted as a 32-bit entity.

Enumeration types are transmitted as 16-bits by default. When applied to an enumerator, the v1_enum
attribute ensures that the enumerator is transmitted as 32-bit, rather than 16-bit.

Note that the use of the v1_enum attribute is recommended for enumerators on 32-bit systems. This
increases the efficiency of marshalling and unmarshalling data when such an enumerator is embedded
in structures or unions.

See Also

enum, IDL

 version

version (major-value[. minor-value])

major-value
Specifies a short unsigned integer between 0 and 65,535, inclusive, that represents the major
version number.

minor-value
Specifies a short unsigned integer between 0 and 65,535, inclusive, that represents the minor
version number. The minor version value is optional. If present, the minor version value is separated
from the major version number by a period character (.). If not specified, the minor version value is
zero.

Remarks

The version interface attribute identifies a particular version among multiple versions of an RPC
interface. With the version attribute, you ensure that only compatible versions of client and server
software are allowed to bind.

The MIDL compiler does not support multiple versions of an OLE interface. As a result, an interface
attribute list that includes the object attribute cannot include the version attribute. To create a new
version of an existing OLE interface, use interface inheritance. A derived OLE interface has a different
UUID but inherits the interface member functions, status codes, and interface attributes of the base
interface.

In combination with the uuid value, the version value uniquely identifies the interface. The run-time
library passes the version and uuid values to the server when the client calls a remote function. A
client can bind to a server for a given interface if:

· The uuid value is the same.
· The major version number is the same.
· The client's minor version number is less than or equal to the server's minor version number.

It is to your benefit and your users' benefit to retain upward compatibility among versions ¾ that is, to
modify the interface so that only the minor version number changes. You can retain upward
compatibility when you add new data types that are not used by existing functions and when you add
new functions without changing the interface specification for existing functions.

Change the major version number if any one of the following conditions apply:

· If you change a data type that is used by an existing function.
· If you change the interface specification for an existing function (such as adding or removing a

parameter).
· If you add callbacks that are called by existing functions.

Change the minor version number if all of the following conditions apply:

· If you add type definitions or constants that are not used by any existing functions or callbacks.
· If you do not change any existing functions and you add new functions to the interface.
· If you add callbacks that are not called by any existing functions and the new callbacks follow any

existing functions.

If your modifications qualify as an upward-compatible change to the interface, use the following
procedure to modify the interface (IDL) file:

1. Add new constant and type definitions to the interface file.
2. Add callback functions to the end of the interface file.

3. Add new functions to the end of the interface file.

The version attribute can occur at most once in the interface header.

When the version attribute is not present, the interface has a default version of 0.0.

The period character between the major and minor numbers is a delimiter and does not represent a
decimal point. The minor number is treated as an integer. Leading zeroes are not significant. Trailing
zeroes are significant.

For example, the version setting 1.11 represents a major value of one and a minor value of eleven.
Version 1.11 does not represent a value between 1.1 and 1.2.

See Also

IDL, interface, uuid

 void

void function (parameter-list);
return-type function(void);
typedef [context_handle] void * context-handle-type;
return-type function (...[context_handle] void * * context-handle-type...);

function
Specifies the name of the remote procedure.

parameter-list
Specifies the list of parameters passed to the function along with the associated parameter types
and parameter attributes.

return-type
Specifies the name of the type returned by the function.

context-handle-type
Specifies the name of the type that takes the context_handle attribute.

Examples

void VoidFunc1(void);
void VoidFunc2([in, out] short s1);
typedef [context_handle] void * MY_CX_HNDL_TYPE;
void InitHandle([out] MY_CX_HNDL_TYPE * ppCxHndl);

Remarks

The base type void indicates a procedure with no arguments or a procedure that does not return a
result value.

The pointer type void *, which in C describes a generic pointer that can be cast to represent any
pointer type, is limited in MIDL to its use with the context_handle keyword.

See Also

base_types, context_handle, IDL

 wchar_t

The wchar_t keyword designates a wide-character type. The wchar_t type is defined by MIDL as an
unsigned short (16-bit) data object.

The MIDL compiler allows redefinition of wchar_t, but only if it is consistent with the preceding
definition.

The wide-character type is one of the predefined types of MIDL. The wide-character type can appear
as a type specifier in const declarations, typedef declarations, general declarations, and function
declarators (as a function-return-type specifier and as a parameter-type specifier). For the context in
which type specifiers appear, see IDL.

The string attribute can be applied to a pointer or array of type wchar_t.

Use the L character before a character or a string constant to designate the wide-character-type
constant.

See Also

base_types, char, IDL

 MIDL Compiler Errors and Warnings

This section lists MIDL compiler error and warning messages.

An error or warning message sometimes specifies the name of one or more MIDL compiler mode
switches. The MIDL compiler accepts an IDL file when you use some mode switches but generates
errors for the same file when you do not use mode switches. For example, abstract declarators are
valid in Microsoft-extensions mode but generate errors when the /ms_ext switch is not specified.

Command-line errors appear in the following format:

Command line error : MIDLnnnn : <error text>
[<additional error information>]

The additional-error information field provides context-specific information about the error. The
information in this field depends on the error message. For example, when an unresolved type-
declaration error occurs, the additional-information field displays the name of the type that could not be
resolved.

Compile-time warnings appear in the following format:

<FileName>(line#) : warning MIDLnnnn :
<warning text>
[optional context information] :

Compile-time errors appear in the following format:

<FileName>(line#) : error MIDLnnnn :
<error text>
[optional context information] :

Optional context information refers to the context in which the error occurred. The MIDL compiler
reports this information to help you quickly find the error in the IDL file. Context information is
generated when the MIDL compiler discovers an error during semantic analysis of type and procedure
signatures.

MIDL1000 : missing source file name
No input file has been specified in the MIDL compiler command line.

MIDL1001 : cannot open input file
The input file specified could not be opened.

MIDL1002 : error while reading input file
The system returned an error while reading the input file.

MIDL1003 : error returned by the C preprocessor
The preprocessor returned an error. The error message is directed to the output stream.

MIDL1004 : cannot execute C preprocessor
The operating system reported an error when it tried to spawn the preprocessor. With MS-DOS, this
error can occur when the argument list exceeds 128 bytes. You can reduce the size of the argument list
by using a response file.

MIDL1005 : cannot find C preprocessor
The MIDL compiler cannot locate the preprocessor in the specified path or in the path specified by the
PATH environment variable.

MIDL1006 : invalid C preprocessor executable
The specified preprocessor is not executable or has an invalid executable-file format.

MIDL1007 : switch specified more than once on command line

A switch has been redefined. The redefined switch is displayed after the error message.

MIDL1008 : unknown switch
An unknown switch has been specified on the command line.

MIDL1009 : unknown argument ignored
The MIDL compiler does not recognize the command-line argument as either a switch, a switch
argument, or a filename. The compiler discards the unknown argument and attempts to continue
processing.

MIDL1010 : switch not implemented
The switch is defined as part of the IDL compiler but is not implemented in Microsoft RPC.

MIDL1011 : argument(s) missing for switch
The switch expected an argument and the argument is not present. Check the syntax documentation
for the specified switch.

MIDL1012 : argument illegal for switch /
The argument supplied to the specified switch is illegal.

MIDL1013 : illegal syntax for switch
Several command-line switches require a space between the switch and the argument, while other
switches require no space between the switch and the argument. The specified command line violates
the defined syntax for that switch.

MIDL1014 : /no_cpp overrides /cpp_cmd and /cpp_opt
The cpp_opt command has been supplied along with the /no_cpp switch. The /no_cpp switch takes
precedence over the other switches.

MIDL1015 : /no_warn overrides warning-level switch
The no_warn option has been specified along with the warning-level switch W1, W2, or W3.
The /no_warn switch takes precedence over all other warning-level switches.

MIDL1016 : cannot create intermediate file
The system returned an error when the compiler tried to create an intermediate file.

MIDL1018 : out of system file handles
The MIDL compiler ran out of file handles while opening a file. This error can occur if too many import
files are open and the compiler tries to open an IDL file or an intermediate file.

MIDL1020 : cannot open response file
The specified response file could not be opened. The file probably does not exist.

MIDL1021 : illegal character(s) found in response file
A non-printable character has been detected in the response file. The response file should contain valid
MIDL command-line switches and arguments.

MIDL1023 : nested invocation of response files is illegal
A response file cannot contain the @ command that directs the MIDL compiler to process another
response file. Although there is no limit on the number of response files, response files cannot be
nested.

MIDL2000 : must specify /c_ext for abstract declarators
Abstract declarators represent a Microsoft extension to RPC and are not defined in DCE RPC. To
compile a file that includes abstract declarators, you must use the /c_ext switch.

MIDL2001 : instantiation of data is illegal; you must use "extern" or "static"
Declaration and initialization in the IDL file are not compatible with DCE RPC. To instantiate data, use
the Microsoft extensions to RPC by compiling with either the /ms_ext or /c_ext compiler switch.

MIDL2002 : compiler stack overflow
The compiler ran out of stack space while processing the IDL file. This problem can occur when the
compiler is processing a complex declaration or expression. To solve the problem, simplify the complex

declaration or expression.

MIDL2003 : redefinition
This error message can appear under the following circumstances: a type has been redefined; a
procedure prototype has been redefined; a member of a structure or union of the same name already
exists; a parameter of the same name already exists in the prototype.

MIDL2004 : [auto_handle] binding will be used for procedure
No handle type has been defined as the default handle type. The compiler assumes that an auto
handle will be used as the binding handle for the specified procedure.

MIDL2005 : out of memory
The compiler ran out of memory during compilation. Reduce the size or complexity of the IDL file or
allocate more memory to the process.

MIDL2006 : recursive definition
A structure or union has been recursively defined. This error can occur when a pointer specification in a
nested structure definition is missed.

MIDL2007 : import ignored; file already imported
Importing an IDL file is an idempotent operation. All but the first import operation are ignored.

MIDL2008 : sparse enums require /c_ext or /ms_ext switch
Assigning to enumeration constants is not compatible with DCE RPC. To use the extensions to RPC
that permit assigning values to enumeration constants, use the /c_ext or /ms_ext switch.

MIDL2009 : undefined symbol
An undefined symbol has been used in an expression. This error can occur when you use an enum
label that is not defined.

MIDL2010 : type used in ACF file not defined in IDL file
An undefined type is being used.

MIDL2011 : unresolved type declaration
The type reported in the additional-information field has not been defined elsewhere in the IDL file.

MIDL2012 : use of wide-character constants requires /ms_ext or /c_ext
Wide-character constants are a Microsoft extension to DCE IDL. To enable the use of the data type
wchar_t, use the MIDL compiler switch /ms_ext or /c_ext.

MIDL2013 : use of wide-character strings requires /ms_ext or /c_ext
Wide-character string constants are a Microsoft extension to DCE IDL. To enable the use of the data
type wchar_t, use the MIDL compiler switch /ms_ext or
/c_ext.

MIDL2014 : inconsistent redefinition of type wchar_t
The type wchar_t has been redefined as a type that is not equivalent to unsigned short.

MIDL2017 : syntax error
The compiler detected a syntax error at the specified line.

MIDL2018 : cannot recover from earlier syntax errors; aborting compilation
The MIDL compiler automatically tries to recover from syntax errors by adding or removing syntactic
elements. This message indicates that despite these attempts to recover, the compiler detected too
many errors. Correct the specified error(s) and recompile.

MIDL2019 : unknown pragma option
The specified C pragma is not supported in MIDL. Remove the pragma from the IDL file.

MIDL2020 : feature not implemented
The MIDL feature, although part of the language definition, is not implemented in Microsoft RPC and is
not supported by the MIDL compiler. For example, the following language features are not
implemented: bitset, pipe, and the international character type. The unimplemented language feature

appears in the additional-information field of the error message.

MIDL2021 : type not implemented
The specified data type, although a legal MIDL keyword, is not implemented in Microsoft RPC.

MIDL2022 : non-pointer used in a dereference operation
A data type that is not a pointer has been associated with pointer operations. You cannot access the
object through the specified non-pointer.

MIDL2023 : expression has a divide by zero
The constant expression contains a divide by zero.

MIDL2024 : expression uses incompatible types
The left and right sides of the operator in an expression are of incompatible types.

MIDL2025 : non-array expression uses index operator
The expression uses the array-indexing operation on a data item that is not of the array type.

MIDL2026 : left-hand side of expression does not evaluate to struct/union/enum
The direct or indirect reference operator "." or "->" has been applied to a data object that is not a
structure, union, or enum. You cannot obtain a direct or indirect reference using the specified object.

MIDL2027 : constant expression expected
A constant expression was expected in the syntax. For example, array bounds require a constant
expression. The compiler issues this error message when the array bound is defined with a variable or
undefined symbol.

MIDL2028 : expression cannot be evaluated at compile time
The compiler cannot evaluate an expression at compile time.

MIDL2029 : expression not implemented
A feature that was supported in previous releases of the MIDL compiler is not supported in the version
of the compiler supplied with Microsoft RPC. Remove the specified feature.

MIDL2030 : no [pointer_default] specified, assuming [unique] for all unattributed pointers
The MIDL compiler offers three different default cases for pointers that do not have pointer attributes.
Function parameters that are top-level pointers default to ref pointers. Pointers embedded in structures
and pointers to other pointers (not top-level pointers) default to the type specified by the
pointer_default attribute. When no pointer_default attribute is supplied, these non-top-level pointers
default to unique pointers. This error message indicates the last case: no pointer_default attribute is
supplied and there is at least one non-top-level pointer that will be treated as a unique pointer.

MIDL2031 : [out] only parameter cannot be a pointer to an open structure
An out-only parameter has been used as a pointer to a structure, known as an open structure, whose
transmitted range and size are determined at run time. The server stub does not know how much
space to allocate for an open structure. Use a pointer to a pointer to the open structure and ensure that
the server application allocates sufficient space for it.

MIDL2032 : [out] only parameter cannot be an unsized string
An array with the string attribute has been declared as an out-only parameter without any size
specification. The server stub needs size information to allocate memory for the string. You can remove
the string attribute and add the size_is attribute, or you can change the parameter to an in, out
parameter.

MIDL2033 : [out] parameter is not a pointer
All out parameters must be pointers, in keeping with the call-by-value convention of the C
programming language. The out directional parameter indicates that the server transmits a value to the
client. With the call-by-value convention, the server can transmit data to the client only if the function
argument is a pointer.

MIDL2034 : open structure cannot be a parameter
A structure or union is truncated when the last element of that structure or union is a conformant array.

MIDL2035 : [out] context handle/generic handle must be specified as a pointer to that handle
type
A context-handle or user-defined handle parameter with the out directional attribute must be a pointer
to a pointer.

MIDL2036 : [context_handle] must not derive from a type that has the [transmit_as] attribute
Context handles must be transmitted as context-handle types. They cannot be transmitted as other
types.

MIDL2037 : cannot specify a variable number of arguments to a remote procedure
Remote procedure calls that specify the number of variable arguments at compile time are not
compatible with the DCE RPC definition. You cannot use a variable number of arguments in Microsoft
RPC.

MIDL2038 : named parameter cannot be "void"
A parameter with the base type void is specified with a name.

MIDL2040 : cannot use [comm_status] on both a parameter and a return type
Both the procedure and one of its parameters have the comm_status attribute. The comm_status
attribute specifies that only one data object can be of type error_status_t at a time.

MIDL2041 : [local] attribute on a procedure requires /ms_ext
A procedure uses the local attribute as a function attribute, which is not compatible with DCE RPC. To
enable the Microsoft RPC extensions, use the MIDL compiler switch /ms_ext.

MIDL2042 : field deriving from a conformant array must be the last member of the structure
The structure contains a conformant array that is not the last element in the structure. The conformant
array must appear as the last structure element.

MIDL2043 : duplicate [case] label
A duplicate case label has been specified. The duplicate label is displayed.

MIDL2044 : no [default] case specified for discriminated union
A discriminated union has been specified without a default case.

MIDL2045 : attribute expression cannot be resolved
The expression associated with the attribute cannot be resolved. This error usually occurs when a
variable that appears in the expression is not defined. For example, the error can occur when the
variable s is not defined and is used by the attribute size_is(s).

MIDL2046 : attribute expression must be of integral type
The specified attribute variable or expression must be an integral type. This error occurs when the
attribute-expression type does not resolve to an integer.

MIDL2047 : [byte_count] requires /ms_ext
The byte_count attribute represents an extension to DCE RPC. To enable the Microsoft RPC
extensions, use the MIDL compiler switch /ms_ext.

MIDL2048 : [byte_count] can be applied only to out parameters of pointer type
The byte_count attribute can only be applied to out parameters, and all out parameters must be
pointer types.

MIDL2049 : [byte_count] cannot be specified on a pointer to a conformant array or structure
The byte_count attribute cannot be applied to a conformant array or structure.

MIDL2050 : parameter specifying the byte count is not [in]
The value associated with the byte_count must be transmitted from the client to the server; it must be
an in parameter. The byte_count parameter does not need to be an in, out parameter.

MIDL2051 : parameter specifying the byte count is not an integral type
The value associated with the byte count must be the integer type small, short, or long.

MIDL2052 : [byte_count] cannot be specified on a parameter with size attributes

The byte_count attribute cannot be used with other size attributes such as size_is or length_is.

MIDL2053 : [case] expression is not constant
The expression specified for the case label is not a constant.

MIDL2054 : [case] expression is not of integral type
The expression specified for the case label is not an integer type.

MIDL2055 : specifying [context handle] on a type other than void * requires /ms_ext
For DCE RPC compatibility, the context handle must be a pointer of type void *. To use the Microsoft
RPC extensions that allow context handles to be associated with types other than void *, use the MIDL
compiler switch /ms_ext.

MIDL2056 : cannot specify more than one parameter with each of comm_status/fault_status
The comm_status attribute may only appear once, and the fault_status attribute may only appear
once per procedure.

MIDL2057 : error_status_t parameter must be an [out] only pointer parameter
The error-code type error_status_t is transmitted from server to client and therefore must be specified
as an out parameter. Due to the constraints in the C programming language, all out parameters must
be pointers.

MIDL2058 : endpoint syntax error
The endpoint syntax is incorrect.

MIDL2059 : inapplicable attribute
The specified attribute cannot be applied in this construct. For example, the string attribute applies to
char arrays or char pointers and cannot be applied to a structure that consists of two short integers:

typedef [string] struct foo {
 short x;
 short y;
};

MIDL2060 : [allocate] requires /ms_ext
The allocate attribute represents a Microsoft extension that is not defined as part of DCE RPC. To
enable the Microsoft extensions, use the /ms_ext switch.

MIDL2061 : invalid [allocate] mode
An invalid mode for the allocate attribute construct has been specified. The four valid modes are
single_node, all_nodes, on_null, and always.

MIDL2062 : length attributes cannot be applied with string attribute
When the string attribute is used, the generated stub files call the strlen function to determine the
string length. Don't use the length attribute and the string attribute for the same variable.

MIDL2063 : [last_is] and [length_is] cannot be specified at the same time
Both last_is and length_is have been specified for the same array. These attributes are related as
follows: length = last - first + 1. Because each value can be derived from the other, don't specify both.

MIDL2064 : [max_is] and [size_is] cannot be specified at the same time
Both max_is and size_is have been specified for the same array. These attributes are related as
follows: max = size + 1. Because each value can be derived from the other, don't specify both.

MIDL2065 : no [switch_is] attribute specified at use of union
No discriminant has been specified for the union. The switch_is attribute indicates the discriminant
used to select among the union fields.

MIDL2066 : no [uuid] specified for interface
No UUID has been specified for the interface.

MIDL2067 : cannot specify both [local] and [uuid] as interface attributes

The local and UUID keywords cannot be used at the same time, except on [object] interfaces.

MIDL2068 : type mismatch between length and size attribute expressions
The length and size attribute expressions must be of the same types. For example, this warning is
issued when the attribute variable for the size_is expression is of type unsigned long and the attribute
variable for the length_is expression is of type long.

MIDL2069 : [string] attribute must be specified "byte", "char", or "wchar_t" array or pointer
A string attribute cannot be applied to a pointer or array whose base type is not a byte, char, or struct
in which the members are all of the byte or char type.

MIDL2070 : mismatch between the type of the [switch_is] expression and the switch type of the
union
If the union switch_type is not specified, the switch type is the same type as the switch_is field.

MIDL2071 : [transmit_as] cannot be applied to a type that derives from a context handle
Context handles cannot be transmitted as other types.

MIDL2072 : [transmit_as] must specify a transmissible type
The specified transmit_as type derives from a type that cannot be transmitted by Microsoft RPC, such
as void, void *, or int. Use a defined RPC base type; in the case of int, add size specifiers like small,
short, or long to qualify the int.

MIDL2073 : transmitted type must not be a pointer or derive from a pointer
The transmitted type cannot be a pointer or derive from a pointer.

MIDL2074 : presented type must not derive from a conformant/varying array, its pointer
equivalent, or a conformant/varying structure
The type to which transmit_as has been applied cannot derive from a conformant array or structure
(an array or structure whose size is determined at run time).

MIDL2075 : [uuid] format is incorrect
The UUID format does not conform to specification. The UUID must be a string that consists of five
sequences of hexadecimal digits of length 8, 4, 4, 4, and 12 digits. "12345678-1234-ABCD-EF01-
28A49C28F17D" is a valid UUID. Use the function UuidCreate or a utility to generate a valid UUID.

MIDL2076 : uuid is not a hex number
The UUID specified for the interface contains characters that are invalid in a hexadecimal number
representation. The characters 0 through 9 and A through F are valid in a hexadecimal representation.

MIDL2077 : interface name specified in the ACF file does not match that specified in the IDL file
In this compiler mode, the name that follows the interface keyword in the ACF must be the same as the
name that follows the interface keyword in the IDL file. The interface names in the IDL and ACF files
can be different when you compile with the MIDL compiler switch /acf.

MIDL2078 : conflicting attributes
Conflicting attributes have been specified. This error often occurs when two attributes are mutually
exclusive. For example, the attributes code and nocode cannot be used at the same time.

MIDL2080 : [local] procedure cannot be specified in ACF file
A local procedure has been specified in the ACF. The local procedure can only be specified in the IDL
file.

MIDL2081 : specified type is not defined as a handle
The type specified in the implicit_handle attribute is not defined as a handle type. Change the type
definition or the type name specified by the attribute.

MIDL2082 : procedure undefined
An attribute has been applied to a procedure in the ACF and that procedure is not defined in the IDL
file.

MIDL2083 : this parameter does not exist in the IDL file

A parameter specified in the ACF does not exist in the definition in the IDL file. All parameters,
functions, and type definitions that appear in the ACF must correspond to parameters, functions, and
types previously defined in the IDL file.

MIDL2084 : this array bounds construct is not supported
MIDL currently supports array-bounds constructs of the form Array[Lower .. Upper] only when the
constant that specifies the lower bound of the array resolves to the value zero.

MIDL2085 : array bound specification is illegal
The user specification of array bounds for the fixed-size array is illegal. For example:

typedef short Array[-1]

MIDL2087 : pointee / array does not derive any size
A conformant array has been specified without any size specification. You can specify the size with the
max_is or size_is attribute.

MIDL2088 : badly formed character constant
The end-of-line character is not allowed in character constants.

MIDL2089 : end of file found in comment
The end-of-file character has been encountered in a comment.

MIDL2090 : end of file found in string
The end-of-file character has been encountered in a string.

MIDL2091 : identifier length exceeds 31 characters
Identifiers are limited to 31 alphanumeric characters. Identifier names longer than 31 characters are
truncated.

MIDL2092 : end of line found in string
The end-of-line character has been encountered in the string. Verify that you have included the double-
quote character that terminates the string.

MIDL2093 : string constant exceeds limit of 255 characters
The string exceeded the maximum allowable length of 255 characters.

MIDL2094 : constant too big
The constant is too large to be represented internally.

MIDL2095 : error in opening file
The operating system reported an error while trying to open an output file. This error can be caused by
a name that is too long for the file system or by a duplicate filename.

MIDL2096 : [out] only parameter must not derive from a top-level [unique] or [ptr] pointer/array
A unique pointer cannot be an out-only parameter. By definition, a unique pointer can change from null
to non-null. No information about the out-only parameter is passed from client to server.

MIDL2097 : attribute is not applicable to this non-rpcable union
The switch_is and switch_type attributes apply to a union that is transmitted as part of a remote
procedure call.

MIDL2098 : expression used for a size attribute must not derive from an [out] only parameter
The value of an out-only parameter is not transmitted to the server and cannot be used to determine
the length or size of the in parameter.

MIDL2099 : expression used for a length attribute for an [in] parameter cannot derive from an
[out] only parameter
The value of an out-only parameter is not transmitted to the server and cannot be used to determine
the length or size of the in parameter.

MIDL2100 : use of "int" needs /c_ext
MIDL is a strongly typed language. All parameters transmitted over the network must be derived from

one of the MIDL base types. The type int is not defined as part of MIDL. Transmitted data must include
a size specifier: small, short, or long. Data that is not transmitted over the network can be included in
an interface; use the /c_ext switch.

MIDL2101 : struct/union field must not be void
Fields in a structure or union must be declared to be of a specific base type supported by MIDL or a
type that is derived from the base types. Void types are not allowed in remote operations.

MIDL2102 : array element must not be void
An array element cannot be void.

MIDL2103 : use of type qualifiers and/or modifiers needs /c_ext
Type modifiers such as _cdecl and _far can be compiled only if you specify the
/c_ext switch.

MIDL2104 : struct/union field must not derive from a function
The fields of a structure or union must be MIDL base types or types that are derived from these base
types. Functions are not legal in structure or union fields.

MIDL2105 : array element must not be a function
An array element cannot be a function.

MIDL2106 : parameter must not be a function
The parameter to a remote procedure must be a variable of a specified type. A function cannot be a
parameter to the remote procedure.

MIDL2107 : struct/union with bit fields needs /c_ext
You must specify the MIDL compiler switch /c_ext to allow bit fields on data that is not transmitted in a
remote procedure call.

MIDL2108 : bit field specification on a type other that "int" is a non ANSI-compatible extension
The ANSI C programming language specification does not allow bit fields to be applied to non-integer
types.

MIDL2109 : bit field specification can be applied only to simple, integral types
The ANSI C programming language specification does not allow bit fields to be applied to non-integer
types.

MIDL2110 : struct/union field must not derive from handle_t or a context_handle
Context handles cannot be transmitted as part of another structure. They must be transmitted as
context handles.

MIDL2111 : array element must not derive from handle_t or a context handle
Context handles cannot be transmitted as part of an array.

MIDL2112 : this specification of union needs /c_ext
A union that appears in the interface definition must be associated with the discriminant or declared as
local. Data that is not transmitted over the network can be implicitly declared as local when you use the
/c_ext switch.

MIDL2113 : parameter deriving from an "int" must have size specifier "small", "short", or "long"
with the "int"
The type int is not a valid MIDL type unless it is accompanied by a size specification. Use one of the
size specifiers small, short, or long.

MIDL2114 : type of the parameter cannot derive from void or void*
MIDL is a strongly typed language. All parameters transmitted over the network must be derived from
one of the MIDL base types. MIDL does not support void as a base type. You must change the
declaration to a valid MIDL type.

MIDL2115 : parameter deriving from a struct/union containing bit fields is not supported
Bit fields are not defined as a valid data type by DCE RPC.

MIDL2116 : use of a parameter deriving from a type containing type-modifiers/type-qualifiers
needs /c_ext
Such keywords as far, near, const, and volatile can appear in the IDL file only when you activate the
/c_ext extension to the MIDL compiler.

MIDL2117 : parameter must not derive from a pointer to a function
The RPC run-time libraries transmit a pointer and its associated data between client and server.
Pointers to functions cannot be transmitted as parameters because the function cannot be transmitted
over the network.

MIDL2118 : parameter must not derive from a non-rpcable union
The union must be associated with a discriminant. Use the switch_is and switch_type attributes.

MIDL2119 : return type derives from an "int". You must use size specifiers with the "int"
The type int is not a valid MIDL type unless it is accompanied by a size specification. Use one of the
size specifiers small, short, or long.

MIDL2120 : return type must not derive from a void pointer
MIDL is a strongly typed language. All parameters transmitted over the network must be derived from
one of the MIDL base types. Void types are not defined as part of MIDL. You must change the
declaration to a valid MIDL type.

MIDL2121 : return type must not derive from a struct/union containing bit-fields
Bit fields are not defined as a valid data type by DCE RPC.

MIDL2122 : return type must not derive from a non-rpcable union
The union must be associated with a discriminant. Use the switch_is and switch_type attributes.

MIDL2123 : return type must not derive from a pointer to a function
The RPC run-time libraries transmit a pointer and its associated data between client and server.
Pointers to functions cannot be transmitted as parameters because RPC does not define a method to
transmit the associated function over the network.

MIDL2124 : compound initializers are not supported
DCE RPC supports simple initialization only. The structure or array cannot be initialized in the IDL file.

MIDL2125 : ACF attributes in the IDL file need the /app_config switch
A Microsoft extension allows you to specify ACF attributes in the IDL file. Use the /app_config switch
to activate this extension.

MIDL2126 : single line comment needs /ms_ext or /c_ext
Single-line comments that use two backslash characters (\\) represent a Microsoft extension to DCE
RPC. You must use one of the mode-extension switches for a single-line comment.

MIDL2127 : [version] format is incorrect
The interface version number in the interface header must be specified in the format major.minor,
where each number can range from 0 to 65535.

MIDL2128 : "signed" needs /ms_ext or /c_ext
The use of the signed keyword is a Microsoft extension to DCE RPC. You must use one of the mode-
extension switches to activate this extension.

MIDL2129 : mismatch in assignment type
The type of the variable does not match the type of the value that is assigned to the variable.

MIDL2130 : declaration must be of the form: const <type><declarator> = <initializing
expression>
The declaration is not compatible with DCE RPC syntax. Use the /ms_ext or /c_ext MIDL compiler
mode switch.

MIDL2131 : declaration must have "const"
Declarations in the IDL file must be constant expressions that use the keyword const. For example:

const short x = 2;

MIDL2132 : struct/union/enum must not be defined in a parameter type specification
The structure, union, or enumerated type must be explicitly specified outside of the function prototype.

MIDL2133 : [allocate] attribute must be applied only on non-void pointer types
The allocate attribute is designed for complex pointer-based data structures. When the allocate
attribute is specified, the stub file traverses the data structure to compute the total size of all objects
accessible from the pointer and all other pointers in the data structure. Change the type to a non-void
pointer type or remove the allocate attribute and use another method to determine its allocation size,
such as the sizeof operator.

MIDL2134 : array or equivalent pointer construct cannot derive from a non-encapsulated union
Each union must be associated with a discriminant. Arrays of unions are not permitted because they do
not provide the associated discriminant. Arrays of structures are permitted because each structure
consists of the union and its discriminant.

MIDL2135 : field must not derive from an error_status_t type
The error_status_t type can only be used as a parameter or a return type. It cannot be embedded in
the field of a structure or union.

MIDL2136 : union has at least one arm without a case label
The union declaration does not match the required MIDL syntax for the union. Each union arm requires
a case label or default label that selects that union arm.

MIDL2137 : a parameter or a return value must not derive from a type which has [ignore] applied
to it
The ignore attribute is a field attribute that can only be applied to fields, such as fields of structures
and arrays. The ignore attribute indicates that the stub should not dereference the pointer during
transmission and is not allowed when it conflicts with other attributes that must be dereferenced, such
as out parameters and function return values.

MIDL2138 : pointer already has a pointer-attribute applied to it
Only one of the pointer attributes, ref, unique, or ptr, can be applied to a pointer.

MIDL2139 : field/parameter must not derive from a structure that is recursive through a ref
pointer
By definition, a reference pointer cannot be set to NULL. A recursive data structure defined with a
reference pointer has no null elements and by convention is non-terminating. Use a unique pointer
attribute to allow the data structure to specify a null element or redefine the data structure as a non-
recursive data structure.

MIDL2140 : use of field deriving from a void pointer needs /c_ext
The type void * and other types and type qualifiers that are not supported by DCE IDL are only allowed
in the IDL file when you use the MIDL compiler switch /c_ext. Redefine the pointer type or recompile
using the /c_ext switch.

MIDL2141 : use of this attribute needs /ms_ext
This language feature is a Microsoft extension to DCE IDL. You must specify the MIDL compiler switch
/ms_ext.

MIDL2142 : use of wchar_t needs /ms_ext or /c_ext
The wide-character type represents an extension to DCE IDL. The MIDL compiler accepts the wide-
character type only when you specify the /ms_ext or /c_ext switch.

MIDL2143 : unnamed fields need /ms_ext or /c_ext
DCE IDL does not support the use of unnamed structures or unions embedded in other structures or
unions. In DCE IDL, all such embedded fields must be named. To enable this Microsoft extension to
IDL, supply the MIDL compiler switch /ms_ext or /c_ext.

MIDL2144 : unnamed fields can derive only from struct/union types

The Microsoft extension to the DCE IDL that supports unnamed fields applies only to structures and
unions. You must assign a name to the field or redefine the field to comply with this restriction.

MIDL2145 : field of a union cannot derive from a varying/conformant array or its pointer
equivalent
The conformant array cannot appear alone in the union but must be accompanied by the value that
specifies the size of the array. Instead of using the array as the union arm, use a structure that consists
of the conformant array and the identifier that specifies the size.

MIDL2146 : no [pointer_default] attribute specified, assuming [ptr] for all unattributed pointers
in interface
The DCE IDL implementation specifies that all pointers in each IDL file must be associated with pointer
attributes. When an explicit pointer attribute is not assigned to the parameter or pointer type and no
pointer_default attribute is specified in the IDL file, the full pointer attribute ptr is associated with the
pointer. You can change the pointer attributes by using explicit pointer attributes, by specifying a
pointer_default attribute, or by specifying the /ms_ext switch to change the default for unattributed
pointers to unique.

MIDL2147 : initializing expression must resolve to a constant expression
The use of initializing expressions is limited to constant expressions in all MIDL compiler modes. The
expression must be resolvable at compile time. Specify a literal constant, or an expression that
resolves to a constant, rather than a variable.

MIDL2148 : attribute expression must be of type integer, char, byte, boolean or enum
The specified type does not resolve to a valid switch type. Use an integer, character, byte, boolean, or
enum type, or a type that is derived from one of these types.

MIDL2149 : illegal constant
The specified constant is out of the valid range for the specified type.

MIDL2150 : attribute not implemented; ignored
The attribute specified is not implemented in this release of Microsoft RPC. The MIDL compiler
continues processing the IDL file as if the attribute were not present.

MIDL2151 : return value must not derive from a [ref] pointer
Function return values that are defined to be pointer types must be specified as unique or full pointers.
Reference pointers cannot be used.

MIDL2152 : attribute expression must be a variable name or a pointer dereference expression in
this mode. You must specify the /ms_ext switch
The DCE IDL compiler requires the size associated with the size_is attribute to be specified by a
variable or pointer variable. To enable the Microsoft extension that allows the size_is attribute to be
defined by a constant expression, use the /ms_ext switch.

MIDL2153 : parameter must not derive from a recursive non-encapsulated union
A union must include a discriminant, so a union cannot have another union as an element. A union can
be embedded in another union only when it is part of a structure that includes the discriminant.

MIDL2154 : binding-handle parameter cannot be [out] only
The handle parameter identified by the MIDL compiler as the binding handle for this operation must be
an in parameter. Out-only parameters are undefined on the client stub, and the binding handle must be
defined on the client.

MIDL2155 : pointer to a handle cannot be [unique] or [ptr]
The unique and full pointer attributes allow the value NULL. The binding handle cannot be null. Use the
ref attribute to derive the binding-handle parameter from reference pointers.

MIDL2156 : parameter that is not a binding handle must not derive from handle_t
The primitive handle type handle_t is not a valid data type that is transmitted over the network.
Change the parameter type to a type other than handle_t or remove the parameter.

MIDL2157 : unexpected end of file found
The MIDL compiler found the end of the file before it was able to successfully resolve all syntactical
elements of the file. Verify that the terminating right brace character (}) is present at the end of the file,
or check the syntax.

MIDL2158 : type deriving from handle_t must not have [transmit_as] applied to it
The primitive handle type handle_t is not transmitted over the network.

MIDL2159 : [context_handle] must not be applied to a type that has [handle] applied to it
The context_handle and handle attributes cannot be applied to the same type.

MIDL2160 : [handle] must not be specified on a type deriving from void or void *
A type specified with the handle attribute can be transmitted over the network, but the type void * is
not a transmissible type. The handle type must resolve to a type that derives from the valid base types.

MIDL2161 : parameter must have either [in], [out] or [in,out] in this mode. You must specify
/ms_ext or /c_ext
The DCE IDL compiler requires all parameters to have explicit directional parameters. To use the
Microsoft extensions to DCE IDL, where you can omit explicit directional attributes, use the MIDL
compiler switch /ms_ext or /c_ext.

MIDL2162 : [transmit_as] must not be specified on void type
The transmit_as attribute applies only to pointer types. Use the type void * in place of void.

MIDL2163 : void must be specified on the first and only parameter specification
The keyword void incorrectly appears with other function parameters. To specify a function without
parameters, the keyword void must be the only element of the parameter list, as in the following
example:

void Foo(void)

MIDL2164 : [switch_is] must be specified only on a type deriving from a non-encapsulated
union
The switch_is keyword is incorrectly applied. It can only be used with non-encapsulated union types.
For more information, see the syntax section in the reference entry for non-encapsulated unions.

MIDL2165 : stringable structures are not implemented in this version
DCE IDL allows the attribute string to apply to a structure whose elements consist only of characters,
bytes, or types that resolve to characters or bytes. This functionality is not supported in Microsoft RPC.
The string attribute cannot be applied to the structure as a whole; it can be applied to each individual
array.

MIDL2166 : switch type can only be integral, char, byte, boolean or enum
The specified type does not resolve to a valid switch type. Use an integer, character, byte, boolean, or
enum type, or a type that is derived from one of these types.

MIDL2167 : [handle] must not be specified on a type deriving from handle_t
A handle type must be defined using one and only one of the handle types or attributes. Use the
primitive type handle_t or the attribute handle, but not both. The user-defined handle type must be
transmissible, but the handle_t type is not transmitted on the network.

MIDL2168 : parameter deriving from handle_t must not be an [out] parameter
A handle of the primitive type handle_t is meaningful only to the side of the application in which it is
defined. The type handle_t is not transmitted on the network.

MIDL2169 : expression specifying size or length attributes derives from [unique] or [ptr] pointer
dereference
Although the unique and full pointer attributes allow pointers to have null values, the expression that
defines the size or length attribute must never have a null value. When pointers are used, MIDL
constrains expressions to ref pointers.

MIDL2170 : "cpp_quote" requires /ms_ext
The cpp_quote attribute is a Microsoft extension to DCE IDL. Use the MIDL compiler switch /ms_ext.

MIDL2171 : quoted uuid requires /ms_ext
The ability to specify a UUID value within quotation marks is a Microsoft extension to DCE IDL. Use the
MIDL compiler switch /ms_ext.

MIDL2172 : return type cannot derive from a non-encapsulated union
The non-encapsulated union cannot be used as a function return type. To return the union type, specify
the union type as an out or in, out parameter.

MIDL2173 : return type cannot derive from a conformant structure
The size of the return type must be a constant. You cannot specify as a return type a structure that
contains a conformant array even when the structure also includes its size specifier. To return the
conformant structure, specify the structure as an out or in, out parameter.

MIDL2174 : [transmit_as] must not be applied to a type deriving from a generic handle
In this release, the handle and transmit_as attributes cannot be combined on the same type.

MIDL2175 : [handle] must not be applied to a type that has [transmit_as] applied to it
In this release, the handle and transmit_as attributes cannot be combined on the same type.

MIDL2176 : type specified for the const declaration is invalid
Const declarations are limited to integer, character, wide-character, string, and boolean types.

MIDL2177 : operand to the sizeof operator is not supported
The MIDL compiler supports the sizeof operation for simple types only.

MIDL2178 : this name already used as an const identifier name
The identifier has previously been used to identify a constant in a const declaration. Change the name
of one of the identifiers so that the identifiers are unique.

MIDL2179 : inconsistent redefinition of type error_status_t
The type error_status_t must resolve to the type unsigned long. Other type definitions cannot be
used.

MIDL2180 : [case] value out of range of switch type
The value associated with the switch statement case is out of range for the specified switch type. For
example, this error occurs when a long integer value is used in the case statement for a short integer
type.

MIDL2181 : parameter deriving from wchar_t needs /ms_ext
The wide-character type wchar_t is a Microsoft extension to DCE IDL. Use the MIDL compiler switch
/ms_ext.

MIDL2182 : this interface has only callbacks
Callbacks are valid only in the context of a remote procedure call. The interface must include at least
one function prototype for a remote procedure call that does not include the callback attribute.

MIDL2183 : redundantly specified attribute; ignored
The specified attribute has been applied more than once. Multiple instances of the same attribute are
ignored.

MIDL2184 : context handle type used for an implicit handle
A type that was defined using the context_handle attribute has been specified as the handle type in
an implicit_handle attribute. The attributes cannot be combined in this way.

MIDL2185 : conflicting options specified for [allocate]
The options specified for the ACF attribute allocate represent conflicting directives. For example,
specify either the option all_nodes or the option single_node, but not both.

MIDL2186 : error while writing to file
An error occurred while writing to the file. This condition can be caused by errors relating to disk space,

file handles, file-access restrictions, and hardware failures.

MIDL2187 : no switch type found at definition of union, using the [switch_is] type
The union definition does not include an explicit switch_type attribute. The type of the variable
specified by the switch_is attribute is used as the switch type.

MIDL2188 : semantic check incomplete due to previous errors
The MIDL compiler makes two passes over the input file(s) to resolve any forward declarations. Due to
errors encountered during the first pass, checking for the second pass has not been performed.
Unreported errors relating to forward declarations may still be present in the file.

MIDL2189 : handle parameter or return type is not supported on a [callback] procedure
A callback procedure occurs in the context of a call from a client to the server and uses the same
binding handle as the original call. Explicit binding-handle parameters or return types are not permitted
in callback functions.

MIDL2192 : [context_handle] must not derive from handle_t
The three handle characteristics ¾ the type handle_t, the attribute handle, and the attribute
context_handle ¾ are mutually exclusive. Only one can be applied to a type or parameter at a time.

MIDL2193 : array size exceeds 65536 bytes
On some Microsoft platforms, the maximum transmissible data size is 64K. Redesign your application
so that all transmitted data fits within the maximum transmissible size.

MIDL2194 : field of a non-encapsulated union cannot be another non-encapsulated union
Unions that are transmitted as part of a remote procedure call require an associated data item, the
discriminant, that selects the union arm. Unions nested in other unions do not offer a discriminant; as a
result, they cannot be transmitted in this form. Create a structure that consists of the union and its
discriminant.

MIDL2195 : pointer attribute(s) applied on an embedded array; ignored
A pointer attribute can be applied to an array only when the array is a top-level parameter. Other
pointer attributes applied to arrays embedded in other data structures are ignored.

MIDL2196 : [allocate] is illegal on a type that has [transmit_as] applied to it
The transmit_as and allocate attributes cannot both be applied to the same type. The transmit_as
attribute distinguishes between presented and transmitted types, while the allocate attribute assumes
that the presented type is the same as the transmitted type.

MIDL2198 : [implicit_handle] type undefined; assuming primitive handle
The handle type specified in the ACF is not defined in the IDL file. The MIDL compiler assumes that the
handle type resolves to the primitive handle type handle_t. Add the handle attribute to the type
definition if you want the handle to behave like a user-defined, or generic, handle.

MIDL2199 : array element must not derive from error_status_t
In this release of Microsoft RPC, the type error_status_t can only appear as a parameter or a return
type. It cannot appear in arrays.

MIDL2200 : [allocate] illegal on a type deriving from a primitive/generic/context handle
By design, the ACF attribute allocate cannot be applied to handle types.

MIDL2201 : transmitted or presented type must not derive from error_status_t
In this release of Microsoft RPC, the type error_status_t cannot be used with the transmit_as
attribute.

MIDL2202 : discriminant of a union must not derive from a field with [ignore] applied to it
A union used in a remote procedure call must be associated with another data item, called the
discriminant, that selects the union arm. The discriminant must be transmitted. The ignore attribute
cannot be applied to the union discriminant.

MIDL2203 : [nocode] must be specified with "/server none" in this mode
Some DCE IDL compilers generate an error when the nocode attribute is applied to a procedure in an

interface for which server stub files are being generated. Because the server must support all
operations, nocode must not be applied to a procedure in this mode or you must use the MIDL
compiler switch /server none to explicitly specify that no server routines are to be generated.

MIDL2204 : no remote procedures specified, no client/server stubs will be generated
The provided interface does not have any remote procedures, so only header files will be generated.

MIDL2205 : too many default cases specified for encapsulated union
An encapsulated union may only have one default: arm.

MIDL2206 : union specification with no fields is illegal
Unions must have at least one field.

MIDL2207 : value out of range
The provided case value is out of the range of the switch type.

MIDL2208 : [context_handle] must be applied on a pointer type
Context handles must always be pointer types. DCE specifies that all context handles must be typed as
"void *".

MIDL2209 : return type must not derive from handle_t
Handle_t may not be returned.

MIDL2210 : [handle] must not be applied to a type deriving from a context handle
A type may not be both a context handle and a generic handle.

MIDL2211 : field deriving from an \"int\" must have size specifier \"small\", \"short\", or \"long\"
with the \"int\"
The use of "int" is not remotable, since the size of "int" may be different accross machines.

MIDL2212 : field must not derive from a void or void *
Void and void * are not remotable types.

MIDL2213 : field must not derive from a struct containing bit-fields
bit fields in structs are not remotable.

MIDL2214 : field must not derive from a non-rpcable union
A union must be specified as a non-encapsulated union or encapsulated union in order to be remoted.
Ordinary C unions lack the discriminant needed to remote the union.

MIDL2215 : field must not derive from a pointer to a function
Pointers to functions may not be remoted.

MIDL2216 : cannot use [fault_status] on both a parameter and a return type
[fault_status] may only be used once per procedure, although [comm_status] may be used
independently.

MIDL2217 : return type too complicated for /Oi, using /Os
Large by-value return types may only be handled by /Os optimization stubs. The stubs for this routine
will be generated using /Os optimization.

MIDL2218 : generic handle type too large for /Oi, using /Os
Large by-value generic handle types may only be handled by /Os optimization stubs. The stubs for this
routine will be generated using /Os optimization.

MIDL2219 : [allocate(all_nodes)] on an [in,out] parameter may orphan the original memory
Use of [allocate(all_nodes)] on an [in,out] parameter must re-allocate contiguous memory for the [out]
direction, thus orphaning the [in] parameter. This usage is not recommended.

MIDL2220 : cannot have a [ref] pointer as a union arm
Ref pointers must always point to valid memory, but an [in,out] union with a ref pointer may return a ref
pointer when the [in] direction used another type.

MIDL2222 : use of [comm_status] or [fault_status] not supported for /Oi, using /Os

[comm_status] and [fault_status] may only be handled by /Os optimization stubs. The stubs for this
routine will be generated using /Os optimization.

MIDL2223 : use of an unknown type for [represent_as] not supported for /Oi, using /Os
Use of a represent_as with a local type that is not defined in the idl file or an imported idl file may only
be handled by /Os optimization stubs. The stubs for this routine will be generated using /Os
optimization.

MIDL2224 : array types with [transmit_as] or [represent_as] not supported on return type for
/Oi, using /Os
Returning an array with [transmit_as] or [represent_as] applied may only be handled by /Os
optimization stubs. The stubs for this routine will be generated using /Os optimization.

MIDL2226 : [callback] requires /ms_ext
[callback] is a Microsoft extension and requires use of the /ms_ext switch.

MIDL2227 : circular interface dependency
This interface uses itself (directly or indirectly) as a base interface.

MIDL2228 : only IUnknown may be used as the root interface
Currently, all interfaces must have IUnknown as the root interface.

MIDL2229 : [IID_IS] may only be applied to pointers to interfaces
[iid_is] can only be applied to interface pointers, although they may be specified as IUnknown *.

MIDL2230 : interfaces may only be used in pointer-to-interface constructs
Interface names may not be used except as base interfaces or interface pointers.

MIDL2231 : interface pointers must have a UUID/IID
The base type of the iid_is expression must be a UUID/GUID/IID type.

MIDL2232 : definitions and declarations outside of interface body requires /ms_ext
Putting declarations and definitions outside of any interface body is a Microsoft extension and requires
the use of the /ms_ext switch.

MIDL2233 : multiple interfaces in one file requires /ms_ext
Using multiple interfaces in a single idl file is a Microsoft extension and requires the use of the /ms_ext
switch.

MIDL2234 : only one of [implicit_handle], [auto_handle], or [explicit_handle] allowed
Each interface may only have one of the above.

MIDL2235 : [implicit_handle] references a type which is not a handle
Implicit handles must be of one of the handle types.

MIDL2236 : [object] procs may only be used with "/env win32"
[object] interfaces may not be used with 16-bit environments.

MIDL2237 : [callback] with -env dos/win16 not supported for /Oi, using /Os
Callbacks in 16-bit environments may only be handled by /Os optimization stubs. The stubs for this
routine will be generated using /Os optimization.

MIDL2238 : float/double not supported as top-level parameter for /Oi, using /Os
Float and double as parameters may only be handled by /Os optimization stubs. The stubs for this
routine will be generated using /Os optimization. Float and double within structs/arrays/etc. May still be
handled with /Oi.

MIDL2239 : pointers to context handles may not be used as return values
Context handles must be used as direct return values, not indirect return values.

MIDL2240 : procedures in an object interface must return an HRESULT
All non-[local] procedures in an object interface must return an HRESULT/SCODE.

MIDL2241 : duplicate UUID

UUIDs must be unique.

MIDL2242 : [object] interfaces must derive from other [object] interfaces
Interface inheritance is only allowed using object interfaces.

MIDL2243 : [IID_IS] expression must be a pointer to IID structure
The base type of the iid_is expression must be a UUID/GUID/IID type.

MIDL2244 : [call_as] type must be a [local] procedure
Tthe target of a call_as, if defined, must have [local] applied.

MIDL2245 : undefined [call_as] must not be used in an object interface [call_as]: in_list
Another routine defined in the ACf is attempting to use the same call_as routine as the previous
routine.

MIDL2246 : [auto_handle] may not be used with [encode] or [decode]
[encode] and [decode] may only be used with explicit handles or implicit handles.

MIDL2247 : normal procs are not allowed in an interface with [encode] or [decode]
Interfaces containing [encode] or [decode] procedures may not also have remoted procedures.

MIDL2248 : top-level conformance or variance not allowed with [encode] or [decode]
Types that have top-level conformance or variance may not use type serialization, since there is no
way to provide sizing/lengthing. Structs containing them are, however, allowed.

MIDL2249 : [out] parameters may not have \"const\"
Since an [out] parameter is altered, it may not have const.

MIDL2250 : return values may not have \"const\"
Since a function value is set, it must not have const.

MIDL2251 : multiple calling conventions illegal
Only one calling convention may be applied to a single procedure.

MIDL2252 : attribute illegal on [object] procedure
The above attribute only applies to procedures in interfaces that do not have [object].

MIDL2253 : [out] interface pointers must use double indirection
Since the altered value is the pointer to the interface, there must be another level of indirection above it
to allow it to be returned.

MIDL2254 : procedure used twice as the caller in [call_as]
A given [local] procedure may only be used once as the target of a [call_as], in order to avoid name
clashes.

MIDL2255 : [call_as] target must have [local] in an object interface
The target of a call_as must be a defined, [local] procedure in the current interface.

MIDL2256 : [code] and [nocode] may not be used together
These two attributes are contradictory, and may not be used together.

MIDL2257 : [maybe] procedures may not have a return value or [out] params
Since [maybe] procedures may never return, there is no way to get returned values.

MIDL2258 : pointer to function must be used
Although function type definitions are allowed in /c_ext mode, they may only be used as pointers to
functions (and may never be remoted).

MIDL2259 : functions may not be passed in an RPC operation
Functions and function pointers may not be remoted.

MIDL2260 : hyper/double not supported as return value for /Oi, using /Os
Hyper and double return values may only be handled by /Os optimization stubs. The stubs for this
routine will be generated using /Os optimization.

MIDL2261 : #pragma pack(pop) without matching #pragma pack(push)
#pragma pack(push) and #pragma pack(pop) must appear in matching pairs. At least one too many
#pragma pack(push)'s were specified.

MIDL2262 : stringable structure fields must be byte/char/wchar_t
[string] may only be applied to a struct whose fields are all of type byte, or a type definition equivalent
of byte.

MIDL2263 : [notify] not supported for /Oi, using /Os
The [notify] attribute may only be processed by /Os optimization stubs.

MIDL2264 : handle parameter or return type is not supported on a procedure in an [object]
interface
Handles may not be used with [object] interfaces.

MIDL2265 : ANSI C only allows the leftmost array bound to be unspecified
In an conformant array, ANSI C only allows the leftmost (most significant) array bound to be
unspecified. If multiple dimensions are conformant, MIDL will attempt to put a "1" in the other
conformant dimensions. If the other dimensions are defined in a different typedef, this may not be
possible. Try putting all the array dimensions on the use of the array to avoid this. In any case, beware
of the array indexing calculations done by the compiler; you may need to do your own calculations
using the actual sizes.

 RPC Data Types and Structures

This section defines the following constants, data types, and data structures used by the Microsoft
RPC run-time functions:

Data type/structure Description
RPC_C_AUTHN_LEVEL* Authentication-level constants
RPC_C_AUTHN* Authentication-service constants
RPC_C_AUTHZ* Authorization-service constants
GUID Globally unique identifier (UUID)
PROTSEQ Protocol sequence string
RPC_AUTH_IDENTITY_HANDLE Authorization-identity handle
RPC_AUTH_KEY_RETRIEVAL_FN Authorization-key retrieval function
RPC_AUTHZ_HANDLE Authorization handle
RPC_BINDING_HANDLE Binding handle
RPC_BINDING_VECTOR Count and array of binding handles
RPC_IF_HANDLE Interface handle
RPC_IF_ID Interface identifier
RPC_IF_ID_VECTOR Count and array of interface

identifiers
RPC_MGR_EPV Manager entry-point vector
RPC_NS_HANDLE Name-service handle
RPC_OBJECT_INQ_FN Object-inquiry function
RPC_PROTSEQ_VECTOR Count and array of protocol

sequences
RPC_STATS_VECTOR Statistics vector
RPC_STATUS Status
SEC_WINNT_AUTH_IDENTITY Authentication
String binding String representation of a binding
String UUID Unique identifier string
UUID Universally unique identifier
UUID_VECTOR Count and array of unique identifiers

 Authentication-Level Constants

The AuthnLevel argument represents the authentication level supplied to the RpcBindingInqAuthInfo
and RpcBindingSetAuthInfo run-time functions.

The levels are listed in order of increasing authentication. Each new level adds to the authentication
provided by the previous level. If the RPC run-time library does not support the specified level, it
automatically upgrades to the next higher supported level.

The following constants represent valid values for the AuthnLevel argument:

Constant Description
RPC_C_AUTHN_LEVEL_DEFAULT Uses the default authentication

level for the specified
authentication service.

RPC_C_AUTHN_LEVEL_NONE Performs no authentication.
RPC_C_AUTHN_LEVEL_CONNECT Authenticates only when the client

establishes a relationship with a
server.

RPC_C_AUTHN_LEVEL_CALL Authenticates only at the
beginning of each remote
procedure call when the server
receives the request. Does not
apply to remote procedure calls
made using the connection-based
protocol sequences (those that
start with the prefix "ncacn"). If the
protocol sequence in a binding
handle is a connection-based
protocol sequence and you
specify this level, this routine
instead uses the
RPC_C_AUTHN_LEVEL_PKT
constant.

RPC_C_AUTHN_LEVEL_PKT Authenticates that all data
received is from the expected
client.

RPC_C_AUTHN_LEVEL_PKT
_INTEGRITY

Authenticates and verifies that
none of the data transferred
between client and server has
been modified.

RPC_C_AUTHN_LEVEL_PKT_PRIVA
CY

Authenticates all previous levels
and encrypts the argument value
of each remote procedure call.

Note For Windows 95 platforms, RPC_C_AUTHN_LEVEL_CALL, RPC_C_AUTHN_LEVEL_PKT,
RPC_C_AUTHN_LEVEL_PKT_INTEGRITY, and RPC_C_AUTHN_LEVEL_PKT_PRIVACY are only
supported for a Windows 95 client communicating with a Windows NT server. These levels are never
supported for a Windows 95 client communicating with a Windows 95 server.

See Also

RpcBindingInqAuthInfo, RpcBindingSetAuthInfo

 Authentication-Service Constants

The AuthnSvc argument represents the authentication service supplied to the
RpcBindingInqAuthInfo and RpcBindingSetAuthInfo run-time functions.

The following constants represent valid values for the AuthnSvc argument:

Constant Value Service
RPC_C_AUTHN_DCE_PRIVAT
E

1 DCE private key
authentication

RPC_C_AUTHN_DCE_PUBLIC 2 DCE public key
authentication (reserved
for future use)

RPC_C_AUTHN_DEC_PUBLIC 4 DEC public key
authentication (reserved
for future use)

RPC_C_AUTHN_DEFAULT 0xffffffff Default authentication
service

RPC_C_AUTHN_NONE 0 No authentication
RPC_C_AUTHN_WINNT 10 NT LM SSP (NT Security

Service)

Specify RPC_C_AUTHN_NONE to turn off authentication for remote procedure calls made using the
binding handle.

When you specify RPC_C_AUTHN_DEFAULT, the RPC run-time library uses the
RPC_C_AUTHN_DCE_PRIVATE authentication service for remote procedure calls made using the
binding handle.

See Also

RpcBindingInqAuthInfo, RpcBindingSetAuthInfo

 Authorization-Service Constants

The AuthzSvc argument represents the authorization service supplied to the RpcBindingInqAuthInfo
and RpcBindingSetAuthInfo run-time functions.

The following constants represent valid values for the AuthzSvc argument:

Constant Value Service
RPC_C_AUTHZ_NONE 0 Server performs no authorization.
RPC_C_AUTHZ_NAME 1 Server performs authorization based

on the client's principal name.
RPC_C_AUTHZ_DCE 2 Server performs authorization

checking using the client's DCE
privilege attribute certificate (PAC)
information, which is sent to the server
with each remote procedure call made
using the binding handle. Generally,
access is checked against DCE
access control lists (ACLs).

See Also

RpcBindingInqAuthInfo, RpcBindingSetAuthInfo

 GUID

typedef struct _GUID {
 unsigned long Data1;
 unsigned short Data2;
 unsigned short Data3;
 unsigned char Data4[8];
} GUID;

typedef GUID UUID;

Data1
Specifies the first eight hexadecimal digits of the UUID.

Data2
Specifies the first group of four hexadecimal digits of the UUID.

Data3
Specifies the second group of four hexadecimal digits of the UUID.

Data4
Specifies an array of eight elements that contains the third and final group of eight hexadecimal
digits of the UUID in elements 0 and 1, and the final 12 hexadecimal digits of the UUID in elements
2 through 7.

Remarks

GUIDs are globally unique identifiers and are a Microsoft implementation of the DCE UUID.

UUIDs uniquely identify objects, such as interfaces, manager entry-point vectors, and client objects.
The RPC run-time libraries use UUIDs to check for compatibility between clients and servers and to
select among multiple implementations of an interface.

See Also

UUID, UUID_VECTOR

 PROTSEQ

unsigned char * Protseq[1];

Protseq
Points to a character string identifying the network protocol used to communicate between client and
server.

Remarks

A protocol sequence is a character string identifying the network protocols used to establish a
relationship between a client and server. The protocol sequence contains a set of options that must be
defined to the RPC run-time library. There are three options in this set:

· The RPC protocol used for communications. (Available options are ncacn and ncadg.)
· The format used in the network address supplied in the binding. (Available options are ip, dnet, and

osi.)
· The transport protocol used for communications. (Available options are tcp, udp, nsp, dna, np, and

nb.)

The following predefined strings represent valid combinations:

Protocol
sequence

Description

ncacn_ip_tcp NCA connection over TCP/IP (transmission control
protocol/internet protocol)

ncacn_nb_nb NCA connection over NetBEUI over NetBIOS
ncacn_nb_tcp NCA connection over TCP/IP over NetBIOS
ncacn_np NCA connection over named pipes
ncacn_spx Connection-oriented SPX
ncadg_ip_udp Datagram-oriented TCP/IP
ncadg_ipx Datagram-oriented IPX
ncalrpc Local procedure call

Note Windows 95 does not support ncalrpc, ncacn_nb_ipx, and ncacn_nb_tcp. The ncacn_np
protocol is supported only on the client side. You must have an authentic Novell client to use the RPC
SPX transport.

A server application can use a particular protocol sequence only when the RPC run-time library and
operating-system software support that protocol. A server chooses to accept remote procedure calls
over some or all of the supported protocol sequences.

Several server routines allow server applications to register protocol sequences with the run-time
library. Microsoft RPC functions that require a protocol-sequence argument use the data type
unsigned char.

A client can use the protocol-sequence strings to construct a string binding using the
RpcStringBindingCompose routine.

Note The ncalrpc protocol sequence is supported only for Windows NT applications.

The ncacn_dnet_nsp protocol sequence is supported only for MS-DOS, Microsoft Windows 3.x, and
Microsoft Windows for Workgroups 3.1 client applications. This release of Microsoft RPC does not
include support for the ncacn_dnet_nsp protocol sequence with Microsoft Windows NT client or
server applications.

See Also

RpcServerUseAllProtseqs, RpcServerUseAllProtseqsIf, RpcServerUseProtseq,
RpcServerUseProtseqEp, RpcServerUseProtseqIf, RpcStringBindingCompose

 RPC_AUTH_IDENTITY_HANDLE

typedef void * RPC_AUTH_IDENTITY_HANDLE;

Remarks

An identity handle points to the data structure that contains the client's authentication and authorization
credentials specified for remote procedure calls.

See Also

RpcBindingInqAuthInfo, RpcBindingSetAuthInfo

 RPC_AUTH_KEY_RETRIEVAL_FN

typedef void (* RPC_AUTH_KEY_RETRIEVAL_FN) (
void * Arg,
unsigned short * ServerPrincName,
unsigned long KeyVer,
void * * Key,
RPC_STATUS * Status
);

Arg
Points to a user-defined argument to the user-supplied encryption key acquisition function. The RPC
run-time library uses the Arg argument supplied to RpcServerRegisterAuthInfo.

ServerPrincName
Points to the principal name to use for the server when authenticating remote procedure calls. The
RPC run-time library uses the ServerPrincName argument supplied to
RpcServerRegisterAuthInfo.

KeyVer
Specifies the value that the RPC run-time library automatically provides for the key-version
argument. When the value is 0, the acquisition function must return the most recent key available.

Key
Points to a pointer to the authentication key returned by the user-supplied function.

Status
Points to the status returned by the acquisition function when it is called by the RPC run-time library
to authenticate the client RPC request. If the status is other than RPC_S_OK, the request fails and
the run-time library returns the error status to the client application.

Remarks

An authorization key retrieval function specifies the address of a server-application-provided routine
returning encryption keys.

See Also

RpcServerRegisterAuthInfo

 RPC_AUTHZ_HANDLE

typedef void * RPC_AUTHZ_HANDLE;

Remarks

An authorization handle points to the privileges information for the client application that made the
remote procedure call.

See Also

RpcBindingInqAuthClient

 RPC_BINDING_HANDLE

typedef RPC_BINDING_HANDLE handle_t;

Remarks

A binding handle is a pointer-sized opaque variable containing information that the RPC run-time library
uses to access binding information. The run-time library uses binding information to establish a client-
server relationship that allows the execution of remote procedure calls.

Based on the context in which a binding handle is created, the binding handle is considered a server
binding handle or a client binding handle.

A server binding handle contains the information necessary for a client to establish a relationship with a
specific server. Any number of RPC API run-time routines return a server binding handle that can be
used for making a remote procedure call.

A client binding handle cannot be used to make a remote procedure call. The RPC run-time library
creates and provides a client binding handle to a called server procedure (also called a server manager
routine) as the RPC_BINDING_HANDLE parameter. The client binding handle contains information
about the calling client.

The RpcBinding* and RpcNsBinding* routines return the status code
RPC_S_WRONG_KIND_OF_BINDING when an application provides the incorrect binding-handle
type.

An application can share a single binding handle across multiple threads of execution. The RPC run-
time library manages concurrent remote procedure calls that use a single binding handle. However, the
application is responsible for binding-handle concurrency control for operations that modify a binding
handle. These operations include the following routines:

· RpcBindingFree
· RpcBindingReset
· RpcBindingSetAuthInfo
· RpcBindingSetObject

For example, if an application shares a binding handle across two threads of execution and resets the
binding-handle endpoint in one of the threads by calling RpcBindingReset, the binding handle in the
other thread is also reset. Similarly, freeing the binding handle in one thread by calling
RpcBindingFree frees the binding handle in the other thread.

If you don't want concurrency, you can design an application to create a copy of a binding handle by
calling RpcBindingCopy. In this case, an operation to the first binding handle has no effect on the
second binding handle.

Routines requiring a binding handle as an argument show a data type of RPC_BINDING_HANDLE.
Binding-handle arguments are passed by value.

 Binding-Handle Use by Function

The following table contains the list of RPC run-time routines that operate on binding handles and
specifies the type of binding handle allowed:

Routine Input argument Output argument
RpcBindingCopy Server Server
RpcBindingFree Server None
RpcBindingFromStringBindi
ng

None Server

RpcBindingInqAuthClient Client None
RpcBindingInqAuthInfo Server None
RpcBindingInqObject Server or client None
RpcBindingReset Server None
RpcBindingSetAuthInfo Server None
RpcBindingSetObject Server None
RpcBindingToStringBinding Server or client None
RpcBindingVectorFree Server None
RpcNsBindingExport Server None
RpcNsBindingImportNext None Server
RpcNsBindingLookupNext None Server
RpcNsBindingSelect Server Server
RpcServerInqBindings None Server

 RPC_BINDING_VECTOR

#define rpc_binding_vector_t RPC_BINDING_VECTOR

typedef struct _RPC_BINDING_VECTOR {
unsigned long Count;
RPC_BINDING_HANDLE BindingH[1];

} RPC_BINDING_VECTOR;

Count
Specifies the number of binding handles present in the binding-handle array BindingH.

BindingH
Specifies an array of binding handles that contains Count elements.

Remarks

The binding-vector data structure contains a list of binding handles over which a server application can
receive remote procedure calls.

The binding vector contains a count member (Count), followed by an array of binding-handle
(BindingH) elements.

The RPC run-time library creates binding handles when a server application registers protocol
sequences. To obtain a binding vector, a server application calls the RpcServerInqBindings routine.

A client application obtains a binding vector of compatible servers from the name-service database by
calling the RpcNsBindingLookupNext routine.

In both routines, the RPC run-time library allocates memory for the binding vector. An application calls
the RpcBindingVectorFree routine to free the binding vector.

To remove an individual binding handle from the vector, the application must set the value in the vector
to NULL. When setting a vector element to NULL, the application must:

· Free the individual binding
· Not change the value of Count

Calling the RpcBindingFree routine allows an application to both free the unwanted binding handle
and set the vector entry to a NULL value.

See Also

RpcBindingVectorFree, RpcEpRegister, RpcEpRegisterNoReplace, RpcEpUnregister,
RpcNsBindingExport, RpcNsBindingLookupNext, RpcNsBindingSelect, RpcServerInqBindings

 RPC_CLIENT_INTERFACE

Remarks

The RPC_CLIENT_INTERFACE data structure is part of the private interface between the run-time
libraries and the stubs. Most distributed applications that use Microsoft RPC do not need this data
structure.

The data structure is defined in the header file RPCDCEP.H.

 RPC_DISPATCH_TABLE

Remarks

The RPC_DISPATCH_TABLE data structure is part of the private interface between the run-time
libraries and the stubs. Most distributed applications that use Microsoft RPC do not need this data
structure.

The data structure is defined in the header file RPCDCEP.H.

 RPC_IF_HANDLE

typedef void * RPC_IF_HANDLE;

Remarks

An interface handle is an opaque variable containing information the RPC run-time library uses to
access the interface-specification data structure.

The MIDL compiler automatically creates an interface-specification data structure from each IDL file
and creates a global variable of type RPC_IF_HANDLE for the interface specification.

The MIDL compiler includes an interface handle in each .H file generated for the interface.

Routines requiring the interface specification as an argument show a data type of RPC_IF_HANDLE.

The form of each interface handle name is as follows:

· if-name_ClientIfHandle (for the client)
· if-name_ServerIfHandle (for the server)

if-name
Specifies the interface identifier in the IDL file.
For example:
hello_ClientIfHandle
hello_ServerIfHandle

Note The maximum length of the interface handle name is 31 characters.

Because the _ClientIfHandle and _ServerIfHandle parts of the names require 15 characters, the if-
name element can be no more than 16 characters long.

 RPC_IF_ID

typedef struct _RPC_IF_ID {
UUID Uuid;
unsigned short VersMajor;
unsigned short VersMinor;

} RPC_IF_ID;

Uuid
Specifies the interface UUID.

VersMajor
Specifies the major version number, an integer from 0 to 65535, inclusive.

VersMinor
Specifies the minor version number, an integer from 0 to 65535, inclusive.

Remarks

The interface-identification (ID) data structure contains the interface UUID and major and minor version
numbers of an interface. The interface identification is a subset of the data contained in the interface-
specification structure.

Routines that require an interface ID structure show a data type of RPC_IF_ID. In those routines, the
application is responsible for providing memory for the structure.

See Also

RpcIfInqId

 RPC_IF_ID_VECTOR

typedef struct _RPC_IF_ID_VECTOR {
unsigned long Count;
RPC_IF_ID * IfHandl[1];

} RPC_IF_ID_VECTOR;

Count
Specifies the number of interface-identification data structures present in the array IfHandl.

IfHandl
Specifies an array of pointers to interface-identification data structures that contains Count elements.

Remarks

The interface-identification (ID) vector data structure contains a list of interfaces offered by a server.
The interface ID vector contains a count member (Count), followed by an array of pointers to interface
IDs (RPC_IF_ID).

The interface ID vector is a read-only vector. To obtain a vector of the interface IDs registered by a
server with the run-time library, an application calls the RpcMgmtInqIfIds routine. To obtain a vector of
the interface IDs exported by a server, an application calls the RpcNsMgmtEntryInqIfIds routine.

The RPC run-time library allocates memory for the interface ID vector. The application calls the
RpcIfIdVectorFree routine to free the interface ID vector.

See Also

RpcIfIdVectorFree, RpcMgmtInqIfIds, RpcNsMgmtEntryInqIfIds

 RPC_MGR_EPV

typedef void RPC_MGR_EPV;

typedef _if-name_SERVER_EPV {
return-type (* Functionname) (param-list);
... // one entry for each function in IDL file

} if-name_SERVER_EPV;

if-name
Specifies the name of the interface indicated in the IDL file.

return-type
Specifies the type returned by the function Functionname indicated in the IDL file.

Functionname
Specifies the name of the function indicated in the IDL file.

param-list
Specifies the arguments indicated for the function Functionname in the IDL file.

Remarks

The manager entry-point vector (EPV) is an array of function pointers. The array contains pointers to
the implementations of the functions specified in the IDL file. The number of elements in the array is set
to the number of functions specified in the IDL file. An application can also have multiple EPVs,
representing multiple implementations of the functions specified in the interface.

The MIDL compiler generates a default EPV data type named if-name_SERVER_EPV, where if-name
specifies the interface identifier in the IDL file. The MIDL compiler initializes this default EPV to contain
function pointers for each of the procedures specified in the IDL file.

When the server offers multiple implementations of the same interface, the server application must
declare and initialize one variable of type if-name_SERVER_EPV for each implementation of the
interface. Each EPV must contain one entry point (function pointer) for each procedure defined in the
IDL file.

See Also

RpcServerRegisterIf

 RPC_NS_HANDLE

typedef void * RPC_NS_HANDLE;

Remarks

A name-service handle is an opaque variable containing information the RPC run-time library uses to
return the following RPC data from the name-service database:

· Server binding handles
· UUIDs of resources offered by server profile members
· Group members

The scope of a name-service handle is from a Begin routine through the corresponding Done routine.

Applications are responsible for concurrency control of name-service handles across threads.

See Also

RpcNsBindingImportBegin, RpcNsBindingImportDone, RpcNsBindingImportNext,
RpcNsBindingLookupBegin, RpcNsBindingLookupDone, RpcNsBindingLookupNext

 RPC_OBJECT_INQ_FN

typedef void RPC_OBJECT_INQ_FN(
UUID * ObjectUuid,
UUID * TypeUuid,
RPC_STATUS * Status);

ObjectUuid
Points to the variable that specifies the object UUID that is to be mapped to a type UUID.

TypeUuid
Points to the address of the variable that is to contain the type UUID derived from the object UUID.
The type UUID is returned by the function.

Status
Points to a return value for the function.

Remarks

The developer can replace the default mapping function that maps object UUIDs to type UUIDs by
calling RpcObjectSetInqFn and supplying a pointer to a function of type RPC_OBJECT_INQ_FN. The
supplied function must match the function prototype specified by the type definition: a function with
three parameters and the function return value of void.

See Also

RpcObjectSetInqFn

 RPC_PROTSEQ_VECTOR

typedef struct _RPC_PROTSEQ_VECTOR {
unsigned long Count;
unsigned char * Protseq[1];

} RPC_PROTSEQ_VECTOR;

Count
Specifies the number of protocol-sequence strings present in the array Protseq.

Protseq
Specifies an array of pointers to protocol-sequence strings. The number of pointers present is
specified by the Count field.

Remarks

The protocol-sequence vector data structure contains a list of protocol sequences the RPC run-time
library uses to send and receive remote procedure calls. The protocol-sequence vector contains a
count member (Count), followed by an array of pointers to protocol-sequence strings (Protseq).

The protocol-sequence vector is a read-only vector. To obtain a protocol-sequence vector, a server
application calls the RpcNetworkInqProtseqs routine. The RPC run-time library allocates memory for
the protocol-sequence vector. The server application calls the RpcProtseqVectorFree routine to free
the protocol-sequence vector.

 RPC_STATS_VECTOR

typedef struct {
unsigned int Count;
unsigned long Stats[1];

} RPC_STATS_VECTOR;

Count
Specifies the number of statistics values present in the array Stats.

Stats
Specifies an array of unsigned long integers representing server statistics that contains Count
elements.

Remarks

The statistics vector contains statistics from the RPC run-time library on a per-server basis. The
statistics vector contains a count member (Count), followed by an array of statistics. Each array
element contains an unsigned long value. The following list describes the statistics indexed by the
specified constant:

Constant Statistics
RPC_C_STATS_CALLS_IN The number of remote procedure

calls received by the server
RPC_C_STATS_CALLS_OUT The number of remote procedure

calls initiated by the server
RPC_C_STATS_PKTS_IN The number of network packets

received by the server
RPC_C_STATS_PKTS_OUT The number of network packets sent

by the server

To obtain run-time statistics, an application calls the RpcMgmtInqStats routine. The RPC run-time
library allocates memory for the statistics vector. The application calls the RpcMgmtStatsVectorFree
routine to free the statistics vector.

 RPC_STATUS

typedef long RPC_STATUS; // Win32 definition
typedef unsigned short RPC_STATUS; // MS-DOS, Win16 definition

Remarks

The type RPC_STATUS represents a platform-specific status code type. The RPC_STATUS type is
returned by most RPC functions and is part of the RPC_OBJECT_INQ_FN function type definition.

 SEC_WINNT_AUTH_IDENTITY

For Windows 3.x and MS-DOS:

typedef struct _SEC_WINNT_AUTH_IDENTITY

char __RPC_FAR * User;
char __RPC_FAR * Domain;
char __RPC_FAR * Password;

SEC_WINNT_AUTH_IDENTITY

For Windows NT:

typedef struct _SEC_WINNT_AUTH_IDENTITY

unsigned short __RPC_FAR * User;
unsigned long __Userlength;
unsigned short __RPC_FAR * Domain;
unsigned long Domian Length;
unsigned short __RPC_FAR * Password;
unsigned long Password length;

SEC_WINNT_AUTH_IDENTITY, *
PSEL_WINNT_AUTH_IDENTITY;
User

String containing the user name.
Domain

String containing the domain name or the workgroup name.
Password

String containing the user's password in the domain or workgroup.

Remarks

The SEC_WINNT_AUTH_IDENTITY structure allows you to pass a particular user name and password
to the runtime library for the purpose of authentication.

For Windows 3.x and MS-DOS, the strings are ANSI; for Windows NT, the strings are Unicode. For
Windows NT, the values for Userlength; DomainLength, and Password Length are the length of the
corresponding string without the terminating 0X0000.

 String Binding

ObjectUUID@ProtocolSequence:NetworkAddress[Endpoint,Option]

ObjectUUID
Specifies the UUID of the object operated on by the remote procedure call. At the server, the RPC
run-time library maps the object type to a manager entry-point vector (an array of function pointers)
to invoke the correct manager routine. For a discussion of mapping object UUIDs to manager entry-
point vectors, see RpcServerRegisterIf . .

ProtocolSequence
Specifies the protocol sequence for making remote procedure calls. The following protocol
sequences are supported by Microsoft RPC:
· ncacn_ip_tcp
· ncacn_np
· ncacn_nb_nb, ncacn_nb_tcp
· ncacn_spx
· ncalrpc
· ncadg_ip_udp
· ncadg_ipx

Note Windows 95 does not support ncalrpc, ncacn_nb_ipx, and ncacn_nb_tcp. The ncacn_np
protocol is supported only on the client side. The ncacn_dnet_nsp protocol sequence is supported
only for MS-DOS, Microsoft Windows 3.x, and Microsoft Windows for Workgroups 3.1 client
applications. This release of Microsoft RPC does not include support for the ncacn_dnet_nsp protocol
sequence with Microsoft Windows NT client or server applications.

NetworkAddress
Specifies the network address of the system to receive remote procedure calls. The format and
content of the network address depend on the specified protocol sequence as follows:
Protocol
sequence

Network address Example

ncacn_dnet_n
sp

Area and node syntax 4.120

ncacn_ip_tcp Common internet address
notation

128.10.2.30

ncacn_ip_tcp Host name ko
ncacn_nb_nb,
ncacn_nb_tcp

Windows NT server name marketing

ncacn_np Windows NT server name \\marketing
ncacn_spx Network number and

node number
~0000000108002B3061
2C

ncadg_ip_udp Host name ko or 11.101.9.127
ncadg_ipx Network number and

node number
~0000000108002B3061
2C

ncalrpc None

The network-address field is optional. When you do not specify a network address, the string binding
refers to your local host. No network address should be specified when you use the ncalrpc protocol
sequence.
When the specified host name is multi-homed, the function RpcBindingFromStringBinding returns

a binding handle for the first host address it finds. To specify the host address, use the common
internet address notation, an area node syntax, or an NSP instead of a host name.
The string representing the NSP is a percent sign followed by the letter X followed by hexadecimal
digits. No separators are allowed. Because the NSP specifies the transport to be used as part of its
value, any transport options in the string binding are ignored.

Endpoint
Specifies the endpoint, or address, of the process to receive remote procedure calls. An endpoint
can be preceded by the keyword endpoint=. The endpoint field is optional.
The format and content of an endpoint depend on the specified protocol sequence as follows:
Protocol
sequence

Endpoint Example

ncacn_dnet_ns
p

DECnet phase IV object number
(must be preceded by the #
character)

#17

ncacn_ip_tcp Internet port number 1025
ncacn_nb_nb,
ncacn_nb_tcp

Integer between 0 and 255. Many
values between 0 and 32 are
reserved by Microsoft.

100

ncacn_np Windows NT named pipe. Name
must start with "\\pipe".

\\pipe\\pipename

ncacn_spx Integer between 1 and 65535. 5000
ncadg_ip_udp Internet port number 1025
ncadg_ipx Integer between 1 and 65535 5000
ncalrpc String specifying Windows NT

object name. The string cannot
include any backslash characters.

my_object

Option
Specifies options associated with Endpoint. The option field is not required. Each option is specified
by a {name, value} pair that uses the syntax option name=option value. Options are defined for each
protocol sequence as follows:
Protocol sequence Option name
ncacn_ip_tcp None
ncacn_nb_nb,
ncacn_nb_tcp

None

ncacn_np Security
ncacn_spx None
ncadg_ip_udp None
ncadg_ipx None
ncalrpc Security

The Security option name, supported for the ncalrpc and ncacn_np protocol sequences, takes the
following option values:
Option
name

Option value

Security {identification | anonymous | impersonation} {dynamic |
static} {true | false}

If the Security option name is specified, one entry from each of the sets of Security option values
must also be supplied. The option values must be separated by a single-space character. For

example, the following Option fields are valid:
Security=identification dynamic true
Security=impersonation static true

The Security option values have the following meanings:
Security option
value

Description

Anonymous The client is anonymous to the server.
Dynamic A pointer to the security token is maintained.

Security settings represent current settings and
include changes made after the endpoint was
created.

False Effective = FALSE; all Windows NT security
settings, including those set to OFF, are included
in the token.

Identification The server has information about client but cannot
impersonate.

Impersonation The server is the client on the client's behalf.
Static Security settings associated with the endpoint

represent a copy of the security information at the
time the endpoint was created. The settings do not
change.

True Effective = TRUE; only Windows NT security
settings set to ON are included in the token.

For more information about Microsoft Windows NT security options, see your Microsoft Windows NT
programming documentation.

Remarks

The string binding is an unsigned character string composed of strings that represent the binding object
UUID, the RPC protocol sequence, the network address, and the endpoint and endpoint options. White
space is not allowed in string bindings except where required by the Option syntax.

Default settings for the NetworkAddress, Endpoint, and Option fields vary according to the value of the
ProtocolSequence field.

For all string-binding fields, a single backslash character (\) is interpreted as an escape character. To
specify a single literal backslash character, you must supply two backslash characters (\\).

The following are examples of valid string bindings. In these examples, obj-uuid is used for
convenience to represent a valid UUID in string form. Instead of showing the UUID 308FB580-1EB2-
11CA-923B-08002B1075A7, the examples show obj-uuid.

obj-uuid@ncacn_dnet_nsp:took[elf_server]
obj-uuid@ncacn_dnet_nsp:took[endpoint=elf_server]
obj-uuid@ncacn_ip_tcp:16.20.16.27[2001]
obj-uuid@ncacn_ip_tcp:16.20.16.27[endpoint=2001]
obj-uuid@ncacn_nb_nb:
obj-uuid@ncacn_nb_nb:[100]
obj-uuid@ncacn_np:
obj-uuid@ncacn_np:[\\pipe\\p3,Security=impersonation static true]
obj-uuid@ncacn_np:\\\\marketing[\\pipe\\p2\\p3\\p4]
obj-uuid@ncacn_np:\\\\marketing[endpoint=\\pipe\\p2\\p3\\p4]
obj-uuid@ncacn_np:\\\\sales

obj-uuid@ncacn_np:\\\\sales[\\pipe\\p1,Security=anonymous dynamic true]
obj-uuid@ncalrpc:
obj-uuid@ncalrpc:[object1_name_demonstrating_that_these_can_be_lengthy]
obj-uuid@ncalrpc:[object2_name,Security=anonymous dynamic true]

A string binding contains the character representation of a binding handle and sometimes portions of a
binding handle. String bindings are convenient for representing portions of a binding handle, but they
can't be used for making remote procedure calls. They must first be converted to a binding handle by
calling the RpcBindingFromStringBinding routine.

Additionally, a string binding does not contain all of the information from a binding handle. For example,
the authentication information, if any, associated with a binding handle is not translated into the string
binding returned by calling the RpcBindingToStringBinding routine.

During the development of a distributed application, servers can communicate their binding information
to clients using string bindings to establish a client-server relationship without using the endpoint-map
database or name-service database. To establish such a relationship, use the function
RpcBindingToStringBinding to convert one or more binding handles from a binding-handle vector to
a string binding and provide (via mail, on paper, or some other means) the string binding to the client.

See Also

RpcBindingFromStringBinding, RpcBindingToStringBinding

 String UUID

A string UUID contains the character-array representation of a UUID. A string UUID is composed of
multiple fields of hexadecimal characters. Each field has a fixed length, and fields are separated by the
hyphen character. For example:

989C6E5C-2CC1-11CA-A044-08002B1BB4F5

When providing a string UUID as an input argument to a RPC run-time routine, enter the alphabetic
hexadecimal characters as either uppercase or lowercase characters. However, when a run-time
routine returns a string UUID, the hexadecimal characters are always lowercase.

See Also

UUID

 UUID

typedef struct _GUID {
unsigned long Data1;
unsigned short Data2;
unsigned short Data3;
unsigned char Data4[8];

} GUID;

typedef GUID UUID;

#define uuid_t UUID

Data1
Specifies the first eight hexadecimal digits of the UUID.

Data2
Specifies the first group of four hexadecimal digits of the UUID.

Data3
Specifies the second group of four hexadecimal digits of the UUID.

Data4
Specifies an array of eight elements that contains the third and final group of four hexadecimal digits
of the UUID in elements 0 and 1, and the final 12 hexadecimal digits of the UUID in elements 2
through 7.

Remarks

UUIDs uniquely identify objects such as interfaces, manager entry-point vectors, and client objects.
The RPC run-time libraries use UUIDs to check for compatibility between clients and servers and to
select among multiple implementations of an interface.

See Also

GUID, UUID_VECTOR

 UUID_VECTOR

typedef struct _UUID_VECTOR {
unsigned long Count;
UUID * Uuid[1];

} UUID_VECTOR;

Count
Specifies the number of UUIDs present in the array Uuid.

Uuid
Specifies an array of pointers to UUIDs that contains Count elements.

Remarks

The UUID vector data structure contains a list of UUIDs. The UUID vector contains a count member
followed by an array of pointers to UUIDs.

An application constructs a UUID vector to contain object UUIDs to be exported or unexported from the
name service.

See Also

RpcEpRegister, RpcEpRegisterNoReplace, RpcEpUnregister, RpcNsBindingExport,
RpcNsBindingUnexport

 Function Reference

This section contains an alphabetical list of the functions supported in this version of Microsoft® RPC.
The documentation for each function includes a statement about the function's purpose, the syntax, a
description of the function's input parameters, a description of its values, and additional remarks that
can help you use the function in an application.

All pointers passed to RPC functions must include the _ _RPC_FAR attribute. For example, the pointer
RPC_BINDING_HANDLE * becomes RPC_BINDING_HANDLE _ _RPC_FAR * and char * * Ptr
becomes char _ _RPC_FAR * _ _RPC_FAR * Ptr.

 DceErrorInqText QuickInfo

The DceErrorInqText function returns the message text for a status code.

#include <rpc.h>
RPC_STATUS RPC_ENTRY
DceErrorInqText(

unsigned long StatusToConvert,
unsigned char * ErrorText);

This function is supported by both the 32-bit Windows NT and Windows 95 platforms. Note that it is
supported in ANSI only on the Windows 95 platform.

Parameters

StatusToConvert
Specifies the status code to convert to a text string.

ErrorText
Returns the text corresponding to the error code.

Value Meaning
RPC_S_OK Operation completed successfully
RPC_S_INVALID_ARG Unknown error code

Remarks

The DceErrorInqText routine returns a null-terminated character string message for a particular status
code. If the call is not successful, DceErrorInqText returns a message as well as a failure code in
Status.

 MesBufferHandleReset

The MesBufferHandleReset function re-initializes the handle for buffer serialization.

#include <rpc.h>
#include <midles.h>
RPC_STATUS RPC_ENTRY
MesBufferHandleReset(

handle_t Handle,
unsigned long HandleStyle,
MIDL_ES_CODE OpCode,
char * * ppBuffer,
unsigned long BufferSize,
unsigned long * pEncodedSize);

Parameters

Handle
The handle to be initialized.

HandleStyle
Specifies the style of handle. Valid styles are MES_FIXED_BUFFER_HANDLE or
MES_DYNAMIC_BUFFER_HANDLE.

OpCode
Specifies the operation. Valid operations are MES_ENCODE or MES_DECODE.

ppBuffer
For MES_DECODE, points to a pointer to the buffer containing the data to be decoded.
For MES_ENCODE, points to a pointer to the buffer for fixed buffer style, and points to a pointer to
return the buffer address for dynamic buffer style.

BufferSize
Specifies the number of bytes of data to be decoded in the buffer. Note that this is used only for the
fixed buffer style of serialization.

pEncodedSize
Points to the size of the completed encoding. Note that this is used only when the operation is
MES_ENCODE.

Remarks

The MesBufferHandleReset routine is used by applications to re-initialize a buffer style handle and
save memory allocations.

Return Values

Value Meaning

RPC_S_OK Success
RPC_S_INVALID_ARG Invalid argument

See Also

MesEncodeFixedBufferHandleCreate, MesEncodeDynBufferHandleCreate

 MesDecodeBufferHandleCreate

The MesDecodeBufferHandleCreate function creates a decoding handle and initializes it for a (fixed)
buffer style of serialization.

#include <rpc.h>
#include <midles.h>
RPC_STATUS RPC_ENTRY
MesDecodeBufferHandleCreate(

char * Buffer,
unsigned long BufferSize,
handle_t * pHandle);

Parameters

Buffer
Points to the buffer containing the data to decode.

BufferSize
Specifies the number of bytes of data to decode in the buffer.

pHandle
Points to the address to which the handle will be written.

Remarks

The MesDecodeBufferHandleCreate routine is used by applications to create a serialization handle
and initialize the handle for the (fixed) buffer style of decoding. When using the fixed buffer style of
decoding, the user supplies a single buffer containing all the encoded data. This buffer must have an
address which is aligned at 8, and must be a multiple of 8 bytes in size. Further, it must be large
enough to hold all of the data to decode.

Return Values

Value Meaning

RPC_S_OK Success
RPC_S_INVALID_ARG Invalid argument
RPC_S_OUT_OF_MEMORY Out of memory
RPC_X_INVALID_BUFFER Invalid buffer

See Also

MesEncodeFixedBufferHandleCreate, MesHandleFree

 MesDecodeIncrementalHandleCreate

The MesDecodeIncrementalHandleCreate function creates a decoding handle for the incremental
style of serialization.

#include <rpc.h>
#include <midles.h>
RPC_STATUS RPC_ENTRY
MesDecodeIncrementalHandleCreate(

void * UserState,
MIDL_ES_READ ReadFn,
handle_t * pHandle);

Parameters

UserState
Points to the user-supplied state object that coordinates the Alloc, Write, and Read routines.

ReadFn
Points to the Read routine.

pHandle
Pointer to the newly-created handle.

Remarks

The MesDecodeIncrementalHandleCreate routine is used by applications to create the handle and
initialize it for the incremental style of decoding. When using the incremental style of decoding, the user
supplies a Read routine to provide a buffer containing the next part of the data to be decoded. The
buffer must be aligned at eight, and the size of the buffer must be a multiple of eight. For additional
information on the user-supplied Alloc, Write and Read routines, see Using Encoding Services.

Return Values

Value Meaning

RPC_S_OK Success
RPC_S_INVALID_ARG Invalid argument
RPC_S_OUT_OF_MEMORY Out of memory

See Also

MesIncrementalHandleReset, MesHandleFree

 MesEncodeDynBufferHandleCreate

The MesEncodeDynBufferHandleCreate function creates an encoding handle and then initializes it
for a dynamic buffer style of serialization.

#include <rpc.h>
#include <midles.h>
RPC_STATUS RPC_ENTRY
MesEncodeDynBufferHandleCreate(

char * * ppBuffer,
unsigned long * pEncodedSize,
handle_t * pHandle);

Parameters

ppBuffer
Points to a pointer to the stub-supplied buffer containing the encoding after serialization is complete.

pEncodedSize
Specifies a pointer to the size of the completed encoding. The size will be written to the pointee by
the subsequent encoding operation(s).

pHandle
Points to the address to which the handle will be written.

Remarks

The MesEncodeDynBufferHandleCreate routine is used by applications to allocate the memory and
initialize the handle for the dynamic buffer style of encoding. When using the dynamic buffer style of
encoding, the buffer into which all the encoded data will be placed is supplied by the stub. This buffer
will be allocated by the current client memory-management mechanism.

There can be performance implications when using this style for multiple encodings with the same
handle. A single buffer is returned from an encoding and data is copied from intermediate buffers. The
buffers are released when necessary.

Return Values

Value Meaning

RPC_S_OK Success
RPC_S_INVALID_ARG Invalid argument
RPC_S_OUT_OF_MEMORY Out of memory

See Also

MesBufferHandleReset, MesHandleFree

 MesEncodeFixedBufferHandleCreate

The MesEncodeFixedBufferHandleCreate function creates an encoding handle and then initializes it
for a fixed buffer style of serialization.

#include <rpc.h>
#include <midles.h>
RPC_STATUS RPC_ENTRY
MesEncodeFixedBufferHandleCreate(

char * Buffer,
unsigned long BufferSize,
unsigned long * pEncodedSize,
handle_t * pHandle);

Parameters

Buffer
Points to the user-supplied buffer.

BufferSize
Specifies the size of the user-supplied buffer.

pEncodedSize
Specifies a pointer to the size of the completed encoding. The size will be written to the pointee by
the subsequent encoding operation(s).

pHandle
Points to the newly-created handle.

Remarks

The MesEncodeFixedBufferHandleCreate routine is used by applications to create and initialize the
handle for the fixed buffer style of encoding. When using the fixed buffer style of encoding, the user
supplies a single buffer into which all the encoded data is placed. This buffer must have an address
which is aligned at eight, and must be a multiple of eight bytes in size. Further, it must be large enough
to hold an encoding of all the data, along with an encoding header for each routine being encoded.

When the handle is used for multiple encoding operations, the encoded size is cumulative.

Return Values

Value Meaning

RPC_S_OK Success
RPC_S_INVALID_ARG Invalid argument
RPC_S_OUT_OF_MEMORY Out of memory

See Also

MesDecodeBufferHandleCreate, MesHandleFree

 MesEncodeIncrementalHandleCreate

The MesEncodeIncrementalHandleCreate function creates an encoding and then initializes it for the
incremental style of serialization.

#include <rpc.h>
#include <midles.h>
RPC_STATUS RPC_ENTRY
MesEncodeIncrementalHandleCreate(

void * UserState,
MIDL_ES_ALLOC AllocFn,
MIDL_ES_WRITE WriteFn,
handle_t * pHandle);

Parameters

UserState
Points to the user-supplied state object that coordinates the Alloc, Write, and Read routines.

AllocFn
Points to the Alloc routine.

WriteFn
Points to the Write routine.

pHandle
Points to the newly-created handle.

Remarks

The MesEncodeIncrementalHandleCreate routine is used by applications to create and initialize the
handle for the incremental style of encoding or decoding. When using the incremental style of
encoding, the user supplies an Alloc routine to provide an empty buffer into which the encoded data is
placed, and a Write routine to call when the buffer is full or the encoding is complete. For additional
information on the user-supplied Alloc, Write and Read routines, see Using Encoding Services.

Return Values

Value Meaning

RPC_S_OK Success
RPC_S_INVALID_ARG Invalid argument
RPC_S_OUT_OF_MEMORY Out of memory

See Also

MesIncrementalHandleReset, MesHandleFree

 MesHandleFree

The MesHandleFree function frees the memory allocated by the serialization handle.

#include <rpc.h>
#include <midles.h>
RPC_STATUS RPC_ENTRY
MesHandleFree(

handle_t Handle);

Parameter

Handle
The handle to be freed.

Remarks

The MesHandleFree routine is used by applications to free the resources of the handle after encoding
or decoding data.

Return Values

Value Meaning

RPC_S_OK Success

See Also

MesEncodeFixedBufferHandleCreate, MesDecodeBufferHandleCreate,
MesEncodeDynBufferHandleCreate, MesEncodeIncrementalHandleCreate

 MesIncrementalHandleReset

The MesIncrementalHandleReset function re-initializes the handle for incremental serialization.

#include <rpc.h>
#include <midles.h>
RPC_STATUS RPC_ENTRY
MesIncrementalHandleReset(

handle_t Handle,
void * UserState,
MIDL_ES_ALLOC AllocFn,
MIDL_ES_WRITE WriteFn,
MIDL_ES_READ ReadFn,
MIDL_ES_CODE OpCode);

Parameters

Handle
The handle to be re-initialized.

UserState
Depending on the function, points to the user-supplied block that coordinates successive calls to the
Alloc, Write, and Read routines.

AllocFn
Points to the Alloc routine. This argument can be NULL if the operation does not require it, or if the
handle was previously initiated with the pointer.

WriteFn
Points to the Write routine. This argument can be NULL if the operation does not require it, or if the
handle was previously initiated with the pointer.

ReadFn
Points to the Read routine. This argument can be NULL if the operation does not require it, or if the
handle was previously initiated with the pointer.

OpCode
Specifies the operation. Valid operations are MES_ENCODE or MES_DECODE.

Remarks

The MesIncrementalHandleReset routine is used by applications to re-initialize the handle for the
incremental style of encoding or decoding. For additional information on the user-supplied Alloc, Write
and Read routines, see Using Encoding Services.

Return Values

Value Meaning

RPC_S_OK Success
RPC_S_INVALID_ARG Invalid argument
RPC_S_OUT_OF_MEMORY Out of memory

See Also

MesEncodeIncrementalHandleCreate, MesHandleFree

 MesInqProcEncodingId

The MesInqProcEncodingId function provides the identity of an encoding.

#include <rpc.h>
#include <midles.h>
RPC_STATUS RPC_ENTRY
MesInqProcEncodingId(

handle_t Handle,
PRPC_SYNTAX_IDENTIFIER pInterfaceId,
unsigned long * pProcNum);

Parameters

Handle
Specifies an encoding or decoding handle.

pInterfaceId
Points to the address in which the identity of the interface used to encode the data will be written.
pInterfaceId consists of the interface UUID and the version number.

pProcNum
Specifies the number of the routine used to encode the data.

Remarks

The MesInqProcEncodingId routine is used by applications to obtain the identity of the routine used
to encode the data before calling a routine to decode it. When called with an encoding handle, it
returns the identity of the last encoding operation. When called with a decoding handle, it returns the
identity of the next decoding operation by pre-reading the buffer.

This routine can only be used to check the identity of a procedure encoding; it cannot be used to check
the identity for a type encoding.

Return Values

Value Meaning

RPC_S_OK Success
RPC_S_INVALID_ARG Invalid argument
RPC_S_OUT_OF_MEMORY Out of memory
RPC_S_UNKNOWN_IF Unknown interface
RPC_S_UNSUPPORTED_
TRANS_SYN

Transfer syntax not supported by
server

RPC_X_INVALID_ES_ACTION Invalid operation for a given handle
RPC_X_WRONG_ES_VERSION Incompatible version of the serializing

package
RPC_X_SS_INVALID_BUFFER Invalid buffer

 RpcAbnormalTermination QuickInfo

The RpcAbnormalTermination function determines whether termination statements are being
executed due to an exception or not.

void RpcAbnormalTermination(void);

Remarks

The RpcAbnormalTermination function should only be called from within the termination-statements
section of an RpcFinally termination handler.

Return Values

Value Meaning Description
Zero No exception Termination statements are

not being executed due to
an exception

Nonzero Exception Termination statements are
being executed due to an
exception

See Also

RpcFinally

 RpcBindingCopy QuickInfo

The RpcBindingCopy function copies binding information and creates a new binding handle.

#include <rpc.h>
RPC_STATUS RPC_ENTRY
RpcBindingCopy(

RPC_BINDING_HANDLE SourceBinding,
RPC_BINDING_HANDLE * DestinationBinding);

Parameters

SourceBinding
Specifies the server binding handle whose referenced binding information is copied.

DestinationBinding
Returns a pointer to the server binding handle that refers to the copied binding information.

Remarks

Note Microsoft RPC supports RpcBindingCopy only in client applications, not in server applications.

The RpcBindingCopy routine copies the server-binding information referenced by the SourceBinding
argument. RpcBindingCopy uses the DestinationBinding argument to return a new server binding
handle for the copied binding information. RpcBindingCopy also copies the authentication information
from the SourceBinding argument to the DestinationBinding argument.

An application uses RpcBindingCopy when it wants to keep a change made to binding information by
one thread from affecting the binding information used by other threads.

Once an application calls RpcBindingCopy, operations performed on the SourceBinding binding
handle do not affect the binding information referenced by the DestinationBinding binding handle.
Similarly, operations performed on the DestinationBinding binding handle do not affect the binding
information referenced by the SourceBinding binding handle.

If an application wants one thread's changes to binding information to affect the binding information
used by other threads, the application should share a single binding handle across the threads. In this
case, the application is responsible for binding-handle concurrency control.

When an application is finished using the binding handle specified by the DestinationBinding argument,
the application should call the RpcBindingFree routine to release the memory used by the
DestinationBinding binding handle and its referenced binding information.

Return Values

Value Meaning
RPC_S_OK Success
RPC_S_INVALID_BINDING Invalid binding handle
RPC_S_WRONG_KIND_OF_BINDI
NG

Wrong kind of binding for operation

See Also

RpcBindingFree

 RpcBindingFree QuickInfo

The RpcBindingFree function releases binding-handle resources.

#include <rpc.h>
RPC_STATUS RPC_ENTRY
RpcBindingFree(

RPC_BINDING_HANDLE * Binding);

Parameter

Binding
Points to the server binding to free.

Remarks

Note Microsoft RPC supports RpcBindingFree only in client applications, not in server applications.

The RpcBindingFree routine releases memory used by a server binding handle. Referenced binding
information that was dynamically created during program execution is released as well. An application
calls the RpcBindingFree routine when it is finished using the binding handle.

Binding handles are dynamically created by calling the following routines:

· RpcBindingCopy
· RpcBindingFromStringBinding
· RpcServerInqBindings
· RpcNsBindingImportNext
· RpcNsBindingSelect

If the operation successfully frees the binding, the Binding argument returns a value of NULL.

Return Values

Value Meaning
RPC_S_OK Success
RPC_S_INVALID_BINDING Invalid binding handle
RPC_S_WRONG_KIND_OF_BINDI
NG

Wrong kind of binding for operation

See Also

RpcBindingCopy, RpcBindingFromStringBinding, RpcBindingVectorFree,
RpcNsBindingImportNext, RpcNsBindingLookupNext, RpcNsBindingSelect,
RpcServerInqBindings

 RpcBindingFromStringBinding QuickInfo

The RpcBindingFromStringBinding function returns a binding handle from a string representation of
a binding handle.

#include <rpc.h>
RPC_STATUS RPC_ENTRY
RpcBindingFromStringBinding(

unsigned char * StringBinding,
RPC_BINDING_HANDLE * Binding);

Parameters

StringBinding
Points to a string representation of a binding handle.

Binding
Returns a pointer to the server binding handle.

Remarks

The RpcBindingFromStringBinding routine creates a server binding handle from a string
representation of a binding handle.

The StringBinding argument does not have to contain an object UUID. In this case, the returned
binding contains a nil UUID.

If the provided StringBinding argument does not contain an endpoint field, the returned Binding
argument is a partially bound binding handle.

If the provided StringBinding argument contains an endpoint field, the endpoint is considered to be a
well-known endpoint.

If the provided StringBinding argument does not contain a host address field, the returned Binding
argument references the local host.

An application creates a string binding by calling the RpcStringBindingCompose routine or by
providing a character-string constant.

When an application is finished using the Binding argument, the application should call the
RpcBindingFree routine to release the memory used by the binding handle.

Return Values

Value Meaning
RPC_S_OK Success
RPC_S_INVALID_STRING_BINDING Invalid string binding
RPC_S_PROTSEQ_NOT_SUPPORTE
D

Protocol sequence not
supported on this host

RPC_S_INVALID_RPC_PROTSEQ Invalid protocol sequence
RPC_S_INVALID_ENDPOINT_FORMA
T

Invalid endpoint format

RPC_S_STRING_TOO_LONG String too long
RPC_S_INVALID_NET_ADDR Invalid network address
RPC_S_INVALID_ARG Invalid argument
RPC_S_INVALID_NAF_ID Invalid network-address-family

ID

See Also

RpcBindingCopy, RpcBindingFree, RpcBindingToStringBinding, RpcStringBindingCompose

 RpcBindingInqAuthClient QuickInfo

The RpcBindingInqAuthClient function returns authentication and authorization information from an
authenticated client's binding handle.

#include <rpc.h>
RPC_STATUS RPC_ENTRY
RpcBindingInqAuthClient(

RPC_BINDING_HANDLE ClientBinding,
RPC_AUTHZ_HANDLE * Privs,
unsigned char * * ServerPrincName,
unsigned long * AuthnLevel,
unsigned long * AuthnSvc,
unsigned long * AuthzSvc);

This function is supported by both the 32-bit Windows NT and Windows 95 platforms.

Parameters

ClientBinding
Specifies the client binding handle of the client that made the remote procedure call. This value can
be zero (see Remarks).

Privs
Returns a pointer to a handle to the privileged information for the client application that made the
remote procedure call on the ClientBinding binding handle.
The server application must cast the ClientBinding binding handle to the data type specified by the
AuthzSvc argument. The data referenced by this argument is read-only and should not be modified
by the server application. If the server wants to preserve any of the returned data, the server must
copy the data into server-allocated memory. This parameter is not used by the
RPC_C_AUTHN_WINNT securing package. The returned pointer will always be NULL.

ServerPrincName
Returns a pointer to a pointer to the server principal name specified by the client application that
made the remote procedure call on the ClientBinding binding handle. The content of the returned
name and its syntax are defined by the authentication service in use.
Specify a null value to prevent RpcBindingInqAuthClient from returning the ServerPrincName
argument. In this case, the application does not call the RpcStringFree routine.

AuthnLevel
Returns a pointer to the level of authentication requested by the client application that made the
remote procedure call on the ClientBinding binding handle.
Specify a null value to prevent RpcBindingInqAuthClient from returning the AuthnLevel argument.

AuthnSvc
Returns a pointer to the authentication service requested by the client application that made the
remote procedure call on the ClientBinding binding handle. For a list of the RPC-supported
authentication services, see RpcMgmtInqDefaultProtectLevel.
Specify a null value to prevent RpcBindingInqAuthClient from returning the AuthnSvc argument.
This parameter is not used by the RPC_C_AUTHN_WINNT security package. The returned value
will always be RPC_S_AUTHZ_NONE.

AuthzSvc
Returns a pointer to the authorization service requested by the client application that made the
remote procedure call on the Binding binding handle. For a list of possible returns, see
RpcMgmtInqDefaultProtectLevel.
Specify a null value to prevent RpcBindingInqAuthClient from returning the AuthnSvc argument.

Remarks

A server application calls the RpcBindingInqAuthClient routine to obtain the principal name or
privilege attributes of the authenticated client that made the remote procedure call. In addition,
RpcBindingInqAuthClient returns the authentication service, authentication level, and server principal
name specified by the client. The server can use the returned data for authorization purposes.

The RPC run-time library allocates memory for the returned ServerPrincName argument. The
application is responsible for calling the RpcStringFree routine for the returned argument string.

For clients using the MIDL auto_handle or implicit_handle attribute, the server application should use
zero as the value for the ClientBinding parameter. Using zero retrieves the authentication and
authorization information from the currently executing remote procedure call.

Return Values

Value Meaning
RPC_S_OK Success
RPC_S_INVALID_BINDING Invalid binding handle
RPC_S_WRONG_KIND_OF_BINDI
NG

Wrong kind of binding for operation

RPC_S_BINDING_HAS_NO_AUTH Binding has no authentication
information

See Also

RpcBindingSetAuthInfo, RpcStringFree

 RpcBindingInqAuthInfo QuickInfo

The RpcBindingInqAuthInfo function returns authentication and authorization information from a
binding handle.

#include <rpc.h>
RPC_STATUS RPC_ENTRY
RpcBindingInqAuthInfo(

RPC_BINDING_HANDLE Binding,
unsigned char * * ServerPrincName,
unsigned long * AuthnLevel,
unsigned long * AuthnSvc,
RPC_AUTH_IDENTITY_HANDLE * AuthIdentity,
unsigned long * AuthzSvc);

Parameters

Binding
Specifies the server binding handle from which authentication and authorization information is
returned.

ServerPrincName
Returns a pointer to a pointer to the expected principal name of the server referenced in the Binding
argument. The content of the returned name and its syntax are defined by the authentication service
in use.
Specify a null value to prevent RpcBindingInqAuthInfo from returning the ServerPrincName
argument. In this case, the application does not call the RpcStringFree routine.

AuthnLevel
Returns a pointer to the level of authentication used for remote procedure calls made using the
Binding binding handle. For a list of the RPC-supported authentication levels, see the RPC data
types and structures reference entry for authentication-level constants.
Specify a null value to prevent the routine from returning the AuthnLevel argument.
The level returned in the AuthnLevel argument may be different from the level specified when the
client called the RpcBindingSetAuthInfo routine. This discrepancy happens when the
authentication level specified by the client was not supported by the RPC run-time library and the
run-time library automatically upgraded to the next higher level.

AuthnSvc
Returns a pointer to the authentication service specified for remote procedure calls made using the
Binding binding handle. For a list of the RPC-supported authentication services, see
RpcMgmtInqDefaultProtectLevel.
Specify a null value to prevent RpcBindingInqAuthInfo from returning the AuthnSvc argument.

AuthIdentity
Returns a pointer to a handle to the data structure that contains the client's authentication and
authorization credentials specified for remote procedure calls made using the Binding binding
handle.
Specify a null value to prevent RpcBindingInqAuthInfo from returning the AuthIdentity argument.

AuthzSvc
Returns a pointer to the authorization service requested by the client application that made the
remote procedure call on the Binding binding handle. For a list of possible returns, see
RpcMgmtInqDefaultProtectLevel.
Specify a null value to prevent RpcBindingInqAuthInfo from returning the AuthzSvc argument.

Remarks

A client application calls the RpcBindingInqAuthInfo routine to view the authentication and
authorization information associated with a server binding handle. The client specifies the data by
calling the RpcBindingSetAuthInfo routine.

The RPC run-time library allocates memory for the returned ServerPrincName argument. The
application is responsible for calling the RpcStringFree routine for that returned argument string.

When a client application does not know a server's principal name, calling RpcBindingInqAuthInfo
after making a remote procedure call provides the server's principal name. For example, clients that
import from a group or profile may not know a server's principal name when calling the
RpcBindingSetAuthInfo routine.

Return Values

Value Meaning
RPC_S_OK Success
RPC_S_INVALID_BINDING Invalid binding handle
RPC_S_WRONG_KIND_OF_BINDI
NG

Wrong kind of binding for operation

RPC_BINDING_HAS_NO_AUTH Binding has no authentication
information

See Also

RpcBindingSetAuthInfo, RpcStringFree

 RpcBindingInqObject QuickInfo

The RpcBindingInqObject function returns the object UUID from a binding handle.

#include <rpc.h>
RPC_STATUS RPC_ENTRY
RpcBindingInqObject(

RPC_BINDING_HANDLE Binding,
UUID * ObjectUuid);

Parameters

Binding
Specifies a client or server binding handle.

ObjectUuid
Returns a pointer to the object UUID found in the Binding argument. ObjectUuid is a unique identifier
of an object to which a remote procedure call can be made.

Remarks

An application calls the RpcBindingInqObject routine to see the object UUID associated with a client
or server binding handle.

Return Values

Value Meaning
RPC_S_OK Success
RPC_S_INVALID_BINDING Invalid binding handle

See Also

RpcBindingSetObject

 RpcBindingReset QuickInfo

The RpcBindingReset function resets a binding handle so that the host is specified but the server on
that host is unspecified.

#include <rpc.h>
RPC_STATUS RPC_ENTRY
RpcBindingReset(

RPC_BINDING_HANDLE Binding);

Parameter

Binding
Specifies the server binding handle to reset.

Remarks

A client calls the RpcBindingReset routine to disassociate a particular server instance from the server
binding handle specified in the Binding argument. The RpcBindingReset routine dissociates a server
instance by removing the endpoint portion of the server address in the binding handle. The host
remains unchanged in the binding handle. The result is a partially bound server binding handle.

RpcBindingReset does not affect the Binding argument's authentication information, if there is any.

If a client is willing to be serviced by any compatible server instance on the host specified in the binding
handle, the client calls the RpcBindingReset routine before making a remote procedure call using the
Binding binding handle.

When the client makes the next remote procedure call using the reset (partially bound) binding, the
client's RPC run-time library uses a well-known endpoint from the client's interface specification, if any.
Otherwise, the client's run-time library automatically communicates with the endpoint-mapping service
on the specified remote host to obtain the endpoint of a compatible server from the endpoint-map
database. If a compatible server is located, the RPC run-time library updates the binding with a new
endpoint. If a compatible server is not found, the remote procedure call fails. For calls using a
connection protocol (ncacn), the RPC_S_NO_ENDPOINT_FOUND status code is returned to the
client. For calls using a datagram protocol (ncadg), the RPC_S_COMM_FAILURE status code is
returned to the client.

Server applications should register all binding handles by calling RpcEpRegister and
RpcEpRegisterNoReplace if the server wants to be available to clients that make a remote procedure
call on a reset binding handle.

Return Values

Value Meaning
RPC_S_OK Success
RPC_S_INVALID_BINDING Invalid binding handle
RPC_S_WRONG_KIND_OF_BINDI
NG

Wrong kind of binding for operation

See Also

RpcEpRegister, RpcEpRegisterNoReplace

 RpcBindingServerFromClient QuickInfo

The RpcBindingServerFromClient function converts a client binding handle to a server binding
handle.

#include <rpc.h>
RPC_STATUS RPC_ENTRY
RpcBindingServerFromClient(

RPC_BINDING_HANDLE ClientBinding,
RPC_BINDING_HANDLE * ServerBinding);

This function is supported by both the 32-bit Windows NT and Windows 95 platforms.

Parameters

ClientBinding
Specifies the client binding handle to convert to a server binding handle.

ServerBinding
Returns a server binding handle.

Remarks

An application calls the RpcBindingServerFromClient routine to convert a client binding handle into a
partially-bound server binding handle.

An application gets a client binding handle from the RPC runtime. When the RPC arrives at a server,
the runtime creates a client binding handle that contains information about the calling client. This
handle is passed by the runtime to the server manager routine as the first argument.

The following information pertains to the server binding handle that is returned by
RpcBindingServerFromClient:

· The returned handle is a partially bound handle. It contains a network address for the calling client,
but lacks an endpoint.

· The returned handle contains the same object UUID used by the calling client. This can be the nil
UUID. For more information on how a client specifies an object UUID for a call, see
RpcBindingsetObject, RpcNsBindingImportBegin, RpcNsBindingLookupBegin, and
RpcBindingFromStringBinding.

· The returned handle contains no authentication information.

Note This routine is only supported for TCP or SPX.

Return Values

Value Meaning
RPC_S_OK Success
RPC_S_INVALID_BINDING Invalid binding handle
RPC_S_WRONG_KIND_OF_BINDI
NG

Wrong kind of binding for operation

RPC_S_CANNOT_SUPPORT Cannot determine the client's host
(not TCP or SPX)

See Also

RpcBindingFree, RpcBindingSetObject, RpcEpRegister, RpcEpRegisterNoReplace,
RpcNsBindingImportBegin, RpcNsBindingLookupBegin, RpcBindingFromStringBinding

 RpcBindingSetAuthInfo QuickInfo

The RpcBindingSetAuthInfo function sets authentication and authorization information into a binding
handle.

#include <rpc.h>
RPC_STATUS RPC_ENTRY
RpcBindingSetAuthInfo(

RPC_BINDING_HANDLE Binding,
unsigned char * ServerPrincName,
unsigned long AuthnLevel,
unsigned long AuthnSvc,
RPC_AUTH_IDENTITY_HANDLE AuthIdentity,
unsigned long AuthzSvc);

Parameters

Binding
Specifies the server binding handle into which authentication and authorization information is set.

ServerPrincName
Points to the expected principal name of the server referenced by the binding handle specified in the
Binding argument. The content of the name and its syntax are defined by the authentication service
in use.

AuthnLevel
Specifies the level of authentication to be performed on remote procedure calls made using the
Binding binding handle. For a list of RPC-supported authentication levels, see the RPC data types
and structures reference entry for authentication-level constants.

AuthnSvc
Specifies the authentication service to use. For a list of RPC-supported authentication services, see
the RPC data types and structures reference entry for authentication-service constants.
Specify RPC_C_AUTHN_NONE to turn off authentication for remote procedure calls made using the
Binding binding handle.
If RPC_C_AUTHN_DEFAULT is specified, the RPC run-time library uses the
RPC_C_AUTHN_WINNT authentication service for remote procedure calls made using the Binding
binding handle.

AuthIdentity
Specifies a handle for the data structure that contains the client's authentication and authorization
credentials appropriate for the selected authentication and authorization service.
When using the RPC.C.AUTHN.WINNT authentication service AuthIdentity should be a pointer to a
SEC.WINNT.AUTH.IDENTITY structure (defined in rpcdce.h).
Specify a null value to use the security login context for the current address space.

AuthzSvc
Specifies the authorization service implemented by the server for the interface of interest. The
validity and trustworthiness of authorization data, like any application data, depends on the
authentication service and authentication level selected. This parameter is ignored when using the
RPC_C_AUTHN_WINNT authentication service.
For a list of constants for the AuthzSvc argument, see the RPC data types and structures reference
entry for authorization-service constants.

Remarks

A client application calls the RpcBindingSetAuthInfo routine to set up a server binding handle for
making authenticated remote procedure calls.

Unless a client calls RpcBindingSetAuthInfo, all remote procedure calls on the Binding binding
handle are unathenticated. A client is not required to call this routine.

Note As long as the binding handle exists, RPC maintains a pointer to AuthIdentity. Be sure it is not
on the stack and is not freed until the binding handle is freed. If the binding handle is copied, or if a
context handle is created from the binding handle, then the AuthIdentity pointer will also be copied.

Return Values

Value Meaning
RPC_S_OK Success
RPC_S_INVALID_BINDING Invalid binding handle
RPC_S_WRONG_KIND_OF_BINDING Wrong kind of binding for

operation
RPC_S_UNKNOWN_AUTHN_SERVIC
E

Unknown authentication service

See Also

RpcBindingInqAuthInfo, RpcServerRegisterAuthInfo

 RpcBindingSetObject QuickInfo

The RpcBindingSetObject function sets the object UUID value in a binding handle.

#include <rpc.h>
RPC_STATUS RPC_ENTRY
RpcBindingSetObject(

RPC_BINDING_HANDLE Binding,
UUID * ObjectUuid);

Parameters

Binding
Specifies the server binding into which the ObjectUuid is set.

ObjectUuid
Points to the UUID of the object serviced by the server specified in the Binding argument.
ObjectUuid is a unique identifier of an object to which a remote procedure call can be made.

Remarks

An application calls the RpcBindingSetObject routine to associate an object UUID with a server
binding handle. The set-object operation replaces the previously associated object UUID with the UUID
in the ObjectUuid argument.

To set the object UUID to the nil UUID, specify a null value or the nil UUID for the ObjectUuid
argument.

Return Values

Value Meaning
RPC_S_OK Success
RPC_S_INVALID_BINDING Invalid binding handle
RPC_S_WRONG_KIND_OF_BINDI
NG

Wrong kind of binding for operation

See Also

RpcBindingFromStringBinding, RpcBindingInqObject

 RpcBindingToStringBinding QuickInfo

The RpcBindingToStringBinding function returns a string representation of a binding handle.

#include <rpc.h>
RPC_STATUS RPC_ENTRY
RpcBindingToStringBinding(

RPC_BINDING_HANDLE Binding,
unsigned char * * StringBinding);

Parameters

Binding
Specifies a client or server binding handle to convert to a string representation of a binding handle.

StringBinding
Returns a pointer to a pointer to the string representation of the binding handle specified in the
Binding argument.
Specify a null value to prevent RpcBindingToStringBinding from returning the StringBinding
argument. In this case, the application does not call the RpcStringFree routine.

Remarks

The RpcBindingToStringBinding routine converts a client or server binding handle to its string
representation.

The RPC run-time library allocates memory for the string returned in the StringBinding argument. The
application is responsible for calling the RpcStringFree routine to deallocate that memory.

If the binding handle in the Binding argument contained a nil object UUID, the object UUID field is not
included in the returned string.

To parse the returned StringBinding argument, call the RpcStringBindingParse routine.

Return Values

Value Meaning
RPC_S_OK Success
RPC_S_INVALID_BINDING Invalid binding handle

See Also

RpcBindingFromStringBinding, RpcStringBindingParse, RpcStringFree

 RpcBindingVectorFree QuickInfo

The RpcBindingVectorFree function frees the binding handles contained in the vector and the vector
itself.

#include <rpc.h>
RPC_STATUS RPC_ENTRY
RpcBindingVectorFree(

RPC_BINDING_VECTOR * * BindingVector);

Parameters

BindingVector
Points to a pointer to a vector of server binding handles. On return, the pointer is set to NULL.

Remarks

An application calls the RpcBindingVectorFree routine to release the memory used to store a vector
of server binding handles. The routine frees both the binding handles and the vector itself.

A server obtains a vector of binding handles by calling the RpcServerInqBindings routine. A client
obtains a vector of binding handles by calling the RpcNsBindingLookupNext routine.

Return Values

Value Meaning
RPC_S_OK Success
RPC_S_INVALID_ARG Invalid argument
RPC_S_INVALID_BINDING Invalid binding handle
RPC_S_WRONG_KIND_OF_BINDI
NG

Wrong kind of binding for operation

See Also

RpcNsBindingLookupNext, RpcServerInqBindings

 RpcCancelThread QuickInfo

The RpcCancelThread function cancels a thread.

#include <rpc.h>
RPC_STATUS RPC_ENTRY
RpcCancelThread(

HANDLE ThreadHandle);

This function is supported only by 32-bit Windows NT platforms.

Parameter

ThreadHandle
Specifies the handle of the thread to cancel.

Remarks

The RpcCancelThread routine allows one client thread to cancel an RPC in progress on another client
thread. When the routine is called, the server runtime is informed of the cancel operation. The server
stub can determine if the call has been cancelled by calling RpcTestCancel. If the call has been
cancelled, the server stub should clean up and return control to the client.

By default, the client waits forever for the server to return control after a cancel. To reduce this time,
call RpcMgmtSetCancelTimeout, specifying the number of seconds to wait for a response. If the
server does not return within this interval, the call fails at the client with an RPC_S_CALL_FAILED
exception. The server stub continues to execute.

Note This routine is only supported for Windows NT clients.

Return Values

Value Meaning
RPC_S_OK Success
RPC_S_ACCESS_DENIED Thread handle does not have

privilege
RPC_S_CANNOT_SUPPORT Called by an MS-DOS or Windows

3.x client

 RpcEndExcept QuickInfo

See

RpcExcept

 RpcEndFinally QuickInfo

See

RpcFinally

 RpcEpRegister QuickInfo

The RpcEpRegister function adds to or replaces server address information in the local endpoint-map
database.

#include <rpc.h>
RPC_STATUS RPC_ENTRY
RpcEpRegister(

RPC_IF_HANDLE IfSpec,
RPC_BINDING_VECTOR * BindingVector,
UUID_VECTOR * UuidVector,
unsigned char * Annotation);

This function is supported by both the 32-bit Windows NT and Windows 95 platforms.

Parameters

IfSpec
Specifies an interface to register with the local endpoint-map database.

BindingVector
Points to a vector of binding handles over which the server can receive remote procedure calls.

UuidVector
Points to a vector of object UUIDs offered by the server. The server application constructs this
vector.
A null argument value indicates there are no object UUIDs to register.

Annotation
Points to the character-string comment applied to each cross-product element added to the local
endpoint-map database. The string can be up to 64 characters long, including the null terminating
character. Specify a null value or a null-terminated string ("\0") if there is no annotation string.
The annotation string is used by applications for information only. RPC does not use this string to
determine which server instance a client communicates with or for enumerating elements in the
endpoint-map database.

Remarks

The RpcEpRegister routine adds or replaces entries in the local host's endpoint-map database. For an
existing database entry that matches the provided interface specification, binding handle, and object
UUID, this routine replaces the entry's endpoint with the endpoint in the provided binding handle.

A server uses RpcEpRegister rather than RpcEpRegisterNoReplace when only a single instance of
the server will run on the server's host. In other words, use this routine when no more than one server
instance will offer the same interface UUID, object UUID, and protocol sequence at any one time.

When entries are not replaced, stale data accumulates each time a server instance stops running
without calling RpcEpUnregister. Stale entries increase the likelihood that a client will receive
endpoints to nonexistent servers. The client will spend time trying to communicate with a nonexistent
server before obtaining another endpoint.

Using RpcEpRegister to replace existing endpoint-map database entries reduces the likelihood that a
client will be given the endpoint of a nonexistent server instance. A server application calls this routine
to register endpoints specified by calling any of the following routines:

· RpcServerUseAllProtseqs
· RpcServerUseProtseq
· RpcServerUseProtseqEp

A server that calls only RpcServerUseAllProtseqsIf or RpcServerUseProtseqIf does not need to call

RpcEpRegister. In this case, the client's run-time library uses an endpoint from the client's interface
specification to fill in a partially bound binding handle.

If the server also exports to the name-service database, the server calls RpcEpRegister with the same
IfSpec, BindingVector, and UuidVector that the server uses when calling the RpcNsBindingExport
routine.

For automatically started servers running over one of the connection-based protocol sequences
(ncacn_np, ncacn_nb, ncacn_ip_tcp, ncacn_osi_dns), the RPC run-time library automatically
generates a dynamic endpoint. In this case, the server can call RpcServerInqBindings followed by
RpcEpRegister to make itself available to multiple clients. Otherwise, the automatically started server
is known only to the client for which the server was started.

Each element added to the endpoint-map database logically contains the following:

· Interface UUID
· Interface version (major and minor)
· Binding handle
· Object UUID (optional)
· Annotation (optional)

RpcEpRegister creates a cross-product from the IfSpec, BindingVector, and UuidVector arguments
and adds each element in the cross-product as a separate registration in the endpoint-map database.

Return Values

Value Meaning
RPC_S_OK Success
RPC_S_NO_BINDINGS No bindings
RPC_S_INVALID_BINDING Invalid binding handle
RPC_S_WRONG_KIND_OF_BINDI
NG

Wrong kind of binding for operation

See Also

RpcBindingFromStringBinding, RpcEpRegisterNoReplace, RpcEpUnregister,
RpcNsBindingExport, RpcServerInqBindings, RpcServerUseAllProtseqs,
RpcServerUseAllProtseqsIf, RpcServerUseProtseq, , RpcServerUseProtseqIf

 RpcEpRegisterNoReplace QuickInfo

The RpcEpRegisterNoReplace function adds server-address information to the local endpoint-map
database.

#include <rpc.h>
RPC_STATUS RPC_ENTRY
RpcEpRegisterNoReplace(

RPC_IF_HANDLE IfSpec,
RPC_BINDING_VECTOR * BindingVector,
UUID_VECTOR * UuidVector,
unsigned char * Annotation);

Parameters

IfSpec
Specifies an interface to register with the local endpoint-map database.

BindingVector
Points to a vector of binding handles over which the server can receive remote procedure calls.

UuidVector
Points to a vector of object UUIDs offered by the server. The server application constructs this
vector.
A null argument value indicates there are no object UUIDs to register.

Annotation
Points to the character-string comment applied to each cross-product element added to the local
endpoint-map database. The string can be up to 64 characters long, including the null terminating
character. Specify a null value or a null-terminated string ("\0") if there is no annotation string.
The annotation string is used by applications for information only. RPC does not use this string to
determine which server instance a client communicates with or to enumerate elements in the
endpoint-map database.

Remarks

The RpcEpRegisterNoReplace routine adds entries to the local host's
endpoint-map database. This routine does not replace existing database entries.

A server uses RpcEpRegisterNoReplace rather than RpcEpRegister when multiple instances of the
server will run on the same host. In other words, use this routine when more than one server instance
will offer the same interface UUID, object UUID, and protocol sequence at any one time.

Because entries are not replaced when calling RpcEpRegisterNoReplace, servers must unregister
themselves before they stop running. Otherwise, stale data accumulates each time a server instance
stops running without calling RpcEpUnregister. Stale entries increase the likelihood that a client will
receive endpoints to nonexistent servers. The client will spend time trying to communicate with a
nonexistent server before obtaining another endpoint.

A server application calls RpcEpRegisterNoReplace to register endpoints specified by calling any of
the following routines:

· RpcServerUseAllProtseqs
· RpcServerUseProtseq
· RpcServerUseProtseqEp

A server that calls only RpcServerUseAllProtseqsIf or RpcServerUseProtseqIf is not required to call
RpcEpRegisterNoReplace. In this case, the client's
run-time library uses an endpoint from the client's interface specification to fill in a partially bound
binding handle.

If the server also exports to the name-service database, the server calls RpcEpRegisterNoReplace
with the same IfSpec, BindingVector, and UuidVector arguments that the server uses when calling the
RpcNsBindingExport routine.

For automatically started servers running over one of the connection-based protocol sequences
(ncacn_np, ncacn_nb, ncacn_ip_tcp, ncacn_osi_dns), the RPC run-time library automatically
generates a dynamic endpoint. In this case, the server can call RpcServerInqBindings followed by
RpcEpRegisterNoReplace to make itself available to multiple clients. Otherwise, the automatically
started server is known only to the client for which the server was started.

Each element added to the endpoint-map database logically contains the following:

· Interface UUID
· Interface version (major and minor)
· Binding handle
· Object UUID (optional)
· Annotation (optional)

RpcEpRegisterNoReplace creates a cross-product from the IfSpec, BindingVector, and UuidVector
arguments and adds each element in the cross-product as a separate registration in the endpoint-map
database.

Return Values

Value Meaning
RPC_S_OK Success
RPC_S_NO_BINDINGS No bindings
RPC_S_INVALID_BINDING Invalid binding handle
RPC_S_WRONG_KIND_OF_BINDI
NG

Wrong kind of binding for operation

See Also

RpcBindingFromStringBinding, RpcEpRegister, RpcEpUnregister, RpcNsBindingExport,
RpcServerInqBindings, RpcServerUseAllProtseqs, RpcServerUseAllProtseqsIf,
RpcServerUseProtseq, RpcServerUseProtseqEp, RpcServerUseProtseqIf

 RpcEpResolveBinding QuickInfo

The RpcEpResolveBinding function resolves a partially bound server binding handle into a fully
bound server binding handle.

#include <rpc.h>
RPC_STATUS RPC_ENTRY
RpcEpResolveBinding(

RPC_BINDING_HANDLE Binding,
RPC_IF_HANDLE IfSpec);

Parameters

Binding
Specifies a partially bound server binding handle to resolve to a fully bound server binding handle.

IfSpec
Specifies a stub-generated data structure specifying the interface of interest.

Remarks

An application calls the RpcEpResolveBinding routine to resolve a partially bound server binding
handle into a fully bound binding handle.

Resolving binding handles requires an interface UUID and an object UUID (which may be nil). The
RPC run-time library asks the endpoint-mapping service on the host specified by the Binding argument
to look up an endpoint for a compatible server instance. To find the endpoint, the endpoint-mapping
service looks in the endpoint-map database for the interface UUID in the IfSpec argument and the
object UUID in the Binding argument, if any.

How the resolve-binding operation functions depends on whether the specified binding handle is
partially or fully bound. When the client specifies a partially bound handle, the resolve-binding
operation has the following possible outcomes:

· If no compatible server instances are registered in the endpoint-map database, the resolve-binding
operation returns the EPT_S_NOT_REGISTERED status code.

· If a compatible server instance is registered in the endpoint-map database, the resolve-binding
operation returns a fully bound binding and the RPC_S_OK status code.

When the client specifies a fully bound binding handle, the resolve-binding operation returns the
specified binding handle and the RPC_S_OK status code. The resolve-binding operation does not
contact the endpoint-mapping service.

In neither the partially nor the fully bound binding case does the resolve-binding operation contact a
compatible server instance.

Return Values

Value Meaning
RPC_S_OK Success
RPC_S_INVALID_BINDING Invalid binding handle
RPC_S_WRONG_KIND_OF_BINDI
NG

Wrong kind of binding for operation

See Also

RpcBindingFromStringBinding, RpcBindingReset, RpcEpRegister, RpcEpRegisterNoReplace,
RpcNsBindingImportBegin, RpcNsBindingImportDone, RpcNsBindingImportNext

 RpcEpUnregister QuickInfo

The RpcEpUnregister function removes server-address information from the local endpoint-map
database.

#include <rpc.h>
RPC_STATUS RPC_ENTRY
RpcEpUnregister(

RPC_IF_HANDLE IfSpec,
RPC_BINDING_VECTOR * BindingVector,
UUID_VECTOR * UuidVector);

This function is supported by both the 32-bit Windows NT and Windows 95 platforms.

Parameters

IfSpec
Specifies an interface to unregister from the local endpoint-map database.

BindingVector
Points to a vector of binding handles to unregister.

UuidVector
Points to an optional vector of object UUIDs to unregister. The server application constructs this
vector. RpcEpUnregister unregisters all endpoint-map database elements that match the specified
IfSpec and BindingVector arguments and the object UUID(s).
A null argument value indicates there are no object UUIDs to unregister.

Remarks

The RpcEpUnregister routine removes elements from the local host's
endpoint-map database. A server application calls this routine only when the server has previously
registered endpoints and the server wants to remove that address information from the endpoint-map
database.

Specifically, RpcEpUnregister allows a server application to remove its own endpoint-map database
elements (server-address information) based on the interface specification or on both the interface
specification and the object UUID(s) of the resource(s) offered.

The server calls the RpcServerInqBindings routine to obtain the required BindingVector argument. To
unregister selected endpoints, the server can prune the binding vector prior to calling this routine.

RpcEpUnregister creates a cross-product from the IfSpec, BindingVector, and UuidVector arguments
and removes each element in the cross-product from the endpoint-map database.

Use RpcEpUnregister cautiously: removing elements from the endpoint-map database may make
servers unavailable to client applications that have not previously communicated with the server.

Return Values

Value Meaning
RPC_S_OK Success
RPC_S_NO_BINDINGS No bindings
RPC_S_INVALID_BINDING Invalid binding handle
RPC_S_WRONG_KIND_OF_BINDI
NG

Wrong kind of binding for operation

See Also

RpcEpRegister, RpcEpRegisterNoReplace, RpcNsBindingUnexport, RpcServerInqBindings

 RpcExcept QuickInfo

The RpcExcept function specifies exception handling.

RpcTryExcept
{
guarded statements,
}

RpcExcept(expression)
{
exception statements,
}

RpcEndExcept;

Parameters

guarded statements
Specifies program statements that are guarded or monitored for exceptions during execution.

expression
Specifies an expression that is evaluated when an exception occurs. If expression evaluates to a
non-zero value, the exception statements are executed. If expression evaluates to a zero value,
unwinding continues to the next RpcTryExcept or RpcTryFinally routine.

exception statements
Specifies statements that are executed when the expression evaluates to a non-zero value.

Remarks

If an exception does not occur, the expression and exception statements are skipped and execution
continues at the statement following the RpcEndExcept keyword.

RpcExceptionCode can be used in both expression and exception statements to determine which
exception occurred.

The following restrictions apply.

· Jumping (via a goto) into guarded statements is not allowed.
· Jumping (via a goto) into exception statements is not allowed.
· Returning or jumping (via a goto) from guarded statements is not allowed.
· Returning or jumping (via a goto) from exception statements is not allowed.

See Also

RpcExceptionCode, RpcFinally, RpcRaiseException

 RpcExceptionCode QuickInfo

The RpcExceptionCode function returns the exception code of an exception.

unsigned long
RpcExceptionCode(void);

Remarks

The RpcExceptionCode function can only be called from within the expression and exception
statements of an RpcTryExcept exception handler.

Return Values

No value is returned.

See Also

RpcExcept, RpcFinally

 RpcFinally QuickInfo

The RpcFinally function specifies termination handlers.

RpcTryFinally
{
guarded statements,,
}

RpcFinally
{
termination statements,,
}

RpcEndFinally;

Parameters

guarded statements
Specifies statements that are executed while exceptions are being monitored. If an exception occurs
during the execution of these statements, termination statements will be executed, then unwinding
continues to the next RpcTryExcept or RpcTryFinally routine.

termination statements
Specifies statements that are executed when an exception occurs. After the termination statements
are complete, the exception is raised again.

Remarks

The RpcAbnormalTermination function can be used in termination statements to determine whether
termination statements is being executed because an exception occurred. A non-zero return from
RpcAbnormalTermination indicates that an exception occurred. A value of zero indicates that no
exception occurred.

The following restrictions apply:

· Jumping (via a goto) into guarded statements is not allowed.
· Jumping (via a goto) into termination statements is not allowed.
· Returning or jumping (via a goto) from guarded statements is not allowed.
· Returning or jumping (via a goto) from termination statements is not allowed.

See Also

RpcAbnormalTermination

 RpcIfIdVectorFree QuickInfo

The RpcIfIdVectorFree function frees the vector and the interface-identification structures contained in
the vector.

#include <rpc.h>
RPC_STATUS RPC_ENTRY
RpcIfIdVectorFree(

RPC_IF_ID_VECTOR * * IfIdVec);

This function is supported by both the 32-bit Windows NT and Windows 95 platforms.

Parameter

IfIdVec
Specifies the address of a pointer to a vector of interface information. On return, the pointer is set to
NULL.

Remarks

An application calls the RpcIfIdVectorFree routine to release the memory used to store a vector of
interface identifications. RpcIfIdVectorFree frees memory containing the interface identifications and
the vector itself. On return, this routine sets the IfIdVec argument to NULL.

An application obtains a vector of interface identifications by calling the RpcNsMgmtEntryInqIfIds and
RpcMgmtInqIfIds routines.

Return Values

Value Meaning
RPC_S_OK Success
RPC_S_INVALID_ARG Invalid argument

See Also

RpcIfInqId, RpcMgmtInqIfIds, RpcNsMgmtEntryInqIfIds

 RpcIfInqId QuickInfo

The RpcIfInqId function returns the interface-identification part of an interface specification.

#include <rpc.h>
RPC_STATUS RPC_ENTRY
RpcIfInqId(

RPC_IF_HANDLE RpcIfHandle,
RPC_IF_ID * RpcIfId);

Parameters

RpcIfHandle
Specifies a stub-generated data structure specifying the interface to inquire.

RpcIfId
Returns a pointer to the interface identification. The application provides memory for the returned
data.

Remarks

An application calls the RpcIfInqId routine to obtain a copy of the interface identification from the
provided interface specification.

The returned interface identification consists of the interface UUID and interface version numbers
(major and minor) specified in the IfSpec argument from the IDL file.

Return Value

Value Meaning
RPC_S_OK Success

See Also

RpcServerInqIf, RpcServerRegisterIf

 RpcImpersonateClient QuickInfo

A server thread that is processing client remote procedure calls can call the RpcImpersonateClient
function to impersonate the active client.

#include <rpc.h>
RPC_STATUS RPC_ENTRY
RpcImpersonateClient(

RPC_BINDING_HANDLE CallHandle);

This function is supported only by 32-bit Windows NT platforms.

Parameter

CallHandle
Specifies a binding handle on the server that represents a binding to a client. The server
impersonates the client indicated by this handle. If a value of zero is specified, the server
impersonates the client that is being served by this server thread.

Return Values

Value Meaning
RPC_S_OK Success
RPC_S_NO_CALL_ACTIVE No client is active on this server

thread
RPC_S_CANNOT_SUPPORT The function is not supported for

either the operating system, the
transport, or this security subsystem

RPC_S_NO_CONTEXT_AVAIL The server does not have
permission to impersonate the client

See Also

RpcRevertToSelf

 RpcMacSetYieldInfo

#include <rpc.h>
RPC_STATUS RPC_ENTRY
RpcMacSetYieldInfo(

MACYIELDCALLBACK pfnCallback);

Parameter

pfnCallback
Pointer to a callback function.

typedef void (RPC_ENTRY *MACYIELDCALLBACK)(short *);

Remarks

The RpcMacSetYieldInfo function configures Macintosh client applications to yield to other
applications during remote procedure calls.

If a yielding function is not registered, an RPC will not yield on the Mac. Register a yielding function by
calling RpcMacSetYieldInfo.

The yielding function must yield until *pStatus is not equal to 1. For example:

void RPC_ENTRY MacCallbackFunc (short *pStatus)
{

MSG msg;
while (*pStatus == 1)
{
if(PeekMessage(&msg, NULL, 0, 0, PM_REMOVE))

{
TranslateMessage(&msg);
DispatchMessage(&msg);
}

}
}

Note that rpc.h must be included before winerror.h (or any files that include it, such as winbase.h,
windows.h, and so on).

Return Value

Value Meaning
RPC_S_OK The information was set

successfully.

 RpcMgmtEnableIdleCleanup QuickInfo

The RpcMgmtEnableIdleCleanup function closes idle resources, such as network connections, on the
client. Connection-oriented protocols set five minutes as the default waiting period to determine
whether a resource is idle.

#include <rpc.h>
RPC_STATUS RPC_ENTRY
RpcMgmtEnableIdleCleanup(void);

This function is supported by the 32-bit Windows NT, Windows 95 and Windows 3.x platforms. It is not
supported by MS-DOS.

Note RpcMgmtEnableIdleCleanup is a Microsoft extension to the DCE API set.

Return Values

Value Meaning
RPC_S_OK Success
RPC_S_OUT_OF_THREADS Out of threads
RPC_S_OUT_OF_RESOURCES Out of resources
RPC_S_OUT_OF_MEMORY Out of memory

See Also

RpcServerUnregisterIf

 RpcMgmtEpEltInqBegin QuickInfo

The RpcMgmtEpEltInqBegin function creates an inquiry context for viewing the elements in an
endpoint map.

#include <rpc.h>
RPC_STATUS RPC_ENTRY
RpcMgmtEpEltInqBegin(

RPC_BINDING_HANDLE EpBinding,
unsigned long InquiryType,
RPC_IF_ID * IfId,
unsigned long VersOption,
UUID * ObjectUuid,,
RPC_EP_INQ_HANDLE * InquiryContext);

This function is supported by both the 32-bit Windows NT and Windows 95 platforms.

Parameters

EpBinding
Specifies the host whose endpoint map elements will be viewed. Specify NULL to view elements
from the local host.

InquiryType
Specifies an integer value that indicates the type of inquiry to perform on the endpoint map. The
following are valid inquiry types:
Value Description
RPC_C_EP_ALL_ELTS Returns every element from the

endpoint map. The IfId,
VersOption, and ObjectUuid
parameters are ignored.

RPC_C_EP_MATCH_BY_IF Searches the endpoint map for
those elements that contain the
interface identifier specified by the
IfId and VersOption values.

RPC_C_EP_MATCH_BY_OBJ Searches the endpoint map for
those elements that contain the
object UUID specified by
ObjectUuid.

RPC_C_EP_MATCH_BY_BOTH Searches the endpoint map for
those elements that contain the
interface identifier and object UUID
specified by IfId, VersOption, and
ObjectUuid.

IfId
Specifies the interface identifier of the endpoint map elements to be returned by
RpcMgmtEpEltInqNext. This parameter is only used when InquiryType is either
RPC_C_EP_MATCH_BY_IF or RPC_C_EP_MATCH_BY_BOTH. Otherwise, it is ignored.

VersOption
Specifies how RpcMgmtEpEltInqNext uses the IfId parameter. This parameter is only used when
InquiryType is either RPC_C_EP_MATCH_BY_IF or RPC_C_EP_MATCH_BY_BOTH. Otherwise, it
is ignored. The following are valid values for this parameter:
Value Description
RPC_C_VERS_ALL Returns endpoint map elements

that offer the specified interface
UUID, regardless of the version
numbers.

RPC_C_VERS_COMPATIBLE Returns endpoint map elements
that offer the same major version
of the specified interface UUID and
a minor version greater than or
equal to the minor version of the
specified interface UUID.

RPC_C_VERS_EXACT Returns endpoint map elements
that offer the specified version of
the specified interface UUID.

RPC_C_VERS_MAJOR_ONLY Returns endpoint map elements
that offer the same major version
of the specified interface UUID and
ignores the minor version.

RPC_C_VERS_UPTO Returns endpoint map elements
that offer a version of the specified
interface UUID less than or equal
to the specified major and minor
version.

ObjectUuid
Specifies the object UUID that RpcMgmtEpEltInqNext looks for in endpoint map elements. This
parameter is used only when InquiryType is either RPC_C_EP_MATCH_BY_OBJ or
RPC_C_EP_MATCH_BY_BOTH.

InquiryContext
Returns an inquiry context for use with RpcMgmtEpEltInqNext and RpcMgmtEpEltInqDone.

Remarks

The RpcMgmtEpEltInqBegin routine creates an inquiry context for viewing server address information
stored in the endpoint map. Using InquiryType and VersOption, an application specifies which of the
following endpoint map elements are to be returned from calls to RpcMgmtEpEltInqNext:

· All elements.
· Those elements with the specified interface identifier.
· Those elements with the specified object UUID.
· Those elements with both the specified interface identifier and object UUID.

Before calling RpcMgmtEpEltInqNext, the application must first call this routine to create an inquiry
context. After viewing the endpoint map elements, the application calls RpcMgmtEpEltInqDone to
delete the inquiry context.

Return Values

Value Meaning
RPC_S_OK Success

See Also

RpcEpRegister

 RpcMgmtEpEltInqDone QuickInfo

The RpcMgmtEpEltInqDone function deletes the inquiry context for viewing the elements in an
endpoint map.

#include <rpc.h>
RPC_STATUS RPC_ENTRY
RpcMgmtEpEltInqDone(

RPC_EP_INQ_HANDLE * InquiryContext);

This function is supported by both the 32-bit Windows NT and Windows 95 platforms.

Parameter

InquiryContext
Specifies the inquiry context to delete and returns the value NULL.

Remarks

The RpcMgmtEpEltInqDone routine deletes an inquiry context created by RpcMgmtEpEltInqBegin.
An application calls this routine after viewing local endpoint map elements using
RpcMgmtEpEltInqNext.

Return Values

Value Meaning
RPC_S_OK Success

See Also

RpcEpRegister

 RpcMgmtEpEltInqNext QuickInfo

The RpcMgmtEpEltInqNext function returns one element from an endpoint map.

#include <rpc.h>
RPC_STATUS RPC_ENTRY
RpcMgmtEpEltInqNext(

RPC_EP_INQ_HANDLE InquiryContext,,
RPC_IF_ID * Ifld,
UUID * ObjectUuid,
unsigned char * * Annotation);

This function is supported by both the 32-bit Windows NT and Windows 95 platforms.

Parameters

InquiryContext
Specifies an inquiry context. The inquiry context is returned from RpcMgmtEpEltInqBegin.

IfId
Returns the interface identifier of the endpoint map element.

Binding
Returns the binding handle from the endpoint map element.

ObjectUuid
Returns the object UUID from the endpoint map element.

Annotation
Returns the annotation string for the endpoint map element. When there is no annotation string in
the endpoint map element, the empty string ("") is returned.

Remarks

The RpcMgmtEpEltInqNext routine returns one element from the endpoint map. Elements selected
depend on the inquiry context. The selection criteria are determined by InquiryType of the
RpcMgmtEpEltInqBegin routine that returned InquiryContext.

An application can view all the selected endpoint map elements by repeatedly calling
RpcMgmtEpEltInqNext. When all the elements have been viewed, this routine returns an
RPC_S_NO_MORE_ELEMENTS status. The returned elements are unordered.

When the respective arguments are non-NULL, the RPC run-time function library allocates memory for
Binding and Annotation on each call to this routine. The application is responsible for calling
RpcBindingFree for each returned Binding and RpcStringFree for each returned Annotation.

After viewing the endpoint map's elements, the application must call RpcMgmtEpEltInqDone to delete
the inquiry context.

Return Values

Value Meaning
RPC_S_OK Success

See Also

RpcEpRegister

 RpcMgmtEpUnregister QuickInfo

The RpcMgmtEpUnregister function removes server address information from an endpoint map.

#include <rpc.h>
RPC_STATUS RPC_ENTRY
RpcMgmtEpUnregister(

RPC_BINDING_HANDLE EpBinding,
RPC_IF_ID * IfId,
RPC_BINDING_HANDLE Binding,
UUID * ObjectUuid);

This function is supported by both the 32-bit Windows NT and Windows 95 platforms.

Parameters

EpBinding
Specifies the host whose endpoint map elements are to be unregistered. To remove elements from
the same host as the calling application, the application specifies NULL. To remove elements from
another host, the application specifies a server binding handle for any server residing on that host.
Note that the application can specify the same binding handle it is using to make other remote
procedure calls.

IfId
Specifies the interface identifier to remove from the endpoint map.

Binding
Specifies the binding handle to remove.

ObjectUuid
Specifies the optional object UUID to remove. The value NULL indicates there is no object UUID to
remove.

Remarks

The RpcMgmtEpUnregister routine unregisters an element from the endpoint map. A management
program calls this routine to remove addresses of servers that are no longer available, or to remove
addresses of servers that support objects that are no longered offered.

The EpBinding parameter must be a full binding. The object UUID associated with the EpBinding
parameter must be a nil UUID. Specifying a non-nil UUID causes the routine to fail with the status code
EPT_S_CANT_PERFORM_OP. Other than the host information and object UUID, all information in this
argument is ignored.

An application calls RpcMgmtEpEltInqNext to view local endpoint map elements. The application can
then remove the elements using RpcMgmtEpUnregister.

Note Use this routine with caution. Removing elements from the local endpoint map may make
servers unavailable to client applications that do not already have a fully bound binding handle to the
server.

Return Values

Value Meaning
RPC_S_OK Success
RPC_S_CANT_PERFORM_OP Cannot perform the requested

operation

See Also

RpcEpRegister, RpcEpUnregister

 RpcMgmtInqComTimeout QuickInfo

The RpcMgmtInqComTimeout function returns the binding-communications timeout value in a
binding handle.

#include <rpc.h>
RPC_STATUS RPC_ENTRY
RpcMgmtInqComTimeout(

RPC_BINDING_HANDLE Binding,
unsigned int * Timeout);

Parameters

Binding
Specifies a binding.

Timeout
Returns a pointer to the timeout value from the Binding argument.

Remarks

A client application calls RpcMgmtInqComTimeout to view the timeout value in a server binding
handle. The timeout value specifies the relative amount of time that should be spent to establish a
binding to the server before giving up. The table below shows the timeout values.

A client calls RpcMgmtSetComTimeout to change the timeout value.

Return Values

Value Meaning
RPC_S_OK Success
RPC_S_INVALID_BINDING Invalid binding handle
RPC_S_WRONG_KIND_OF_BINDING Wrong kind of binding for

operation

See Also

RpcMgmtInqStats, RpcMgmtSetComTimeout

 RpcMgmtInqDefaultProtectLevel QuickInfo

The RpcMgmtInqDefaultProtectLevel function returns the default authentication level for an
authentication service.

#include <rpc.h>
RPC_STATUS RPC_ENTRY
RpcMgmtInqDefaultProtectLevel(

unsigned int AuthnSvc,
unsigned int * AuthnLevel);

Parameters

AuthnSvc
Specifies the authentication service for which to return the default authentication level. Possible
values are as follows:
Value Description
RPC_C_AUTHN_NONE No authentication
RPC_C_AUTHN_WINNT Windows NT authentication

service

AuthnLevel
Returns the default authentication level for the specified authentication service. The authentication
level determines the degree to which authenticated communications between the client and server
are protected. Possible values are as follows:
Value Description
RPC_C_AUTHN_LEVEL_DEFAULT Uses the default authentication

level for the specified
authentication service.

RPC_C_AUTHN_LEVEL_NONE Performs no authentication.
RPC_C_AUTHN_LEVEL_CONNEC
T

Authenticates only when the client
establishes a relationship with
a server.

RPC_C_AUTHN_LEVEL_CALL Authenticates only at the
beginning
of each remote procedure call
when
the server receives the request.
Does
not apply to remote procedure
calls made using the connection-
based protocol sequences that
start with
the prefix "ncacn." If the protocol
sequence in a binding is a
connection-based protocol
sequence and you specify this
level, this routine instead uses the
RPC_C_AUTHN_LEVEL_PKT
constant.

RPC_C_AUTHN_LEVEL_PKT Authenticates that all data
received is from the expected
client.

RPC_C_AUTHN_LEVEL_PKT_
INTEGRITY

Authenticates and verifies that
none of the data transferred
between client and server has
been modified.

RPC_C_AUTHN_LEVEL_PKT
_PRIVACY

Authenticates all previous levels
and encrypts the argument value
of each remote procedure call.

Note For Windows 95 platforms, RPC_C_AUTHN_LEVEL_CALL, RPC_C_AUTHN_LEVEL_PKT,
RPC_C_AUTHN_LEVEL_PKT_INTEGRITY, and RPC_C_AUTHN_LEVEL_PKT_PRIVACY are only
supported for a Windows 95 client communicating with a Windows NT server. These levels are never
supported for a Windows 95 client communicating with a Windows 95 server.

Remarks

An application calls the RpcMgmtInqDefaultProtectLevel routine to obtain the default authentication
level for a specified authentication service.

Return Values

Value Meaning
RPC_S_OK Success
RPC_S_UNKNOWN_AUTH_SERVI
CE

Unknown authentication service

 RpcMgmtInqIfIds QuickInfo

The RpcMgmtInqIfIds function returns a vector containing the identifiers of the interfaces offered by
the server.

#include <rpc.h>
RPC_STATUS RPC_ENTRY
RpcMgmtInqIfIds(

RPC_BINDING_HANDLE Binding,
RPC_IF_ID_VECTOR * * IfIdVector);

This function is supported by both the 32-bit Windows NT and Windows 95 platforms.

Parameters

Binding
To receive interface identifiers about a remote application, specify a server binding handle for that
application. To receive interface information about your own application, specify a value of NULL.

IfIdVector
Returns the address of an interface identifier vector.

Remarks

An application calls the RpcMgmtInqIfIds routine to obtain a vector of interface identifiers about the
specified server from the RPC run-time library.

The RPC run-time library allocates memory for the interface identifier vector. The application is
responsible for calling the RpcIfIdVectorFree routine to release the memory used by this vector.

Return Values

Value Meaning
RPC_S_OK Success
RPC_S_INVALID_BINDING Invalid binding handle
RPC_S_WRONG_KIND_OF_BINDI
NG

Wrong kind of binding for operation

 RpcMgmtInqServerPrincName QuickInfo

The RpcMgmtInqServerPrincName function returns a server's principal name.

#include <rpc.h>
RPC_STATUS RPC_ENTRY
RpcMgmtInqServerPrincName(

RPC_BINDING_HANDLE Binding,
unsigned int AuthnSvc,
unsigned char * * ServerPrincName);

This function is supported by both the 32-bit Windows NT and Windows 95 platforms. Note that it is
supported only in ANSI on the Windows 95 platform.

Parameters

Binding
To receive the principal name for a server, specify a server binding handle for that server. To receive
the principal name for your own (local) application, specify a value of NULL.

AuthnSvc
Specifies the authentication service for which a principal name is returned. Possible values are as
follows:
Value Description
RPC_C_AUTHN_NONE No authentication
RPC_C_AUTHN_WINNT Windows NT authentication

service

ServerPrincName
Returns a principal name that is registered for the authentication service in AuthnSvc by the server
referenced in Binding. If multiple names are registered, only one name is returned.

Remarks

An application calls the RpcMgmtInqServerPrincName routine to obtain the principal name of a
server that is registered for a specified authentication service.

The RPC run-time library allocates memory for string returned in ServerPrincName. The application is
responsible for calling the RpcStringFree routine to release the memory used by this routine.

Return Values

Value Meaning
RPC_S_OK Success
RPC_S_INVALID_BINDING Invalid binding handle
RPC_S_WRONG_KIND_OF_BINDI
NG

Wrong kind of binding for operation

 RpcMgmtInqStats QuickInfo

The RpcMgmtInqStats function returns RPC run-time statistics.

#include <rpc.h>
RPC_STATUS RPC_ENTRY
RpcMgmtInqStats(

RPC_BINDING_HANDLE Binding,
RPC_STATS_VECTOR * * Statistics);

This function is supported by both the 32-bit Windows NT and Windows 95 platforms.

Parameters

Binding
To receive statistics about a remote application, specify a server binding handle for that application.
To receive statistics about your own (local) application, specify a value of NULL.

Statistics
Returns a pointer to a pointer to the statistics about the server specified by the Binding argument.
Each statistic is an unsigned long value.

Remarks

An application calls the RpcMgmtInqStats routine to obtain statistics about the specified server from
the RPC run-time library.

Each array element in the returned statistics vector contains an unsigned long value. The following list
describes the statistics indexed by the specified constant:

Statistic Description
RPC_C_STATS_CALLS_IN The number of remote procedure

calls received by the server
RPC_C_STATS_CALLS_OUT The number of remote procedure

calls initiated by the server
RPC_C_STATS_PKTS_IN The number of network packets

received by the server
RPC_C_STATS_PKTS_OUT The number of network packets sent

by the server

The RPC run-time library allocates memory for the statistics vector. The application is responsible for
calling the RpcMgmtStatsVectorFree routine to release the memory used by the statistics vector.

Return Values

Value Meaning
RPC_S_OK Success
RPC_S_INVALID_BINDING Invalid binding handle
RPC_S_WRONG_KIND_OF_BINDI
NG

Wrong kind of binding for operation

See Also

RpcEpResolveBinding, RpcMgmtStatsVectorFree

 RpcMgmtIsServerListening QuickInfo

The RpcMgmtIsServerListening function tells whether a server is listening for remote procedure calls.

#include <rpc.h>
RPC_STATUS RPC_ENTRY
RpcMgmtIsServerListening(

RPC_BINDING_HANDLE Binding);

This function is supported by both the 32-bit Windows NT and Windows 95 platforms.

Parameter

Binding
To determine whether a remote application is listening for remote procedure calls, specify a server
binding handle for that application. To determine whether your own (local) application is listening for
remote procedure calls, specify a value of NULL.

Remarks

An application calls the RpcMgmtIsServerListening routine to determine whether the server specified
in the Binding argument is listening for remote procedure calls.

RpcMgmtIsServerListening returns a true value if the server has called the RpcServerListen routine.

Return Values

Value Meaning
RPC_S_OK Server listening for remote procedure

calls
RPC_S_SERVER_NOT_LISTENIN
G

Server not listening for remote
procedure calls

RPC_S_INVALID_BINDING Invalid binding handle
RPC_S_WRONG_KIND_OF_BINDI
NG

Wrong kind of binding for operation

See Also

RpcEpResolveBinding, RpcServerListen

 RpcMgmtSetAuthorizationFn QuickInfo

The RpcMgmtSetAuthorizationFn function establishes an authorization function for processing
remote calls to a server's management routines.

#include <rpc.h>
RPC_STATUS RPC_ENTRY
RpcMgmtSetAuthorizationFn(

RPC_MGMT_AUTHORIZATION_FN AuthorizationFn);

This function is supported only by 32-bit Windows NT platforms.

Parameter

AuthorizationFn
Specifies an authorization function. The RPC server run-time library automatically calls this function
whenever the server runtime receives a client request to execute one of the remote management
routines. The server must implement this function. Applications specify NULL to unregister a
previously registered authorization function. After such a call, default authorizations are used.

Remarks

Server applications call the RpcMgmtSetAuthorizationFn routine to establish an authorization function
that controls access to the server's remote management routines. When a server has not called
RpcMgmtSetAuthorizationFn, or calls with a NULL value for AuthorizationFn, the server run-time
library uses the following default authorizations:

Remote routine Default authorization
RpcMgmtInqIfIds Enabled
RpcMgmtInqServerPrincName Enabled
RpcMgmtInqStats Enabled
RpcMgmtIsServerListening Enabled
RpcMgmtStopServerListening Disabled

In the above table, "Enabled" indicates that all clients can execute the remote routine, and "Disabled"
indicates that all clients are prevented from executing the remote routine.

The following example shows the prototype for authorization function that the server must implement:

typedef boolean32 (*RPC_MGMT_AUTHORIZATION_FN)
 (
 RPC_BINDING_HANDLE ClientBinding

/* in */
 unsigned long RequestedMgmtOperation

/* in */
 RPC_STATUS * Status

/* out */
);

When a client requests one of the server's remote management functions, the server run-time library
calls the authorization function with ClientBinding and RequestedMgmtOperation. The authorization
function uses these parameters to determine whether the calling client can execute the requested
management routine.

The value for RequestedMgmtOperation depends on the remote routine requested, as shown in the
following:

Called remote routine RequestedMgmtOperation value
RpcMgmtInqIfIds RPC_C_MGMT_INQ_IF_IDS

RpcMgmtInqServerPrincName RPC_C_MGMT_INQ_PRINC_NAME
RpcMgmtInqStats RPC_C_MGMT_INQ_STATS
RpcMgmtIsServerListening RPC_C_MGMT_IS_SERVER_LISTEN
RpcMgmtStopServerListening RPC_C_MGMT_STOP_SERVER_LISTEN

The authorization function must handle all of these values.

The authorization function returns a Boolean value to indicate whether the calling client is allowed
access to the requested management function. If the authorization function returns TRUE, the
management routine can execute. If the authorization function returns FALSE, the management routine
cannot execute. If this is the case, the routine returns a Status value to the client:

· If Status is either 0 (zero) or RPC_S_OK, the Status value RPC_S_ACCESS_DENIED is returned to
the client by the remote management routine.

· If the authorization function returns any other value for Status, that Status value is returned to the
client by the remote management routine.

Return Values

Value Meaning
RPC_S_OK Success

See Also

RpcMgmtInqStats, RpcMgmtIsServerListening, RpcMgmtStopServerListening,
RpcMgmtWaitServerListen

 RpcMgmtSetCancelTimeout QuickInfo

The RpcMgmtSetCancelTimeout function sets the lower bound on the time to wait before timing out
after forwarding a cancel.

#include <rpc.h>
RPC_STATUS RPC_ENTRY
RpcMgmtSetCancelTimeout(

signed int Seconds);

This function is supported only by 32-bit Windows NT platforms.

Parameter

Seconds
An integer specifying the number of seconds to wait for a server to acknowledge a cancel. To specify
that a client waits an indefinite amount of time, supply the value
RPC_C_CANCEL_INFINITE_TIMEOUT.

Remarks

An application calls the RpcMgmtSetCancelTimeout routine to reset the amount of time the run-time
library waits for a server to acknowledge a cancel. The application specifies either to wait forever or to
wait a specified length of time in seconds. If the value of Seconds is 0 (zero), the call is immediately
abandoned upon a cancel and control returns to the client application. The default value is
RPC_C_CANCEL_INFINITE_TIMEOUT, which specifies waiting forever for the call to complete.

The value for the cancel time-out applies to all remote procedure calls made in the current thread. To
change the time-out value, a multithreaded client must call this routine in each thread of execution.

Note This routine is only supported for Windows NT clients.

Return Values

Value Meaning
RPC_S_OK Success
RPC_S_CANNOT_SUPPORT Called from an MS-DOS or

Windows 3.x client

 RpcMgmtSetComTimeout QuickInfo

The RpcMgmtSetComTimeout function sets the binding-communications timeout value in a binding
handle.

#include <rpc.h>
RPC_STATUS RPC_ENTRY
RpcMgmtSetComTimeout(

RPC_BINDING_HANDLE Binding,
unsigned int Timeout);

Parameters

Binding
Specifies the server binding handle whose timeout value is set.

Timeout
Specifies the communications timeout value.

Remarks

A client application calls RpcMgmtSetComTimeout to change the communications timeout value for a
server binding handle. The timeout value specifies the relative amount of time that should be spent to
establish a relationship to the server before giving up. Depending on the protocol sequence for the
specified binding handle, the timeout value acts only as a hint to the RPC run-time library.

After the initial relationship is established, subsequent communications for the binding handle revert to
not less than the default timeout for the protocol service. This means that after setting a short initial
timeout establishing a connection, calls in progress will not be timed out any more aggressively than
the default.

The timeout value can be any integer value from 0 to 10. For convenience, constants are provided for
certain values in the timeout range. The following table contains the RPC-defined values that an
application can use for the timeout argument:

Manifest Value Description
RPC_C_BINDING_INFINITE_TIMEO
UT

10 Keep trying to establish
communications forever.

RPC_C_BINDING_MIN_TIMEOUT 0 Try the minimum amount
of time for the network
protocol being used. This
value favors response time
over correctness in
determining whether the
server is running.

RPC_C_BINDING_DEFAULT_TIME
OUT

5 Try an average amount of
time for the network
protocol being used. This
value gives correctness in
determining whether a
server is running and gives
response time equal
weight. This is the default
value.

RPC_C_BINDING_MAX_TIMEOUT 9 Try the longest amount of
time for the network
protocol being used. This
value favors correctness in
determining whether a
server is running over
response time.

Note The values in the preceding table are not in seconds. These values represent a relative amount
of time on a scale of zero to 10.

Return Values

Value Meaning
RPC_S_OK Success
RPC_S_INVALID_BINDING Invalid binding handle
RPC_S_INVALID_TIMEOUT Invalid timeout value
RPC_S_WRONG_KIND_OF_BINDI
NG

Wrong kind of binding for operation

See Also

RpcMgmtInqComTimeout

 RpcMgmtSetServerStackSize QuickInfo

The RpcMgmtSetServerStackSize function specifies the stack size for each server thread.

#include <rpc.h>
RPC_STATUS RPC_ENTRY
RpcMgmtSetServerStackSize(

unsigned int ThreadStackSize);

This function is supported by both 32-bit Windows NT and Windows 95 platforms.

Parameter

ThreadStackSize
Specifies the stack size in bytes allocated for each thread created by RpcServerListen. This value
is applied to all threads created for the server. Select this value based on the stack requirements of
the remote procedures offered by the server.

Remarks

A server application calls the RpcMgmtSetServerStackSize routine to specify the thread stack size to
use when the RPC run-time library creates call threads for executing remote procedure calls. The
MaxCalls argument in the RpcServerListen routine specifies the number of call threads created.

Servers that know the stack requirements of all the manager routines in the interfaces it offers can call
the RpcMgmtSetServerStackSize routine to ensure that each call thread has the necessary stack
size.

Calling RpcMgmtSetServerStackSize is optional. However, when used, it must be called before the
server calls RpcServerListen. If a server does not call RpcMgmtSetServerStackSize, the default per
thread stack size from the underlying threads package is used.

Return Values

Value Meaning
RPC_S_OK Success
RPC_S_INVALID_ARG Invalid argument

See Also

RpcServerListen

 RpcMgmtStatsVectorFree QuickInfo

The RpcMgmtStatsVectorFree function frees a statistics vector.

#include <rpc.h>
RPC_STATUS RPC_ENTRY
RpcMgmtStatsVectorFree(

RPC_STATS_VECTOR * * StatsVector);

This function is supported by both the 32-bit Windows NT and Windows 95 platforms.

Parameter

StatsVector
Points to a pointer to a statistics vector. On return, the pointer is set to NULL.

Remarks

An application calls the RpcMgmtStatsVectorFree routine to release the memory used to store
statistics.

An application obtains a vector of statistics by calling the RpcMgmtInqStats routine.

Return Values

Value Meaning
RPC_S_OK Success

See Also

RpcMgmtInqStats

 RpcMgmtStopServerListening QuickInfo

The RpcMgmtStopServerListening function tells a server to stop listening for remote procedure calls.

#include <rpc.h>
RPC_STATUS RPC_ENTRY
RpcMgmtStopServerListening(

RPC_BINDING_HANDLE Binding);

This function is supported by both the 32-bit Windows NT and Windows 95 platforms.

Parameter

Binding
To direct a remote application to stop listening for remote procedure calls, specify a server binding
handle for that application. To direct your own (local) application to stop listening for remote
procedure calls, specify a value of NULL.

Remarks

An application calls the RpcMgmtStopServerListening routine to direct a server to stop listening for
remote procedure calls. If DontWait was true, the application should call RpcMgmtWaitServerListen
to wait for all calls to complete.

When it receives a stop-listening request, the RPC run-time library stops accepting new remote
procedure calls for all registered interfaces. Executing calls are allowed to complete, including
callbacks.

After all calls complete, the RpcServerListen routine returns to the caller. If DontWait is true, the
application calls RpcMgmtServerListen for all calls to complete.

Return Values

Value Meaning
RPC_S_OK Success
RPC_S_INVALID_BINDING Invalid binding handle
RPC_S_WRONG_KIND_OF_BINDI
NG

Wrong kind of binding for operation

See Also

RpcEpResolveBinding, RpcMgmtWaitServerListen, RpcServerListen

 RpcMgmtWaitServerListen QuickInfo

The RpcMgmtWaitServerListen function performs the wait operation usually associated with
RpcServerListen.

#include <rpc.h>
RPC_STATUS RPC_ENTRY
RpcMgmtWaitServerListen(void);

Remarks

Note RpcMgmtWaitServerListen is a Microsoft extension to the DCE API set.

This function is supported by both the 32-bit Windows NT and Windows 95 platforms.

When the RpcServerListen flag parameter DontWait has a nonzero value, the RpcServerListen
function returns to the server application without performing the wait operation. In this case, the wait
can be performed by RpcMgmtWaitServerListen.

Applications must call RpcServerListen with a nonzero value for the DontWait parameter before
calling RpcMgmtWaitServerListen.

RpcMgmtWaitServerListen returns after the server application calls RpcMgmtStopServerListening
and all active remote procedure calls complete, or after a fatal error occurs in the RPC run-time library.

Return Values

Value Meaning
RPC_S_OK All remote procedure calls are

complete.
RPC_S_ALREADY_LISTENING Another thread has called

RpcMgmtWaitServerListen and
has
not yet returned.

RPC_S_NOT_LISTENING The server application must call
RpcServerListen before calling
RpcMgmtWaitServerListen.

See Also

RpcMgmtStopServerListening, RpcServerListen

 RpcNetworkInqProtseqs QuickInfo

The RpcNetworkInqProtseqs function returns all protocol sequences supported by both the RPC run-
time library and the operating system.

#include <rpc.h>
RPC_STATUS RPC_ENTRY
RpcNetworkInqProtseqs(

RPC_PROTSEQ_VECTOR * * ProtSeqVector);

This function is supported by both the 32-bit Windows NT and Windows 95 platforms.

For a list of procotol sequences supported by RPC, see RPC Data Types and Structures.

Parameter

ProtSeqVector
Returns a pointer to a pointer to a protocol sequence vector.

Remarks

Note RpcNetworkInqProtseqs is available for server applications, not client applications, using
Microsoft RPC. Use RpcNetworkIsProtseqValid in client applications.

A server application calls the RpcNetworkInqProtseqs routine to obtain a vector containing the
protocol sequences supported by both the RPC run-time library and the operating system. If there are
no supported protocol sequences, this routine returns the RPC_S_NO_PROTSEQS status code and a
ProtSeqVector argument value of NULL.

The server is responsible for calling the RpcProtseqVectorFree routine to release the memory used
by the vector.

Return Values

Value Meaning
RPC_S_OK Success
RPC_S_NO_PROTSEQS No supported protocol sequences

See Also

RpcProtseqVectorFree

 RpcNetworkIsProtseqValid QuickInfo

The RpcNetworkIsProtseqValid function tells whether the specified protocol sequence is supported
by both the RPC run-time library and the operating system.

#include <rpc.h>
RPC_STATUS RPC_ENTRY
RpcNetworkIsProtseqValid(

unsigned char * Protseq);

For a list of procotol sequences supported by RPC, see RPC Data Types and Structures.

Parameter

Protseq
Points to a string identifier of the protocol sequence to be checked.
If the Protseq argument is not a valid protocol sequence string, RpcNetworkIsProtseqValid returns
RPC_S_INVALID_RPC_PROTSEQ.

Remarks

Note RpcNetworkIsProtseqValid is available for client applications, not for server applications. Use
RpcNetworkInqProtseqs for server applications.

An application calls the RpcNetworkIsProtseqValid routine to determine whether an individual
protocol sequence is available for making remote procedure calls.

A protocol sequence is valid if both the RPC run-time library and the operating system support the
specified protocols. For a list of RPC-supported protocol sequences, see String Binding.

An application calls RpcNetworkInqProtseqs to see all of the supported protocol sequences.

Return Values

Value Meaning
RPC_S_OK Success; protocol sequence supported
RPC_S_PROTSEQ_NOT_
SUPPORTED

Protocol sequence not supported on
this host

RPC_S_INVALID_RPC_PROTSEQ Invalid protocol sequence

See Also

RpcNetworkInqProtseqs

 RpcNsBindingExport QuickInfo

The RpcNsBindingExport function establishes a name-service database entry with multiple binding
handles and multiple objects for a server.

#include <rpc.h>
RPC_STATUS RPC_ENTRY
RpcNsBindingExport(

unsigned long EntryNameSyntax,
unsigned char * EntryName,
RPC_IF_HANDLE IfSpec,
RPC_BINDING_VECTOR * BindingVec,
UUID_VECTOR * ObjectUuidVec);

This function is supported by both the 32-bit Windows NT and Windows 95 platforms.

Parameters

EntryNameSyntax
Specifies an unsigned long value that indicates the syntax of the next argument, EntryName.
To use the syntax specified in the registry value HKEY_LOCAL_MACHINE\Software\Microsoft\Rpc\
NameService\
DefaultSyntax, provide a value of RPC_C_NS_SYNTAX_DEFAULT.

EntryName
Points to the entry name to which binding handles and object UUIDs are exported. You may not
provide a null or empty string.
To use the entry name specified in the registry value HKEY_LOCAL_MACHINE\Software\Microsoft\
Rpc\NameService\
DefaultEntry, provide a null pointer or an empty string. In this case, the EntryNameSyntax parameter
is ignored and the run-time library uses the default syntax EntryName.

IfSpec
Specifies a stub-generated data structure specifying the interface to export. A null argument value
indicates there are no binding handles to export (only object UUIDs are to be exported) and the
BindingVec argument is ignored.

BindingVec
Points to server bindings to export. A null argument value indicates there are no binding handles to
export (only object UUIDs are to be exported).

ObjectUuidVec
Points to a vector of object UUIDs offered by the server. The server application constructs this
vector. A null argument value indicates there are no object UUIDs to export (only binding handles
are to be exported).

Remarks

The RpcNsBindingExport routine allows a server application to publicly offer an interface in the
name-service database for use by any client application.

To export an interface, the server application calls the RpcNsBindingExport routine with an interface
and the server binding handles a client can use to access the server.

A server application also calls the RpcNsBindingExport routine to publicly offer the object UUID(s) of
resource(s) it offers, if any, in the name-service database.

A server can export interfaces and objects in a single call to RpcNsBindingExport, or it can export
them separately.

If the name-service database entry specified by the EntryName argument does not exist, the

RpcNsBindingExport routine tries to create it. In this case, the server application must have the
privilege to create the entry.

In addition to calling RpcNsBindingExport, a server that called the RpcServerUseAllProtseqs or
RpcServerUseProtseq routine must also register with the local endpoint-map database by calling
either the RpcEpRegister or RpcEpRegisterNoReplace routine.

A server is not required to export its interface(s) to the name-service database. When a server does not
export, only clients that privately know of that server's binding information can access its interface(s).
For example, a client that has the information needed to construct a string binding can call the
RpcBindingFromStringBinding to create a binding handle for making remote procedure calls to a
server.

Before calling the RpcNsBindingExport routine, a server must do the following:

· Register one or more protocol sequences with the local RPC run-time library by calling one of the
following routines:
· RpcServerUseAllProtseqs
· RpcServerUseProtseq
· RpcServerUseAllProtseqsIf
· RpcServerUseProtseqIf
· RpcServerUseProtseqEp

· Obtain a list of server bindings by calling the RpcServerInqBindings routine.

The vector returned from the RpcServerInqBindings routine becomes the Binding argument for
RpcNsBindingExport. To prevent a binding from being exported, set the selected vector element to a
null value.

If a server exports to the same name-service database entry multiple times, the second and
subsequent calls to RpcNsBindingExport add the binding information and object UUIDs when that
data is different from the binding information already in the server entry. Existing data is not removed
from the entry.

To remove binding handles and object UUIDs from the name-service database, a server application
calls the RpcNsBindingUnexport routine.

A server entry must have at least one binding handle to exist. As a result, exporting only UUIDs to a
non-existing entry has no effect, and unexporting all binding handles deletes the entry.

Return Values

Value Meaning
RPC_S_OK Success
RPC_S_NOTHING_TO_EXPORT Nothing to export
RPC_S_INVALID_BINDING Invalid binding handle
RPC_S_WRONG_KIND_OF_BINDING Wrong kind of binding for

operation
RPC_S_INVALID_NAME_SYNTAX Invalid name syntax
RPC_S_UNSUPPORTED_NAME_SYN
TAX

Unsupported name syntax

RPC_S_INCOMPLETE_NAME Incomplete name
RPC_S_NO_NS_PRIVILEGE No privilege for name-service

operation
RPC_S_NAME_SERVICE_UNAVAILAB
LE

Name service unavailable

See Also

RpcBindingFromStringBinding, RpcEpRegister, RpcEpRegisterNoReplace,
RpcNsBindingUnexport, RpcServerInqBindings, RpcServerUseAllProtseqs,
RpcServerUseAllProtseqsIf, RpcServerUseProtseq, RpcServerUseProtseqEp,
RpcServerUseProtseqIf

 RpcNsBindingImportBegin QuickInfo

The RpcNsBindingImportBegin function creates an import context for an interface and an object.

#include <rpc.h>
RPC_STATUS RPC_ENTRY
RpcNsBindingImportBegin(

unsigned long EntryNameSyntax,
unsigned char * EntryName,
RPC_IF_HANDLE IfSpec,
UUID * ObjUuid,
RPC_NS_HANDLE * ImportContext);

Parameters

EntryNameSyntax
Specifies an unsigned long value that indicates the syntax of the next argument, EntryName.
To use the syntax specified in the registry value HKEY_LOCAL_MACHINE\Software\Microsoft\Rpc\
NameService\
DefaultSyntax, provide a value of RPC_C_NS_SYNTAX_DEFAULT.

EntryName
Points to an entry name at which the search for compatible binding handles begins.
To use the entry name specified in the registry value HKEY_LOCAL_MACHINE\Software\Microsoft\
Rpc\NameService\
DefaultEntry, provide a null pointer or an empty string. In this case, the EntryNameSyntax parameter
is ignored and the run-time library uses the default syntax EntryName.

IfSpec
Specifies a stub-generated data structure indicating the interface to import. If the interface
specification has not been exported or is of no concern to the caller, specify a null value for this
argument. In this case, the bindings returned are only guaranteed to be of a compatible and
supported protocol sequence and to contain the specified object UUID. The desired interface may
not be supported by the contacted server.

ObjUuid
Points to an optional object UUID.
For a non-nil UUID, compatible binding handles are returned from an entry only if the server has
exported the specified object UUID.
When the ObjUuid argument has a null pointer value or a nil UUID, the returned binding handles
contain one of the object UUIDs exported by the compatible server. If the server did not export any
object UUIDs, the returned compatible binding handles contain a nil object UUID.

ImportContext
Specifies a returned name-service handle for use with the RpcNsBindingImportNext and
RpcNsBindingImportDone routines.

Remarks

The RpcNsBindingImportBegin routine creates an import context for importing client-compatible
binding handles for servers that offer the specified interface and object.

Before calling the RpcNsBindingImportNext routine, the client application must first call
RpcNsBindingImportBegin to create an import context. The arguments to this routine control the
operation of the RpcNsBindingImportNext routine.

When finished importing binding handles, the client application calls the RpcNsBindingImportDone
routine to delete the import context.

Return Values

Value Meaning
RPC_S_OK Success
RPC_S_INVALID_NAME_SYNTAX Invalid name syntax
RPC_S_UNSUPPORTED_NAME_SYN
TAX

Unsupported name syntax

RPC_S_INCOMPLETE_NAME Incomplete name
RPC_S_ENTRY_NOT_FOUND Name-service entry not found
RPC_S_NAME_SERVICE_UNAVAILAB
LE

Name service unavailable

RPC_S_INVALID_OBJECT Invalid object

See Also

RpcNsBindingImportDone, RpcNsBindingImportNext

 RpcNsBindingImportDone QuickInfo

The RpcNsBindingImportDone function signifies that a client has finished looking for a compatible
server and deletes the import context.

#include <rpc.h>
RPC_STATUS RPC_ENTRY
RpcNsBindingImportDone(

RPC_NS_HANDLE * ImportContext);

Parameter

ImportContext
Points to a name-service handle to free. The name-service handle ImportContext points to is created
by calling the RpcNsBindingImportBegin routine.
An argument value of NULL is returned.

Remarks

The RpcNsBindingImportDone routine frees an import context created by calling the
RpcNsBindingImportBegin routine.

Typically, a client application calls RpcNsBindingImportDone after completing remote procedure calls
to a server using a binding handle returned from the RpcNsBindingImportNext routine. However, a
client application is responsible for calling RpcNsBindingImportDone for each created import context
regardless of the status returned from the RpcNsBindingImportNext routine or the success in making
remote procedure calls.

Return Values

Value Meaning
RPC_S_OK Success

See Also

RpcNsBindingImportBegin, RpcNsBindingImportNext

 RpcNsBindingImportNext QuickInfo

The RpcNsBindingImportNext function looks up an interface, and optionally an object, from a name-
service database and returns a binding handle of a compatible server (if found).

#include <rpc.h>
RPC_STATUS RPC_ENTRY
RpcNsBindingImportNext(

RPC_NS_HANDLE ImportContext,
RPC_BINDING_HANDLE * Binding);

Parameters

ImportContext
Specifies a name-service handle returned from the RpcNsBindingImportBegin routine.

Binding
Returns a pointer to a client-compatible server binding handle for a server.

Remarks

The RpcNsBindingImportNext routine returns one client-compatible server binding handle for a
server offering the interface and object UUID specified by the IfSpec and ObjUuid arguments in the
RpcNsBindingImportBegin routine. The RpcNsBindingImportNext routine communicates only with
the name-service database, not directly with servers.

The returned compatible binding handle always contains an object UUID. Its value depends on the
ObjUuid argument value specified in the RpcNsBindingImportBegin routine as follows:

· If a non-nil object UUID was specified, the returned binding handle contains that object UUID.
· If a nil object UUID or null value was specified, the object UUID returned in the binding handle

depends on how the server exported object UUIDs:
· If the server did not export any object UUIDs, the returned binding handle contains a nil object

UUID.
· If the server exported one object UUID, the returned binding handle contains that object UUID.
· If the server exported multiple object UUIDs, the returned binding handle contains one of the

object UUIDs. The import-next operation selects the returned object UUID in a non-deterministic
fashion. As a result, a different object UUID can be returned for each compatible binding handle
from a single server entry.

The RpcNsBindingImportNext routine selects and returns one server binding handle from the
compatible binding handles found. The client application can use that binding handle to attempt to
make a remote procedure call to the server. If the client fails to establish a relationship with the server,
it can call the RpcNsBindingImportNext routine again.

Each time the client calls the RpcNsBindingImportNext routine, the routine returns another server
binding handle. The returned binding handles are unordered.

A client application calls the RpcNsBindingInqEntryName routine to obtain the name-service
database in the entry name from which the binding handle came.

When the search reaches the end of the name-service database, the routine returns a status of
RPC_S_NO_MORE_BINDINGS and returns a binding argument value of NULL.

The RpcNsBindingImportNext routine allocates storage for the data referenced by the returned
Binding argument. When a client application finishes with the binding handle, it must call the
RpcBindingFree routine to deallocate the storage. Each call to the RpcNsBindingImportNext routine
requires a corresponding call to the RpcBindingFree routine.

The client is responsible for calling the RpcNsBindingImportDone routine.

RpcNsBindingImportDone deletes the import context. The client also calls the
RpcNsBindingImportDone routine if the application wants to start a new search for compatible
servers (by calling the RpcNsBindingImportBegin routine). The order of binding handles returned is
different for each new search. This means the order in which binding handles are returned to an
application can be different each time the application is run.

Return Values

Value Meaning
RPC_S_OK Success
RPC_S_NO_MORE_BINDINGS No more bindings
RPC_S_NAME_SERVICE_UNAVAILAB
LE

Name service unavailable

See Also

RpcBindingFree, RpcNsBindingImportBegin, RpcNsBindingImportDone,
RpcNsBindingInqEntryName, RpcNsBindingLookupBegin, RpcNsBindingLookupDone,
RpcNsBindingLookupNext, RpcNsBindingSelect

 RpcNsBindingInqEntryName QuickInfo

The RpcNsBindingInqEntryName function returns the entry name from which the binding handle
came.

#include <rpc.h>
RPC_STATUS RPC_ENTRY
RpcNsBindingInqEntryName(

RPC_BINDING_HANDLE Binding,
unsigned long EntryNameSyntax,
unsigned char * * EntryName);

Parameters

Binding
Specifies the binding handle whose name-service database entry name is returned.

EntryNameSyntax
Specifies an unsigned long value that indicates the syntax used in the returned argument,
EntryName.
To use the syntax specified in the registry value HKEY_LOCAL_MACHINE\Software\Microsoft\Rpc\
NameService\
DefaultSyntax, provide a value of RPC_C_NS_SYNTAX_DEFAULT.

EntryName
Returns a pointer to a pointer to the name of the name-service database entry in which Binding was
found.
Specify a null value to prevent RpcNsBindingInqEntryName from returning the EntryName
argument. In this case, the application does not call the RpcStringFree routine.

Remarks

The RpcNsBindingInqEntryName routine returns the name of the name-service database entry from
which a client-compatible binding handle came.

The RPC run-time library allocates memory for the string returned in the EntryName argument. The
application is responsible for calling the RpcStringFree routine to deallocate that memory.

An entry name is associated only with binding handles returned from the RpcNsBindingImportNext,
RpcNsBindingLookupNext, and RpcNsBindingSelect routines.

If the binding handle specified in the Binding argument was not returned from a name-service database
entry (for example, if the binding handle was created by calling RpcBindingFromStringBinding),
RpcNsBindingInqEntryName returns an empty string ("\0") and an RPC_S_NO_ENTRY_NAME
status code.

Return Values

Value Meaning
RPC_S_OK Success
RPC_S_INVALID_BINDING Invalid binding handle
RPC_S_NO_ENTRY_NAME No entry name for binding
RPC_S_INVALID_NAME_SYNTAX Invalid name syntax
RPC_S_UNSUPPORTED_NAME_SYN
TAX

Unsupported name syntax

RPC_S_INCOMPLETE_NAME Incomplete name

See Also

RpcBindingFromStringBinding, RpcNsBindingImportNext, RpcNsBindingLookupNext,
RpcNsBindingSelect, RpcStringFree

 RpcNsBindingLookupBegin QuickInfo

The RpcNsBindingLookupBegin function creates a lookup context for an interface and an object.

#include <rpc.h>
RPC_STATUS RPC_ENTRY
RpcNsBindingLookupBegin(

unsigned long EntryNameSyntax,
unsigned char * EntryName,
RPC_IF_HANDLE IfSpec,
UUID * ObjUuid,
unsigned long BindingMaxCount,
RPC_NS_HANDLE * LookupContext);

Parameters

EntryNameSyntax
Specifies an unsigned long value that indicates the syntax of the next argument, EntryName.
To use the syntax specified in the registry value HKEY_LOCAL_MACHINE\Software\Microsoft\Rpc\
NameService\
DefaultSyntax, provide a value of RPC_C_NS_SYNTAX_DEFAULT.

EntryName
Points to an entry name at which the search for compatible bindings begins.
To use the entry name specified in the registry value HKEY_LOCAL_MACHINE\Software\Microsoft\
Rpc\NameService\
DefaultEntry, provide a null pointer or an empty string. In this case, the EntryNameSyntax parameter
is ignored and the run-time library uses the default syntax EntryName.

IfSpec
Specifies a stub-generated data structure indicating the interface to look up. If the interface
specification has not been exported or is of no concern to the caller, specify a null value for this
argument. In this case, the bindings returned are only guaranteed to be of a compatible and
supported protocol sequence and to contain the specified object UUID. The desired interface may
not be supported by the contacted server.

ObjUuid
Points to an optional object UUID.
For a non-nil UUID, compatible binding handles are returned from an entry only if the server has
exported the specified object UUID.
For a null pointer value or a nil UUID for this argument, the returned binding handles contain one of
the object UUIDs exported by the compatible server. If the server did not export any object UUIDs,
the returned compatible binding handles contain a nil object UUID.

BindingMaxCount
Specifies the maximum number of bindings to return in the BindingVec argument from the
RpcNsBindingLookupNext routine.
Specify a value of zero to use the default count of RPC_C_BINDING_MAX_COUNT_DEFAULT.

LookupContext
Returns a pointer to a name-service handle for use with the RpcNsBindingLookupNext and
RpcNsBindingLookupDone routines.

Remarks

The RpcNsBindingLookupBegin routine creates a lookup context for locating client-compatible
binding handles to servers that offer the specified interface and object.

Before calling the RpcNsBindingLookupNext routine, the client application must first call

RpcNsBindingLookupBegin to create a lookup context. The arguments to this routine control the
operation of the RpcNsBindingLookupNext routine.

When finished locating binding handles, the client application calls the RpcNsBindingLookupDone
routine to delete the lookup context.

Return Values

Value Meaning
RPC_S_OK Success
RPC_S_INVALID_NAME_SYNTAX Invalid name syntax
RPC_S_UNSUPPORTED_NAME_SYN
TAX

Unsupported name syntax

RPC_S_INCOMPLETE_NAME Incomplete name
RPC_S_ENTRY_NOT_FOUND Name-service entry not found
RPC_S_NAME_SERVICE_UNAVAILAB
LE

Name service unavailable

RPC_S_INVALID_OBJECT Invalid object

See Also

RpcNsBindingLookupDone, RpcNsBindingLookupNext

 RpcNsBindingLookupDone QuickInfo

The RpcNsBindingLookupDone function signifies that a client has finished looking for compatible
servers and deletes the lookup context.

#include <rpc.h>
RPC_STATUS RPC_ENTRY
RpcNsBindingLookupDone(

RPC_NS_HANDLE * LookupContext);

Parameter

LookupContext
Points to the name-service handle to free. The name-service handle LookupContext points to is
created by calling the routine RpcNsBindingLookupBegin.
An argument value of NULL is returned.

Remarks

The RpcNsBindingLookupDone routine frees a lookup context created by calling the
RpcNsBindingLookupBegin routine.

Typically, a client application calls RpcNsBindingLookupDone after completing remote procedure
calls to a server using a binding handle returned from the RpcNsBindingLookupNext routine.
However, a client application is responsible for calling RpcNsBindingLookupDone for each created
lookup context, regardless of the status returned from the RpcNsBindingLookupNext routine or the
success in making remote procedure calls.

Return Values

Value Meaning
RPC_S_OK Success

See Also

RpcNsBindingLookupBegin, RpcNsBindingLookupNext

 RpcNsBindingLookupNext QuickInfo

The RpcNsBindingLookupNext function returns a list of compatible binding handles for a specified
interface and optionally an object.

#include <rpc.h>
RPC_STATUS RPC_ENTRY
RpcNsBindingLookupNext(

RPC_NS_HANDLE LookupContext,
RPC_BINDING_VECTOR * * BindingVec);

Parameters

LookupContext
Specifies the name-service handle returned from the RpcNsBindingLookupBegin routine.

BindingVec
Returns a pointer to a pointer to a vector of client-compatible server binding handles.

Remarks

The RpcNsBindingLookupNext routine returns a vector of client-compatible server binding handles
for a server offering the interface and object UUID specified by the IfSpec and ObjUuid arguments in
the RpcNsBindingLookupBegin routine.

The RpcNsBindingLookupNext routine communicates only with the name-service database, not
directly with servers.

The RpcNsBindingLookupNext routine traverses name-service database entries collecting client-
compatible server binding handles from each entry. If the entry at which the search begins (see the
EntryName argument in RpcNsBindingLookupBegin) contains binding handles as well as an RPC
group and/or a profile, RpcNsBindingLookupNext returns the binding handles from EntryName
before searching the group or profile. This means that RpcNsBindingLookupNext can return a
partially full vector before processing the members of the group or profile. Each binding handle in the
returned vector always contains an object UUID. Its value depends on the ObjUuid argument value
specified in the RpcNsBindingLookupBegin routine as follows:

· If a non-nil object UUID was specified, each returned binding handle contains that object UUID.
· If a nil object UUID or null value was specified, the object UUID returned in each binding handle

depends on how the server exported object UUIDs:
· If the server did not export any object UUIDs, each returned binding handle contains a nil object

UUID.
· If the server exported one object UUID, each returned binding handle contains that object UUID.
· If the server exported multiple object UUIDs, each binding handle contains one of the object

UUIDs. The lookup-next operation selects the returned object UUID in a non-deterministic
fashion. For this reason, a different object UUID can be returned for each compatible binding
handle from a single server entry.

From the returned vector of server binding handles, the client application can employ its own criteria for
selecting individual binding handles, or the application can call the RpcNsBindingSelect routine to
select a binding handle. The RpcBindingToStringBinding and RpcStringBindingParse routines will
be helpful for a client creating its own selection criteria.

The client application can use the selected binding handle to attempt to make a remote procedure call
to the server. If the client fails to establish a relationship with the server, it can select another binding
handle from the vector. When all of the binding handles in the vector have been used, the client
application calls the RpcNsBindingLookupNext routine again.

Each time the client calls the RpcNsBindingLookupNext routine, the routine returns another vector of

binding handles. The binding handles returned in each vector are unordered. The vectors returned from
multiple calls to this routine are also unordered.

A client calls the RpcNsBindingInqEntryName routine to obtain the name-service database server
entry name that the binding came from.

When the search reaches the end of the name-service database, RpcNsBindingLookupNext returns
a status of RPC_S_NO_MORE_BINDINGS and returns a BindingVec argument value of NULL.

The RpcNsBindingLookupNext routine allocates storage for the data referenced by the returned
BindingVec argument. When a client application finishes with the vector, it must call the
RpcBindingVectorFree routine to deallocate the storage. Each call to the
RpcNsBindingLookupNext routine requires a corresponding call to the RpcBindingVectorFree
routine.

The client is responsible for calling the RpcNsBindingLookupDone routine.
RpcNsBindingLookupDone deletes the lookup context. The client also calls the
RpcNsBindingLookupDone routine if the application wants to start a new search for compatible
servers (by calling the RpcNsBindingLookupBegin routine). The order of binding handles returned
can be different for each new search.

Return Values

Value Meaning
RPC_S_OK Success
RPC_S_NO_MORE_BINDINGS No more bindings
RPC_S_NAME_SERVICE_UNAVAILAB
LE

Name-service unavailable

See Also

RpcBindingToStringBinding, RpcBindingVectorFree, RpcNsBindingInqEntryName,
RpcNsBindingLookupBegin, RpcNsBindingLookupDone, RpcStringBindingParse

 RpcNsBindingSelect QuickInfo

The RpcNsBindingSelect function returns a binding handle from a list of compatible binding handles.

#include <rpc.h>
RPC_STATUS RPC_ENTRY
RpcNsBindingSelect(

RPC_BINDING_VECTOR * BindingVec,
RPC_BINDING_HANDLE * Binding);

Parameters

BindingVec
Points to the vector of client-compatible server binding handles from which a binding handle is
selected. The returned binding vector no longer references the selected binding handle, which is
returned separately in the Binding argument.

Binding
Returns a pointer to a selected binding handle.

Remarks

The RpcNsBindingSelect routine chooses and returns a client-compatible server binding handle from
a vector of server binding handles.

Each time the client calls the RpcNsBindingSelect routine, the routine operation returns another
binding handle from the vector.

When all of the binding handles have been returned from the vector, the routine returns a status of
RPC_S_NO_MORE_BINDINGS and returns a Binding argument value of NULL.

The select operation allocates storage for the data referenced by the returned Binding argument. When
a client finishes with the binding handle, it should call the RpcBindingFree routine to deallocate the
storage. Each call to the RpcNsBindingSelect routine requires a corresponding call to the
RpcBindingFree routine.

Clients can create their own select routines implementing application-specific selection criteria. In this
case, the RpcStringBindingParse routine provides access to the fields of a binding.

Return Values

Value Meaning
RPC_S_OK Success
RPC_S_NO_MORE_BINDINGS No more bindings

See Also

RpcBindingFree, RpcNsBindingLookupNext, RpcStringBindingParse

 RpcNsBindingUnexport QuickInfo

The RpcNsBindingUnexport function removes the binding handles for an interface and objects from
an entry in the name-service database.

#include <rpc.h>
RPC_STATUS RPC_ENTRY
RpcNsBindingUnexport(

unsigned long EntryNameSyntax,
unsigned char * EntryName,
RPC_IF_HANDLE IfSpec,
UUID_VECTOR * ObjectUuidVec);

This function is supported by both the 32-bit Windows NT and Windows 95 platforms.

Parameters

EntryNameSyntax
Specifies an unsigned long value that indicates the syntax of the next argument, EntryName.
To use the syntax specified in the registry value HKEY_LOCAL_MACHINE\Software\Microsoft\Rpc\
NameService\
DefaultSyntax, provide a value of RPC_C_NS_SYNTAX_DEFAULT.

EntryName
Points to the entry name from which to remove binding handles and object UUIDs.

IfSpec
Specifies an interface. A null argument value indicates not to unexport any binding handles (only
object UUIDs are to be unexported).

ObjectUuidVec
Points to a vector of object UUIDs that the server no longer wants to offer. The application
constructs this vector. A null argument value indicates there are no object UUIDs to unexport (only
binding handles are to be unexported).

Remarks

The RpcNsBindingUnexport routine allows a server application to remove the following from a name-
service database entry:

· All the binding handles for a specific interface
· One or more object UUIDs of resources
· Both the binding handles and object UUIDs of resources

The RpcNsBindingUnexport routine unexports only the binding handles that match the interface
UUID and the major and minor interface version numbers found in the IfSpec argument.

A server application can unexport the specified interface and objects in a single call to
RpcNsBindingUnexport, or it can unexport them separately.

If RpcNsBindingUnexport does not find any binding handles for the specified interface, the routine
returns an RPC_S_INTERFACE_NOT_FOUND status code and does not unexport the object UUIDs, if
any were specified.

If one or more binding handles for the specified interface are found and unexported without error,
RpcNsBindingUnexport unexports the specified object UUIDs, if any.

If any of the specified object UUIDs were not found, RpcNsBindingUnexport returns the
RPC_S_NOT_ALL_OBJS_UNEXPORTED status code.

In addition to calling RpcNsBindingUnexport, a server should also call the RpcEpUnregister routine

to unregister the endpoints the server previously registered with the local endpoint-map database.

A server entry must have at least one binding handle to exist. As a result, exporting only UUIDs to a
non-existing entry has no effect, and unexporting all binding handles deletes the entry.

Use RpcNsBindingUnexport judiciously. To keep an automatically activated server available, you
must leave its binding handles in the name-service database between the times when server
processes are activated. Therefore, reserve this routine for when you expect a server to be unavailable
for an extended time ¾ for example, when it is being permanently removed from service.

Note Name-service databases are designed to be relatively stable. In replicated name-service
databases, frequent use of the RpcNsBindingExport and RpcNsBindingUnexport routines causes
the name-service database to repeatedly remove and replace the same entry and can cause
performance problems.

Return Values

Value Meaning
RPC_S_OK Success
RPC_S_INVALID_VERS_OPTION Invalid version option
RPC_S_NOTHING_TO_UNEXPORT Nothing to unexport
RPC_S_INVALID_NAME_SYNTAX Invalid name syntax
RPC_S_UNSUPPORTED_NAME_SYNTAX Unsupported name syntax
RPC_S_INCOMPLETE_NAME Incomplete name
RPC_S_ENTRY_NOT_FOUND Name-service entry not

found
RPC_S_NAME_SERVICE_UNAVAILABLE Name service unavailable
RPC_S_INTERFACE_NOT_FOUND Interface not found
RPC_S_NOT_ALL_OBJS_UNEXPORTED Not all objects unexported

See Also

RpcEpUnregister, RpcNsBindingExport

 RpcNsEntryExpandName QuickInfo

The RpcNsEntryExpandName function expands a name-service entry name.

#include <rpc.h>
RPC_STATUS RPC_ENTRY
RpcNsEntryExpandName(

unsigned long EntryNameSyntax,
unsigned char * EntryName,
unsigned char * * ExpandedName);

Parameters

EntryNameSyntax
Specifies an integer value that indicates the syntax of the next argument, EntryName.
To use the syntax specified in the registry value HKEY_LOCAL_MACHINE\Software\Microsoft\Rpc\
NameService\
DefaultSyntax, provide a value of RPC_C_NS_SYNTAX_DEFAULT.

EntryName
Points to the entry name to expand.

ExpandedName
Returns a pointer to a pointer to the expanded version of EntryName.

Remarks

Note This DCE function is not supported by the Microsoft Locator version 1.0.

An application calls the RpcNsEntryExpandName routine to obtain a fully expanded entry name.

The RPC run-time library allocates memory for the returned ExpandedName argument. The application
is responsible for calling the RpcStringFree routine for that returned argument string.

The returned expanded entry name accounts for local name translations and for differences in locally
defined naming schemas.

Return Values

Value Meaning
RPC_S_OK Success
RPC_S_INCOMPLETE_NAME Incomplete name

See Also

RpcStringFree

 RpcNsEntryObjectInqBegin QuickInfo

The RpcNsEntryObjectInqBegin function creates an inquiry context for a name-service database
entry's objects.

#include <rpc.h>
RPC_STATUS RPC_ENTRY
RpcNsEntryObjectInqBegin(

unsigned long EntryNameSyntax,
unsigned char * EntryName,
RPC_NS_HANDLE * InquiryContext);

Parameters

EntryNameSyntax
Specifies an integer value that indicates the syntax to use in the next argument, EntryName.
To use the syntax specified in the registry value HKEY_LOCAL_MACHINE\Software\Microsoft\Rpc\
NameService\
DefaultSyntax, provide a value of RPC_C_NS_SYNTAX_DEFAULT.

EntryName
Points to the name-service database entry name for which object UUIDs are to be viewed.

InquiryContext
Returns a pointer to a name-service handle for use with the RpcNsEntryObjectInqNext and
RpcNsEntryObjectInqDone routines.

Remarks

The RpcNsEntryObjectInqBegin routine creates an inquiry context for viewing the object UUIDs
exported to EntryName.

Before calling the RpcNsEntryObjectInqNext routine, the application must first call
RpcNsEntryObjectInqBegin to create an inquiry context.

When finished viewing the object UUIDs, the application calls the RpcNsEntryObjectInqDone routine
to delete the inquiry context.

Return Values

Value Meaning
RPC_S_OK Success
RPC_S_INVALID_NAME_SYNTAX Invalid name syntax
RPC_S_UNSUPPORTED_NAME_SYNTAX Unsupported name syntax
RPC_S_INCOMPLETE_NAME Incomplete name
RPC_S_ENTRY_NOT_FOUND Name-service entry not

found
RPC_S_NAME_SERVICE_UNAVAILABLE Name service unavailable

See Also

RpcNsBindingExport, RpcNsEntryObjectInqDone, RpcNsEntryObjectInqNext

 RpcNsEntryObjectInqDone QuickInfo

The RpcNsEntryObjectInqDone function deletes the inquiry context for a name-service database
entry's objects.

#include <rpc.h>
RPC_STATUS RPC_ENTRY
RpcNsEntryObjectInqDone(

RPC_NS_HANDLE * InquiryContext);

Parameter

InquiryContext
Points to a name-service handle specifying the object UUIDs exported to the EntryName argument
specified in the RpcNsEntryObjectInqBegin routine.
An argument value of NULL is returned.

Remarks

The RpcNsEntryObjectInqDone routine frees an inquiry context created by calling the
RpcNsEntryObjectInqBegin routine.

An application calls RpcNsEntryObjectInqDone after viewing exported object UUIDs using the
RpcNsEntryObjectInqNext routine.

Return Values

Value Meaning
RPC_S_OK Success

See Also

RpcNsEntryObjectInqBegin, RpcNsEntryObjectInqNext

 RpcNsEntryObjectInqNext QuickInfo

The RpcNsEntryObjectInqNext function returns one object at a time from a name-service database
entry.

#include <rpc.h>
RPC_STATUS RPC_ENTRY
RpcNsEntryObjectInqNext(

RPC_NS_HANDLE InquiryContext,
UUID * ObjUuid);

Parameters

InquiryContext
Specifies a name-service handle that indicates the object UUIDs for a name-service database entry.

ObjUuid
Returns a pointer to an exported object UUID.

Remarks

The RpcNsEntryObjectInqNext routine returns one of the object UUIDs exported to the name-service
database entry specified by the EntryName argument in the RpcNsEntryObjectInqBegin routine.

An application can view all of the exported object UUIDs by repeatedly calling the
RpcNsEntryObjectInqNext routine. When all the object UUIDs have been viewed, this routine returns
an RPC_S_NO_MORE_MEMBERS status code. The returned object UUIDs are unordered.

The application supplies the memory for the object UUID returned in the ObjUuid argument.

After viewing the object UUIDs, the application must call the RpcNsEntryObjectInqDone routine to
release the inquiry context.

The order in which object UUIDs are returned can be different for each viewing of an entry. This means
that the order in which object UUIDs are returned to an application can be different each time the
application is run.

Return Values

Value Meaning
RPC_S_OK Success
RPC_S_NO_MORE_MEMBERS No more members
RPC_S_INCOMPLETE_NAME Incomplete name
RPC_S_ENTRY_NOT_FOUND Name-service entry not found
RPC_S_NAME_SERVICE_UNAVAILAB
LE

Name-service unavailable

See Also

RpcNsBindingExport, RpcNsEntryObjectInqBegin, RpcNsEntryObjectInqDone

 RpcNsGroupDelete QuickInfo#include <rpc.h>
RPC_STATUS RPC_ENTRY
RpcNsGroupDelete(

unsigned long GroupNameSyntax,
unsigned char * GroupName);

The RpcNsGroupDelete function deletes a group attribute.

Parameters

GroupNameSyntax
Specifies an integer value that indicates the syntax of the next parameter, GroupName.
To use the syntax specified in the registry value HKEY_LOCAL_MACHINE\Software\Microsoft\Rpc\
NameService\
DefaultSyntax, provide a value of RPC_C_NS_SYNTAX_DEFAULT.

GroupName
Points to the name of the RPC group to delete.

Remarks

Note This DCE function is not supported by the Microsoft Locator.

The RpcNsGroupDelete routine deletes the group attribute from the specified name-service database
entry.

Neither the specified name-service database entry nor the group members are deleted.

Return Values

Value Meaning
RPC_S_OK Success
RPC_S_INVALID_NAME_SYNTAX Invalid name syntax
RPC_S_UNSUPPORTED_NAME_SYNTAX Unsupported name syntax
RPC_S_INCOMPLETE_NAME Incomplete name
RPC_S_ENTRY_NOT_FOUND Name-service entry not

found
RPC_S_NAME_SERVICE_UNAVAILABLE Name service unavailable

See Also

RpcNsGroupMbrAdd, RpcNsGroupMbrRemove

 RpcNsGroupMbrAdd QuickInfo#include <rpc.h>
RPC_STATUS RPC_ENTRY
RpcNsGroupMbrAdd(

unsigned long GroupNameSyntax,
unsigned char * GroupName,
unsigned long MemberNameSyntax,
unsigned char * MemberName);

The RpcNsGroupMbrAdd function adds an entry name to a group. If necessary, it creates the entry.

Parameters

GroupNameSyntax
Specifies an integer value that indicates the syntax of the next argument, GroupName.
To use the syntax specified in the registry value HKEY_LOCAL_MACHINE\Software\Microsoft\Rpc\
NameService\
DefaultSyntax, provide a value of RPC_C_NS_SYNTAX_DEFAULT.

GroupName
Points to the name of the RPC group to receive a new member.

MemberNameSyntax
Specifies an integer value that indicates the syntax to use in the MemberName argument.
To use the syntax specified in the registry value HKEY_LOCAL_MACHINE\Software\Microsoft\Rpc\
NameService\
DefaultSyntax, provide a value of RPC_C_NS_SYNTAX_DEFAULT.

MemberName
Points to the name of the new RPC group member.

Remarks

Note This DCE function is not supported by the Microsoft Locator.

The RpcNsGroupMbrAdd adds a name-service database entry name as a member to the RPC group
attribute.

If the GroupName entry does not exist, RpcNsGroupMbrAdd tries to create the entry with a group
attribute and adds the group member specified by the MemberName argument. In this case, the
application must have the privilege to create the entry. Otherwise, a management application with the
necessary privilege should create the entry by calling the RpcNsMgmtEntryCreate routine before the
application is run.

Return Values

Value Meaning
RPC_S_OK Success
RPC_S_INVALID_NAME_SYNTAX Invalid name syntax
RPC_S_UNSUPPORTED_NAME_SYNTAX Unsupported name syntax
RPC_S_INCOMPLETE_NAME Incomplete name
RPC_S_NAME_SERVICE_UNAVAILABLE Name service unavailable

See Also

RpcNsGroupMbrRemove, RpcNsMgmtEntryCreate

 RpcNsGroupMbrInqBegin QuickInfo#include <rpc.h>
RPC_STATUS RPC_ENTRY
RpcNsGroupMbrInqBegin(

unsigned long GroupNameSyntax,
unsigned char * GroupName,
unsigned long MemberNameSyntax,
RPC_NS_HANDLE * InquiryContext);

The RpcNsGroupMbrInqBegin function creates an inquiry context for viewing group members.

Parameters

GroupNameSyntax
Specifies an integer value that indicates the syntax of the next argument, GroupName.
To use the syntax specified in the registry value HKEY_LOCAL_MACHINE\Software\Microsoft\Rpc\
NameService\
DefaultSyntax, provide a value of RPC_C_NS_SYNTAX_DEFAULT.

GroupName
Points to the name of the RPC group to view.

MemberNameSyntax
Specifies an integer value that indicates the syntax of the return argument, MemberName, in the
RpcNsGroupMbrInqNext routine.
To use the syntax specified in the registry value HKEY_LOCAL_MACHINE\Software\Microsoft\Rpc\
NameService\
DefaultSyntax, provide a value of RPC_C_NS_SYNTAX_DEFAULT.

InquiryContext
Returns a pointer to a name-service handle for use with the RpcNsGroupMbrInqNext and
RpcNsGroupMbrInqDone routines.

Remarks

Note This DCE function is not supported by the Microsoft Locator.

The RpcNsGroupMbrInqBegin routine creates an inquiry context for viewing the members of an RPC
group.

Before calling the RpcNsGroupMbrInqNext routine, the application must first call
RpcNsGroupMbrInqBegin to create an inquiry context.

When finished viewing the RPC group members, the application calls the RpcNsGroupMbrInqDone
routine to delete the inquiry context.

Return Values

Value Meaning
RPC_S_OK Success
RPC_S_INVALID_NAME_SYNTAX Invalid name syntax
RPC_S_UNSUPPORTED_NAME_SYNTAX Unsupported name syntax
RPC_S_INCOMPLETE_NAME Incomplete name
RPC_S_ENTRY_NOT_FOUND Name-service entry not

found
RPC_S_NAME_SERVICE_UNAVAILABLE Name service unavailable

See Also

RpcNsGroupMbrAdd, RpcNsGroupMbrInqDone, RpcNsGroupMbrInqNext

 RpcNsGroupMbrInqDone QuickInfo#include <rpc.h>
RPC_STATUS RPC_ENTRY
RpcNsGroupMbrInqDone(

RPC_NS_HANDLE * InquiryContext);

The RpcNsGroupMbrInqDone function deletes the inquiry context for a group.

Parameter

InquiryContext
Points to a name-service handle to free. An argument value of NULL is returned.

Remarks

Note This DCE function is not supported by the Microsoft Locator.

The RpcNsGroupMbrInqDone routine frees an inquiry context created by calling the
RpcNsGroupMbrInqBegin routine.

An application calls RpcNsGroupMbrInqDone after viewing RPC group members using the
RpcNsGroupMbrInqNext routine.

Return Values

Value Meaning
RPC_S_OK Success
RPC_S_INVALID_NS_HANDLE Invalid name-service handle

See Also

RpcNsGroupMbrInqBegin, RpcNsGroupMbrInqNext

 RpcNsGroupMbrInqNext QuickInfo#include <rpc.h>
RPC_STATUS RPC_ENTRY
RpcNsGroupMbrInqNext(

RPC_NS_HANDLE InquiryContext,
unsigned char * * MemberName);

The RpcNsGroupMbrInqNext function returns one entry name from a group at a time.

Parameters

InquiryContext
Specifies a name-service handle.

MemberName
Returns a pointer to a pointer to an RPC group member name.
The syntax of the returned name was specified by the MemberNameSyntax argument in the
RpcNsGroupMbrInqBegin routine.
Specify a null value to prevent RpcNsGroupMbrInqNext from returning the MemberName
argument. In this case, the application does not call the RpcStringFree routine.

Remarks

Note This DCE function is not supported by the Microsoft Locator.

The RpcNsGroupMbrInqNext routine returns one member of the RPC group specified by the
GroupName argument in the RpcNsGroupMbrInqBegin routine.

An application can view all the members of an RPC group set by repeatedly calling the
RpcNsGroupMbrInqNext routine. When all the group members have been viewed, this routine returns
an RPC_S_NO_MORE_MEMBERS status code. The returned group members are unordered.

On each call to RpcNsGroupMbrInqNext that returns a member name, the RPC run-time library
allocates memory for the returned MemberName. The application is responsible for calling the
RpcStringFree routine for each returned MemberName string.

After viewing the RPC group's members, the application must call the RpcNsGroupMbrInqDone
routine to release the inquiry context.

The order in which group members are returned can be different for each viewing of a group. This
means that the order in which group members are returned to an application can be different each time
the application is run.

Return Values

Value Meaning
RPC_S_OK Success
RPC_S_INVALID_NS_HANDLE Invalid name-service handle
RPC_S_NO_MORE_MEMBERS No more members
RPC_S_NAME_SERVICE_UNAVAILABLE Name service unavailable

See Also

RpcNsGroupMbrInqBegin, RpcNsGroupMbrInqDone, RpcStringFree

 RpcNsGroupMbrRemove QuickInfo#include <rpc.h>
RPC_STATUS RPC_ENTRY
RpcNsGroupMbrRemove(

unsigned long GroupNameSyntax,
unsigned char * GroupName,
unsigned long MemberNameSyntax,
unsigned char * MemberName);

The RpcNsGroupMbrRemove function removes an entry name from a group.

Parameters

GroupNameSyntax
Specifies an integer value that indicates the syntax of the next argument, GroupName.
To use the syntax specified in the registry value HKEY_LOCAL_MACHINE\Software\Microsoft\Rpc\
NameService\
DefaultSyntax, provide a value of RPC_C_NS_SYNTAX_DEFAULT.

GroupName
Points to the name of the RPC group from which to remove the member name.

MemberNameSyntax
Specifies an integer value that indicates the syntax to use in the MemberName argument.
To use the syntax specified in the registry value HKEY_LOCAL_MACHINE\Software\Microsoft\Rpc\
NameService\
DefaultSyntax, provide a value of RPC_C_NS_SYNTAX_DEFAULT.

MemberName
Points to the name of the member to remove from the RPC group attribute in the entry GroupName.

Remarks

Note This DCE function is not supported by the Microsoft Locator.

The RpcNsGroupMbrRemove routine removes a member from the RPC group attribute in the
GroupName argument.

Return Values

Value Meaning
RPC_S_OK Success
RPC_S_INVALID_NAME_SYNTAX Invalid name syntax
RPC_S_UNSUPPORTED_NAME_SYNTAX Unsupported name syntax
RPC_S_INCOMPLETE_NAME Incomplete name
RPC_S_ENTRY_NOT_FOUND Name-service entry not

found
RPC_S_NAME_SERVICE_UNAVAILABLE Name service unavailable
RPC_S_GROUP_MEMBER_NOT_FOUND Group member not found

See Also

RpcNsGroupMbrAdd

 RpcNsMgmtBindingUnexport QuickInfo

The RpcNsMgmtBindingUnexport function removes multiple binding handles and objects from an
entry in the name-service database.

#include <rpc.h>
RPC_STATUS RPC_ENTRY
RpcNsMgmtBindingUnexport(

unsigned long EntryNameSyntax,
unsigned char * EntryName,
RPC_IF_ID * IfId,
unsigned long VersOption,
UUID_VECTOR * ObjectUuidVec);

Parameters

EntryNameSyntax
Specifies an integer value that indicates the syntax of the next argument, EntryName.
To use the syntax specified in the registry value HKEY_LOCAL_MACHINE\Software\Microsoft\Rpc\
NameService\
DefaultSyntax, provide a value of RPC_C_NS_SYNTAX_DEFAULT.

EntryName
Points to the name of the entry from which to remove binding handles and object UUIDs.

IfId
Points to an interface identification. A null argument value indicates not to unexport any binding
handles (only object UUIDs are to be unexported).

VersOption
Specifies how the RpcNsMgmtBindingUnexport routine uses the VersMajor and VersMinor fields
of the IfId argument.
The following table describes valid values for the VersOption argument:
VersOption values Description
RPC_C_VERS_ALL Unexports all bindings for the interface

UUID in IfId, regardless of the version
numbers. For this value, specify 0 for both
the major and minor versions in IfId.

RPC_C_VERS_IF_ID Unexports the bindings for the compatible
interface UUID in IfId with the same major
version and with a minor version greater
than or equal to the minor version in IfId.

RPC_C_VERS_EXACT Unexports the bindings for the interface
UUID in IfId with the same major and
minor versions as in IfId.

RPC_C_VERS_MAJOR_O
NLY

Unexports the bindings for the interface
UUID in IfId with the same major version
as in IfId (ignores the minor version). For
this value, specify 0 for the minor version
in IfId.

RPC_C_VERS_UPTO Unexports the bindings that offer a version
of the specified interface UUID less than
or equal to the specified major and minor
version. (For example, if the IfId contained
V2.0 and the name-service database entry
contained binding handles with the

versions V1.3, V2.0, and V2.1, the
RpcNsMgmtBindingUnexport routine
unexports the binding handles with V1.3
and V2.0.)

ObjectUuidVec
Points to a vector of object UUIDs that the server no longer wants to offer. The application
constructs this vector. A null argument value indicates there are no object UUIDs to unexport (only
binding handles are to be unexported).

Remarks

The RpcNsMgmtBindingUnexport routine allows a management application to remove one of the
following from a name-service database entry:

· All the binding handles for a specified interface UUID, qualified by the interface version numbers
(major and minor)

· One or more object UUIDs of resources
· Both binding handles and object UUIDs of resources

A management application can unexport interfaces and objects in a single call to
RpcNsMgmtBindingUnexport, or it can unexport them separately.

If RpcNsMgmtBindingUnexport does not find any binding handles for the specified interface, the
routine returns an RPC_S_INTERFACE_NOT_FOUND status code and does not unexport the object
UUIDs, if any were specified.

If one or more binding handles for the specified interface are found and unexported without error,
RpcNsMgmtBindingUnexport unexports the specified object UUIDs, if any.

If any of the specified object UUIDs were not found, RpcNsMgmtBindingUnexport returns the
RPC_S_NOT_ALL_OBJS_UNEXPORTED status code.

In addition to calling RpcNsMgmtBindingUnexport, a management application should also call the
RpcMgmtEpUnregister routine to unregister the servers that have registered with the endpoint-map
database.

Note Name-service databases are designed to be relatively stable. In replicated name services,
frequent use of the RpcNsBindingExport and RpcNsBindingUnexport routines causes the name
service to repeatedly remove and replace the same entry and can cause performance problems.

Return Values

Value Meaning
RPC_S_OK Success
RPC_S_INVALID_VERS_OPTION Invalid version option
RPC_S_NOTHING_TO_UNEXPORT Nothing to unexport
RPC_S_INVALID_NAME_SYNTAX Invalid name syntax
RPC_S_UNSUPPORTED_NAME_SYNTAX Unsupported name syntax
RPC_S_INCOMPLETE_NAME Incomplete name
RPC_S_ENTRY_NOT_FOUND Name-service entry not

found
RPC_S_NAME_SERVICE_UNAVAILABLE Name service unavailable
RPC_S_INTERFACE_NOT_FOUND Interface not found
RPC_S_NOT_ALL_OBJS_UNEXPORTED Not all objects unexported

See Also

RpcMgmtEpUnregister, RpcNsBindingExport, RpcNsBindingUnexport

 RpcNsMgmtEntryCreate QuickInfo

The RpcNsMgmtEntryCreate function creates a name-service database entry.

#include <rpc.h>
RPC_STATUS RPC_ENTRY
RpcNsMgmtEntryCreate(

unsigned long EntryNameSyntax,
unsigned char * EntryName);

Parameters

EntryNameSyntax
Specifies an integer value that indicates the syntax of the next argument, EntryName.
To use the syntax specified in the registry value HKEY_LOCAL_MACHINE\Software\Microsoft\Rpc\
NameService\
DefaultSyntax, provide a value of RPC_C_NS_SYNTAX_DEFAULT.

EntryName
Points to the name of the entry to create.

Remarks

Note This DCE function is not supported by the Microsoft Locator.

The RpcNsMgmtEntryCreate routine creates an entry in the name-service database.

A management application can call RpcNsMgmtEntryCreate to create a name-service database entry
for use by another application that does not itself have the necessary name-service database privileges
to create an entry.

Return Values

Value Meaning
RPC_S_OK Success
RPC_S_INVALID_NAME_SYNTAX Invalid name syntax
RPC_S_UNSUPPORTED_NAME_SYNTAX Unsupported name syntax
RPC_S_INCOMPLETE_NAME Incomplete name
RPC_S_ENTRY_ALREADY_EXISTS Name-service entry already

exists
RPC_S_NAME_SERVICE_UNAVAILABLE Name service unavailable

See Also

RpcNsMgmtEntryDelete

 RpcNsMgmtEntryDelete QuickInfo

The RpcNsMgmtEntryDelete function deletes a name-service database entry.

#include <rpc.h>
RPC_STATUS RPC_ENTRY
RpcNsMgmtEntryDelete(

unsigned long EntryNameSyntax,
unsigned char * EntryName);

Parameters

EntryNameSyntax
Specifies an integer value that indicates the syntax of the next argument, EntryName.
To use the syntax specified in the registry value HKEY_LOCAL_MACHINE\Software\Microsoft\Rpc\
NameService\
DefaultSyntax, provide a value of RPC_C_NS_SYNTAX_DEFAULT.

EntryName
Points to the name of the entry to delete.

Remarks

The RpcNsMgmtEntryDelete routine removes an entry from the name-service database.

Management applications use this routine only when an entry is no longer needed ¾ for example,
when a server is being permanently removed from service.

Because name-service databases are designed to be relatively stable, the frequent use of the
RpcNsMgmtEntryDelete routine in client or server applications can result in performance problems.
Creating and deleting entries in client or server applications causes the name-service database to
repeatedly remove and replace the same entry. This can lead to performance problems in replicated
name-service databases.

Return Values

Value Meaning
RPC_S_OK Success
RPC_S_INVALID_NAME_SYNTAX Invalid name syntax
RPC_S_UNSUPPORTED_NAME_SYNTAX Unsupported name syntax
RPC_S_INCOMPLETE_NAME Incomplete name
RPC_S_ENTRY_NOT_FOUND Name-service entry not

found
RPC_S_NAME_SERVICE_UNAVAILABLE Name service unavailable
RPC_S_NOT_RPC_ENTRY Not an RPC entry

See Also

RpcNsMgmtEntryCreate

 RpcNsMgmtEntryInqIfIds QuickInfo

The RpcNsMgmtEntryInqIfIds function returns the list of interfaces exported to a name-service
database entry.

#include <rpc.h>
RPC_STATUS RPC_ENTRY
RpcNsMgmtEntryInqIfIds(

unsigned long EntryNameSyntax,
unsigned char * EntryName,
RPC_IF_ID_VECTOR * * IfIdVec);

Parameters

EntryNameSyntax
Specifies an integer value that indicates the syntax of the next argument, EntryName.
To use the syntax specified in the registry value HKEY_LOCAL_MACHINE\Software\Microsoft\Rpc\
NameService\
DefaultSyntax, provide a value of RPC_C_NS_SYNTAX_DEFAULT.

EntryName
Points to the name-service database entry name for which an interface identification vector is
returned.

IfIdVec
Returns a pointer to a pointer to the interface-identification vector.

Remarks

The RpcNsMgmtEntryInqIfIds routine returns an interface-identification vector containing the
interfaces of binding handles exported by a server to EntryName.

RpcNsMgmtEntryInqIfIds uses an expiration age of 0, causing an immediate update of the local copy
of name-service data.

The calling application is responsible for calling the RpcIfIdVectorFree routine to release memory
used by the vector.

Return Values

Value Meaning
RPC_S_OK Success
RPC_S_INVALID_NAME_SYNTAX Invalid name syntax
RPC_S_UNSUPPORTED_NAME_SYNTAX Unsupported name syntax
RPC_S_INCOMPLETE_NAME Incomplete name
RPC_S_ENTRY_NOT_FOUND Name-service entry not

found
RPC_S_NAME_SERVICE_UNAVAILABLE Name service unavailable

See Also

RpcIfIdVectorFree, RpcIfInqId, RpcNsBindingExport

 RpcNsMgmtHandleSetExpAge QuickInfo

The RpcNsMgmtHandleSetExpAge function sets the expiration age of a name-service handle for
local copies of name-service data.

#include <rpc.h>
RPC_STATUS RPC_ENTRY
RpcNsMgmtHandleSetExpAge(

RPC_NS_HANDLE NsHandle,
unsigned long ExpirationAge);

Parameters

NsHandle
Specifies a name-service handle that an expiration age is set for. A name-service handle is returned
from a name-service "begin" operation.

ExpirationAge
Specifies an integer value in seconds that sets the expiration age of local name-service data read by
all "next" routines using the specified NsHandle argument.
An expiration age of 0 causes an immediate update of the local name-service data.

Remarks

The RpcNsMgmtHandleSetExpAge routine sets a handle-expiration age for a specified name-service
handle (NsHandle). The expiration age is the amount of time that a local copy of data from a name-
service attribute can exist before a request from the application for the attribute requires updating the
local copy. When an application begins running, the RPC run-time library specifies a random value of
two hours as the default expiration age. The default is global to the application. A handle-expiration age
applies only to a specific name-service handle and temporarily overrides the current global expiration
age.

Normally, you should avoid using RpcNsMgmtHandleSetExpAge; instead, you should rely on the
application's global expiration age.

A handle-expiration age is used exclusively by name-service "next" operations (which read data from
name-service attributes). A "next" operation normally starts by looking for a local copy of the attribute
data being requested by an application. In the absence of a local copy, the "next" operation creates one
with fresh attribute data from the name-service database. If a local copy already exists, the operation
compares its actual age to the expiration age being used by the application (which in this case is the
expiration age set for the name-service handle). If the actual age exceeds the handle-expiration age,
the operation automatically tries to update the local copy with fresh attribute data. If updating is
impossible, the old local data remains in place and the "next" operation fails, returning the
RPC_S_NAME_SERVICE_UNAVAILABLE status code.

The scope of a handle-expiration age is a single series of "next" operations. The
RpcNsMgmtHandleSetExpAge routine operates within the following context:

· A "begin" operation creates a name-service handle.
· A call to the RpcNsMgmtHandleSetExpAge routine creates an expiration age for the handle.
· A series of "next" operations for the name-service handle uses the handle expiration age.
· A "done" operation for the name-service handle deletes both the handle and its expiration age.

Setting the handle-expiration age to a small value causes the name-service "next" operations to
frequently update local data for any name-service attribute requested by your application. For example,
setting the expiration age to 0 forces the "next" operation to update local data for the name-service
attribute requested by your application. Therefore, setting a small handle-expiration age can create
performance problems for your application. Furthermore, if your application is using a remote name-

service server, a small expiration age can adversely affect network performance for all applications.

Limit the use of RpcNsMgmtHandleSetExpAge to the following situations:

· When you must always get accurate name-service data.
For example, during management operations to update a profile, you may need to always see the
profile's current contents. In this case, before beginning to inquire about a profile, your application
should call the RpcNsMgmtHandleSetExpAge routine and specify 0 for the ExpirationAge
argument.

· When a request using the default expiration age has failed, and your application needs to retry the
operation.
For example, a client application using name-service "import" operations should first try to obtain
bindings using the application's default expiration age. However, sometimes the "import-next"
operation returns either no binding handles or an insufficient number of them. In this case, the client
could retry the "import" operation and, after the RpcNsBindingImportBegin call, include a
RpcNsMgmtHandleSetExpAge call and specify 0 for the ExpirationAge argument. When the client
calls the "import-next" routine again, the small handle-expiration age causes the "import-next"
operation to update the local attribute data.

Return Values

Value Meaning
RPC_S_OK Success
RPC_S_NAME_SERVICE_UNAVAILAB
LE

Name service unavailable

See Also

RpcNsBindingImportBegin, RpcNsMgmtInqExpAge, RpcNsMgmtSetExpAge

 RpcNsMgmtInqExpAge QuickInfo

The RpcNsMgmtInqExpAge function returns the global expiration age for local copies of name-
service data.

#include <rpc.h>
RPC_STATUS RPC_ENTRY
RpcNsMgmtInqExpAge(

unsigned long * ExpirationAge);

Parameter

ExpirationAge
Returns a pointer to the default expiration age, in seconds. This value is used by all name-service
"read" operations (that is, all "next" operations).

Remarks

The RpcNsMgmtInqExpAge routine returns the expiration age that the application is using. The
expiration age is the amount of time in seconds that a local copy of data from a name-service attribute
can exist before a request from the application for the attribute requires updating the local copy. When
an application begins running, the RPC run-time library specifies a random value of two hours as the
default expiration age. The default is global to the application.

An expiration age is used by name-service "next" operations (which read data from name-service
attributes). A "next" operation normally starts by looking for a local copy of the attribute data being
requested by an application. In the absence of a local copy, the "next" operation creates one with fresh
attribute data from the name-service database. If a local copy already exists, the operation compares
its actual age to the expiration age being used by the application. If the actual age exceeds the
expiration age, the operation automatically tries to update the local copy with fresh attribute data. If
updating is impossible, the old local data remains in place and the "next" operation fails.

Applications normally should use only the default expiration age. For special cases, however, an
application can substitute a user-supplied global expiration age for the default by calling the
RpcNsMgmtSetExpAge routine. The RpcNsMgmtInqExpAge routine returns the current global
expiration age, whether a default or a user-supplied value.

An application can also override the global expiration age temporarily by calling the
RpcNsMgmtHandleSetExpAge routine.

Return Value

Value Meaning
RPC_S_OK Success

See Also

RpcNsMgmtHandleSetExpAge, RpcNsMgmtSetExpAge

 RpcNsMgmtSetExpAge QuickInfo

The RpcNsMgmtSetExpAge function modifies the application's global expiration age for local copies
of name-service data.

#include <rpc.h>
RPC_STATUS RPC_ENTRY
RpcNsMgmtSetExpAge(

unsigned long ExpirationAge);

Parameter

ExpirationAge
Specifies an integer value in seconds that indicates the default expiration age for local name-service
data. This expiration age is applied to all name-service "read" operations (that is, all "next"
operations).
An expiration age of 0 causes an immediate update of the local name-service data.
To reset the expiration age to an RPC-assigned random value of two hours, specify a value of
RPC_C_NS_DEFAULT_EXP_AGE.

Remarks

The RpcNsMgmtSetExpAge routine modifies the global expiration age of an application. The
expiration age is the amount of time that a local copy of data from a name-service attribute can exist
before a request from the application for the attribute requires updating the local copy. When an
application begins running, the RPC run-time library specifies a random value of between 8 and 12
hours as the default expiration age. The default is global to the application.

Normally, you should avoid using RpcNsMgmtSetExpAge; instead, you should rely on the default
expiration age.

An expiration age is used by name-service "next" operations (which read data from name-service
attributes). A "next" operation normally starts by looking for a local copy of the attribute data being
requested by an application. In the absence of a local copy, the "next" operation creates one with fresh
attribute data from the name-service database. If a local copy already exists, the operation compares
its actual age to the expiration age being used by the application. If the actual age exceeds the
expiration age, the operation automatically tries to update the local copy with fresh attribute data. If
updating is impossible, the old local data remains in place and the "next" operation fails, returning the
RPC_S_NAME_SERVICE_UNAVAILABLE status code.

Setting the expiration age to a small value causes the name-service "next" operations to frequently
update local data for any name-service attribute requested by your application. For example, setting
the expiration age to 0 forces all "next" operations to update local data for the name-service attribute
requested by your application. Therefore, setting small expiration ages can create performance
problems for your application and increase network traffic. Furthermore, if your application is using a
remote name-service server, a small expiration age can adversely affect network performance for all
applications.

Return Values

Value Meaning
RPC_S_OK Success
RPC_S_NAME_SERVICE_UNAVAILAB
LE

Name service unavailable

See Also

RpcNsMgmtHandleSetExpAge

 RpcNsProfileDelete QuickInfo

The RpcNsProfileDelete function deletes a profile attribute.

#include <rpc.h>
RPC_STATUS RPC_ENTRY
RpcNsProfileDelete(

unsigned long ProfileNameSyntax,
unsigned char * ProfileName);

Parameters

ProfileNameSyntax
Specifies an integer value that indicates the syntax of the next argument, ProfileName.
To use the syntax specified in the registry value HKEY_LOCAL_MACHINE\Software\Microsoft\Rpc\
NameService\
DefaultSyntax, provide a value of RPC_C_NS_SYNTAX_DEFAULT.

ProfileName
Points to the name of the profile to delete.

Remarks

Note This DCE function is not supported by the Microsoft Locator.

The RpcNsProfileDelete routine deletes the profile attribute from the specified name-service entry
(ProfileName).

Neither ProfileName nor the entry names included as members in each profile element are deleted.

Use RpcNsProfileDelete cautiously; deleting a profile can have the unwanted effect of breaking a
hierarchy of profiles.

Return Values

Value Meaning
RPC_S_OK Success
RPC_S_INVALID_NAME_SYNTAX Invalid name syntax
RPC_S_UNSUPPORTED_NAME_SYNTAX Unsupported name syntax
RPC_S_INCOMPLETE_NAME Incomplete name
RPC_S_ENTRY_NOT_FOUND Name-service entry not

found
RPC_S_NAME_SERVICE_UNAVAILABLE Name service unavailable

See Also

RpcNsProfileEltAdd, RpcNsProfileEltRemove

 RpcNsProfileEltAdd QuickInfo

The RpcNsProfileEltAdd function adds an element to a profile. If necessary, it creates the entry.

#include <rpc.h>
RPC_STATUS RPC_ENTRY
RpcNsProfileEltAdd(

unsigned long ProfileNameSyntax,
unsigned char * ProfileName,
RPC_IF_ID * IfId,
unsigned long MemberNameSyntax,
unsigned char * MemberName,
unsigned long Priority,
unsigned char * Annotation);

Parameters

ProfileNameSyntax
Specifies an integer value that indicates the syntax of the next argument, ProfileName.
To use the syntax specified in the registry value HKEY_LOCAL_MACHINE\Software\Microsoft\Rpc\
NameService\
DefaultSyntax, provide a value of RPC_C_NS_SYNTAX_DEFAULT.

ProfileName
Points to the name of the profile to receive a new element.

IfId
Points to the interface identification of the new profile element. To add or replace the default profile
element, specify a null value.

MemberNameSyntax
Specifies an integer value that indicates the syntax of the next argument, MemberName.

To use the syntax specified in the registry value HKEY_LOCAL_MACHINE\Software\Microsoft\Rpc\
NameService\
DefaultSyntax, provide a value of RPC_C_NS_SYNTAX_DEFAULT.
MemberName

Points to a name-service entry name to include in the new profile element.
Priority

Specifies an integer value (0 through 7) that indicates the relative priority for using the new profile
element during the "import" and "lookup" operations. A value of 0 is the highest priority; a value of 7
is the lowest priority.
When adding a default profile member, use a value of 0.

Annotation
Points to an annotation string stored as part of the new profile element. The string can be up to 17
characters long. Specify a null value or a null-terminated string if there is no annotation string.
The string is used by applications for informational purposes only. For example, an application can
use this string to store the interface-name string specified in the IDL file.
RPC does not use the annotation string during "lookup" or "import" operations or for enumerating
profile elements.

Remarks

Note This DCE function is not supported by the Microsoft Locator.

The RpcNsProfileEltAdd routine adds an element to the profile attribute of the
name-service entry specified by the ProfileName argument.

If the ProfileName entry does not exist, RpcNsProfileEltAdd tries to create the entry with a profile
attribute and adds the profile element specified by the IfId, MemberName, Priority, and Annotation
arguments. In this case, the application must have the privilege to create the entry. Otherwise, a
management application with the necessary privileges should create the entry by calling the
RpcNsMgmtEntryCreate routine before the application is run.

If an element with the specified member name and interface identification is already in the profile,
RpcNsProfileEltAdd updates the element's priority and annotation string using the values provided in
the Priority and Annotation arguments.

Return Values

Value Meaning
RPC_S_OK Success
RPC_S_INVALID_NAME_SYNTAX Invalid name syntax
RPC_S_UNSUPPORTED_NAME_SYNTAX Unsupported name syntax
RPC_S_INCOMPLETE_NAME Incomplete name
RPC_S_NAME_SERVICE_UNAVAILABLE Name service unavailable

See Also

RpcIfInqId, RpcNsMgmtEntryCreate, RpcNsProfileEltRemove

 RpcNsProfileEltInqBegin QuickInfo

The RpcNsProfileEltInqBegin function creates an inquiry context for viewing the elements in a profile.

#include <rpc.h>
RPC_STATUS RPC_ENTRY
RpcNsProfileEltInqBegin(

unsigned long ProfileNameSyntax,
unsigned char * ProfileName,
unsigned long InquiryType,
RPC_IF_ID * IfId,
unsigned long VersOption,
unsigned long MemberNameSyntax,
unsigned char * MemberName,
RPC_NS_HANDLE * InquiryContext);

Parameters

ProfileNameSyntax
Specifies an integer value that indicates the syntax of the next argument, ProfileName.
To use the syntax specified in the registry value HKEY_LOCAL_MACHINE\Software\Microsoft\Rpc\
NameService\
DefaultSyntax, provide a value of RPC_C_NS_SYNTAX_DEFAULT.

ProfileName
Points to the name of the profile to view.

InquiryType
Specifies an integer value indicating the type of inquiry to perform on the profile. The following table
lists valid inquiry types:
Inquiry type Description
RPC_C_PROFILE_DEFAULT_ELT Searches the profile for the default

profile element, if any. The IfId,
VersOption, and MemberName
arguments are ignored.

RPC_C_PROFILE_ALL_ELTS Returns every element from the profile.
The IfId, VersOption, and MemberName
arguments are ignored.

RPC_C_PROFILE_MATCH_BY_I
F

Searches the profile for the elements
that contain the interface identification
specified by the IfId and VersOption
values. The MemberName argument is
ignored.

RPC_C_PROFILE_MATCH_
BY_MBR

Searches the profile for the elements
that contain the member name specified
by the MemberName argument. The IfId
and VersOption arguments are ignored.

RPC_C_PROFILE_MATCH_
BY_BOTH

Searches the profile for the elements
that contain the interface identification
and member identified by the IfId,
VersOption, and MemberName
arguments.

IfId
Points to the interface identification of the profile elements to be returned by the
RpcNsProfileEltInqNext routine.

The IfId argument is used only when specifying a value of RPC_C_PROFILE_MATCH_BY_IF or
RPC_C_PROFILE_MATCH_BY_BOTH for the InquiryType argument. Otherwise, IfId is ignored and
a null value can be specified.

VersOption
Specifies how the RpcNsProfileEltInqNext routine uses the IfId argument.
The VersOption argument is used only when specifying a value of
RPC_C_PROFILE_MATCH_BY_IF or RPC_C_PROFILE_MATCH_BY_BOTH for the InquiryType
argument. Otherwise, this argument is ignored and a 0 value can be specified.
The following table describes valid values for the VersOption argument.
Values Description
RPC_C_VERS_ALL Returns profile elements that offer the

specified interface UUID, regardless of the
version numbers. For this value, specify 0 for
both the major and minor versions in IfId.

RPC_C_VERS_COMPATIBL
E

Returns profile elements that offer the same
major version of the specified interface UUID
and a minor version greater than or equal to
the minor version of the specified interface
UUID.

RPC_C_VERS_EXACT Returns profile elements that offer the
specified version of the specified interface
UUID.

RPC_C_VERS_MAJOR_ON
LY

Returns profile elements that offer the same
major version of the specified interface UUID
(ignores the minor version). For this value,
specify 0 for the minor version in IfId.

RPC_C_VERS_UPTO Returns profile elements that offer a version of
the specified interface UUID less than or equal
to the specified major and minor version. (For
example, if the IfId contained V2.0 and the
profile contained elements with V1.3, V2.0,
and V2.1, the RpcNsProfileEltInqNext
routine returns the elements with V1.3 and
V2.0.)

MemberNameSyntax
Specifies an integer value that indicates the syntax of the next argument, MemberName, and of the
return argument MemberName in the RpcNsProfileEltInqNext routine.
To use the syntax specified in the registry value HKEY_LOCAL_MACHINE\Software\Microsoft\Rpc\
NameService\
DefaultSyntax, provide a value of RPC_C_NS_SYNTAX_DEFAULT.

MemberName
Points to the member name that the RpcNsProfileEltInqNext routine looks for in profile elements.
The MemberName argument is used only when specifying a value of
RPC_C_PROFILE_MATCH_BY_MBR or RPC_C_PROFILE_MATCH_BY_BOTH for the InquiryType
argument. Otherwise, MemberName is ignored and a null value can be specified.

InquiryContext
Returns a pointer to a name-service handle for use with the RpcNsProfileEltInqNext and
RpcNsProfileEltInqDone routines.

Remarks

Note This DCE function is not supported by the Microsoft Locator.

The RpcNsProfileEltInqBegin routine creates an inquiry context for viewing the elements in a profile.

Using the InquiryType argument, an application specifies which of the following profile elements are to
be returned from calls to the RpcNsProfileEltInqNext routine:

· The default element
· All elements
· Elements with the specified interface identification
· Elements with the specified member name
· Elements with both the specified interface identification and member name

Before calling the RpcNsProfileEltInqNext routine, the application must first call
RpcNsProfileEltInqBegin to create an inquiry context.

When finished viewing the profile elements, the application calls the RpcNsProfileEltInqDone routine
to delete the inquiry context.

Return Values

Value Meaning
RPC_S_OK Success
RPC_S_INVALID_VERS_OPTION Invalid version option
RPC_S_INVALID_NAME_SYNTAX Invalid name syntax
RPC_S_UNSUPPORTED_NAME_SYN
TAX

Unsupported name syntax

RPC_S_INCOMPLETE_NAME Incomplete name
RPC_S_ENTRY_NOT_FOUND Name-service entry not found
RPC_S_NAME_SERVICE_UNAVAILAB
LE

Name service unavailable

See Also

RpcIfInqId, RpcNsProfileEltInqDone, RpcNsProfileEltInqNext

 RpcNsProfileEltInqDone QuickInfo

The RpcNsProfileEltInqDone function deletes the inquiry context for viewing the elements in a profile.

#include <rpc.h>
RPC_STATUS RPC_ENTRY
RpcNsProfileEltInqDone(

RPC_NS_HANDLE * InquiryContext);

Parameter

InquiryContext
Points to a name-service handle to free. The name-service handle InquiryContext points to is
created by calling the RpcNsProfileEltInqBegin routine.
An argument value of NULL is returned.

Remarks

Note This DCE function is not supported by the Microsoft Locator.

The RpcNsProfileEltInqDone routine frees an inquiry context created by calling the
RpcNsProfileEltInqBegin routine.

An application calls RpcNsProfileEltInqDone after viewing profile elements using the
RpcNsProfileEltInqNext routine.

Return Value

Value Meaning
RPC_S_OK Success

See Also

RpcNsProfileEltInqBegin, RpcNsProfileEltInqNext

 RpcNsProfileEltInqNext QuickInfo

The RpcNsProfileEltInqNext function returns one element at a time from a profile.

#include <rpc.h>
RPC_STATUS RPC_ENTRY
RpcNsProfileEltInqNext(

RPC_NS_HANDLE InquiryContext,
RPC_IF_ID * IfId,
unsigned char * * MemberName,
unsigned long * Priority,
unsigned char * * Annotation);

Parameters

InquiryContext
Specifies a name-service handle returned from the RpcNsProfileEltInqBegin routine.

IfId
Returns a pointer to the interface identification of the profile element.

MemberName
Returns a pointer to a pointer to the profile element's member name.
The syntax of the returned name was specified by the MemberNameSyntax argument in the
RpcNsProfileEltInqBegin routine.
Specify a null value to prevent RpcNsProfileEltInqNext from returning the MemberName argument.
In this case, the application does not call the RpcStringFree routine.

Priority
Returns a pointer to the profile-element priority.

Annotation
Returns a pointer to a pointer to the annotation string for the profile element. If there is no annotation
string in the profile element, the string "\0" is returned.
Specify a null value to prevent RpcNsProfileEltInqNext from returning the Annotation argument. In
this case, the application does not need to call the RpcStringFree routine.

Remarks

Note This DCE function is not supported by the Microsoft Locator.

The RpcNsProfileEltInqNext routine returns one element from the profile specified by the
ProfileName argument in the RpcNsProfileEltInqBegin routine. Regardless of the value specified for
the InquiryType argument in RpcNsProfileEltInqBegin, RpcNsProfileEltInqNext returns all the
components (interface identification, member name, priority, annotation string) of a profile element.

An application can view all the selected profile entries by repeatedly calling the
RpcNsProfileEltInqNext routine. When all the elements have been viewed, this routine returns a
RPC_S_NO_MORE_ELEMENTS status code. The returned elements are unordered.

On each call to RpcNsProfileEltInqNext that returns a profile element, the RPC run-time library
allocates memory for the returned member name and annotation string. The application is responsible
for calling the RpcStringFree routine for each returned member name and annotation string.

After viewing the profile's elements, the application must call the RpcNsProfileEltInqDone routine to
release the inquiry context.

Return Values

Value Meaning

RPC_S_OK Success
RPC_S_INCOMPLETE_NAME Incomplete name
RPC_S_NAME_SERVICE_UNAVAILAB
LE

Name service unavailable

RPC_S_NO_MORE_ELEMENTS No more elements

See Also

RpcNsProfileEltInqBegin, RpcNsProfileEltInqDone, RpcStringFree

 RpcNsProfileEltRemove QuickInfo

The RpcNsProfileEltRemove function removes an element from a profile.

#include <rpc.h>
RPC_STATUS RPC_ENTRY
RpcNsProfileEltRemove(

unsigned long ProfileNameSyntax,
unsigned char * ProfileName,
RPC_IF_ID * IfId,
unsigned long MemberNameSyntax,
unsigned char * MemberName);

Parameters

ProfileNameSyntax
Specifies an integer value that indicates the syntax of the next argument, ProfileName.
To use the syntax specified in the registry value HKEY_LOCAL_MACHINE\Software\Microsoft\Rpc\
NameService\
DefaultSyntax, provide a value of RPC_C_NS_SYNTAX_DEFAULT.

ProfileName
Points to the name of the profile from which to remove an element.

IfId
Points to the interface identification of the profile element to be removed.
Specify a null value to remove the default profile member.

MemberNameSyntax
Specifies an integer value that indicates the syntax of the next argument, MemberName.
To use the syntax specified in the registry value HKEY_LOCAL_MACHINE\Software\Microsoft\Rpc\
NameService\
DefaultSyntax, provide a value of RPC_C_NS_SYNTAX_DEFAULT.

MemberName
Points to the name-service entry name in the profile element to remove.

Remarks

Note This DCE function is not supported by the Microsoft Locator.

The RpcNsProfileEltRemove routine removes a profile element from the profile attribute in the
ProfileName entry. The RpcNsProfileEltRemove routine requires an exact match of the MemberName
and IfId arguments in order to remove a profile element.

The entry (MemberName) included as a member in the profile element is not deleted.

Use RpcNsProfileEltRemove cautiously: removing elements from a profile can have the unwanted
effect of breaking a hierarchy of profiles.

Return Values

Value Meaning
RPC_S_OK Success
RPC_S_INVALID_NAME_SYNTAX Invalid name syntax
RPC_S_UNSUPPORTED_NAME_SYNTAX Unsupported name syntax
RPC_S_INCOMPLETE_NAME Incomplete name
RPC_S_ENTRY_NOT_FOUND Name-service entry not

found
RPC_S_NAME_SERVICE_UNAVAILABLE Name service unavailable

See Also

RpcNsProfileDelete, RpcNsProfileEltAdd

 RpcObjectInqType QuickInfo

The RpcObjectInqType function returns the type of an object.

#include <rpc.h>
RPC_STATUS RPC_ENTRY
RpcObjectInqType(

UUID * ObjUuid,
UUID * TypeUuid);

This function is supported by both the 32-bit Windows NT and Windows 95 platforms.

Parameters

ObjUuid
Points to the object UUID whose associated type UUID is returned.

TypeUuid
Returns a pointer to the type UUID of the ObjUuid argument.
Specify an argument value of NULL to prevent the return of a type UUID. In this way, an application
can determine (from the returned status) whether ObjUuid is registered without specifying an output
type UUID variable.

Remarks

A server application calls the RpcObjectInqType routine to obtain the type UUID of an object.

If the object was registered with the RPC run-time library using the RpcObjectSetType routine, the
registered type is returned.

Optionally, an application can privately maintain an object/type registration. In this case, if the
application has provided an object inquiry function (see RpcObjectSetInqFn), the RPC run-time library
uses that function to determine an object's type.

The RpcObjectInqType routine obtains the returned type UUID as described in the following table:

Object UUID
registered

Inquiry function
registered

Return
value

Yes
(RpcObjectSetType)

Ignored The object's registered
type UUID

No Yes
(RpcObjectSetInqFn)

The type UUID
returned from the
inquiry function

No No The nil UUID

Return Values

Value Meaning
RPC_S_OK Success
RPC_S_OBJECT_NOT_FOUND Object not found

See Also

RpcObjectSetInqFn, RpcObjectSetType

 RpcObjectSetInqFn QuickInfo

The RpcObjectSetInqFn function registers an object-inquiry function. A null value turns off a
previously registered object-inquiry function.

#include <rpc.h>
RPC_STATUS RPC_ENTRY
RpcObjectSetInqFn(

RPC_OBJECT_INQ_FN InquiryFn);

This function is supported by both the 32-bit Windows NT and Windows 95 platforms.

Parameter

InquiryFn
Specifies an object-type inquiry function. When an application calls the RpcObjectInqType routine
and the RPC run-time library finds that the specified object is not registered, the run-time library
automatically calls RpcObjectSetInqFn to determine the object's type.

The following C-language definition for RPC_OBJECT_INQ_FN illustrates the prototype for the object-
inquiry function:

typedef void (* RPC_OBJECT_INQ_FN) (
 UUID * ObjectUuid,
 UUID * TypeUuid,
 RPC_STATUS * Status);

The TypeUuid and Status values are returned as the output from the RpcObjectInqType routine.

Remarks

A server application calls the RpcObjectSetInqFn routine to specify a function to determine an object's
type. If an application privately maintains an object/type registration, the specified inquiry function
returns the type UUID of an object.

The RPC run-time library automatically calls the inquiry function when the application calls
RpcObjectInqType and the object of interest was not previously registered with the
RpcObjectSetType routine.

Return Value

Value Meaning
RPC_S_OK Success

See Also

RpcObjectInqType, RpcObjectSetType

 RpcObjectSetType QuickInfo

The RpcObjectSetType function assigns the type of an object.

#include <rpc.h>
RPC_STATUS RPC_ENTRY
RpcObjectSetType(

UUID * ObjUuid,
UUID * TypeUuid);

This function is supported by both the 32-bit Windows NT and Windows 95 platforms.

Parameters

ObjUuid
Points to an object UUID to associate with the type UUID in the TypeUuid argument.

TypeUuid
Points to the type UUID of the ObjUuid argument.
Specify an argument value of NULL or a nil UUID to reset the object type to the default association
of object UUID/nil type UUID.

Remarks

A server application calls the RpcObjectSetType routine to assign a type UUID to an object UUID.

By default, the RPC run-time library automatically assigns all object UUIDs with the nil type UUID. A
server application that contains one implementation of an interface (one manager entry-point vector
[EPV]) does not need to call RpcObjectSetType provided the server registered the interface with the
nil type UUID (see RpcServerRegisterIf).

A server application that contains multiple implementations of an interface (multiple manager EPVs ¾
that is, multiple type UUIDs) calls RpcObjectSetType once for each different object UUID/non-nil type
UUID association the server supports. Associating each object with a type UUID tells the RPC run-time
library which manager EPV (interface implementation) to use when the server receives a remote
procecure call for a non-nil object UUID.

The RPC run-time library allows an application to set the type for an unlimited number of objects.

To remove the association between an object UUID and its type UUID (established by calling
RpcObjectSetType), a server calls RpcObjectSetType again specifying a null value or a nil UUID for
the TypeUuid argument. This resets the object UUID/type UUID association to the default association
of object UUID/nil type UUID.

A server cannot assign a type to the nil object UUID. The RPC run-time library automatically assigns
the nil object UUID a nil type UUID.

Return Values

Value Meaning
RPC_S_OK Success
RPC_S_INVALID_OBJECT Invalid object
RPC_S_ALREADY_REGISTERED Object already registered

See Also

RpcServerRegisterIf

 RpcProtseqVectorFree QuickInfo

The RpcProtseqVectorFree function frees the protocol sequences contained in the vector and the
vector itself.

#include <rpc.h>
RPC_STATUS RPC_ENTRY
RpcProtseqVectorFree(

RPC_PROTSEQ_VECTOR * * ProtSeqVector);

This function is supported by both the 32-bit Windows NT and Windows 95 platforms.

For a list of procotol sequences supported by RPC, see RPC Data Types and Structures.

Parameter

ProtSeqVector
Points to a pointer to a vector of protocol sequences. On return, the pointer is set to NULL.

Note RpcProtseqVectorFree is available for server applications, not client applications, using
Microsoft RPC.

Remarks

A server calls the RpcProtseqVectorFree routine to release the memory used to store a vector of
protocol sequences and the individual protocol sequences. RpcProtseqVectorFree sets the
ProtSeqVector argument to a null value.

A server obtains a vector of protocol sequences by calling the RpcNetworkInqProtseqs routine.

Return Value

Value Meaning
RPC_S_OK Success

See Also

RpcNetworkInqProtseqs

 RpcRaiseException QuickInfo

Use the RpcRaiseException function to raise an exception. The RpcRaiseException function does
not return to the caller.

void RPC_ENTRY
RpcRaiseException (

RPC_STATUS Exception);

Parameter

Exception
Specifies the exception code for the exception. The following exception codes are defined:
Exception code Description
RPC_S_ACCESS_DENIED Access denied
RPC_S_ADDRESS_ERROR An addressing error occurred in

the RPC server
RPC_S_ALREADY_LISTENING Server already listening
RPC_S_ALREADY_REGISTERED Object already registered
RPC_S_BINDING_HAS_NO_AUTH Binding has no authentication
RPC_S_BINDING_INCOMPLETE The binding handle is a required

parameter.
RPC_S_BUFFER_TOO_SMALL Insufficient buffer
RPC_S_CALL_CANCELLED The remote procedure call exceeded

the cancel timeout and was canceled.
RPC_S_CALL_FAILED Call failed
RPC_S_CALL_FAILED_DNE Call failed and did not execute
RPC_S_CALL_IN_PROGRESS Call already in progress for this thread
RPC_S_CANNOT_SUPPORT Operation is not supported
RPC_S_CANT_CREATE_ENDPOINT Cannot create endpoint
RPC_S_COMM_FAILURE Unable to communicate with the server
RPC_S_DUPLICATE_ENDPOINT Endpoint already exists
RPC_S_ENTRY_ALREADY_EXISTS Name-service entry already exists
RPC_S_ENTRY_NOT_FOUND Name-service entry not found
RPC_S_FP_DIV_ZERO A floating-point operation in the server

caused a division by zero
RPC_S_FP_OVERFLOW Floating-point overflow has

occurred in the RPC server
RPC_S_FP_UNDERFLOW Floating-point underflow has occurred

in the server
RPC_S_GROUP_MEMBER_NOT_FOU
ND

Group member not found

RPC_S_INCOMPLETE_NAME Incomplete name
RPC_S_INTERFACE_NOT_FOUND Interface not found
RPC_S_INTERNAL_ERROR Internal error
RPC_S_INVALID_ARG Invalid argument
RPC_S_INVALID_AUTH_IDENTITY Invalid authentication
RPC_S_INVALID_BINDING Invalid binding handle
RPC_S_INVALID_BOUND Invalid bound

RPC_S_INVALID_ENDPOINT_FORMAT Invalid endpoint format
RPC_S_INVALID_INQUIRY_CONTEXT Invalid inquiry context
RPC_S_INVALID_INQUIRY_TYPE Invalid inquiry type
RPC_S_INVALID_LEVEL Invalid parameter
RPC_S_INVALID_NAF_IF Invalid network-address family ID
RPC_S_INVALID_NAME_SYNTAX Invalid name syntax
RPC_S_INVALID_NET_ADDR Invalid network address
RPC_S_INVALID_NETWORK_OPTION
S

Invalid network options

RPC_S_INVALID_OBJECT Invalid object
RPC_S_INVALID_RPC_PROTSEQ Invalid protocol sequence
RPC_S_INVALID_SECURIT_DESC Invalid security descriptor
RPC_S_INVALID_STRING_BINDING Invalid string binding
RPC_S_INVALID_STRING_UUID Invalid string UUID
RPC_S_INVALID_TAG Invalid tag
RPC_S_INVALID_TIMEOUT Invalid timeout value
RPC_S_INVALID_VERS_OPTION Invalid version option
RPC_S_MAX_CALLS_TOO_SMALL Maximum-calls value too small
RPC_S_NAME_SERVICE_UNAVAILAB
LE

Name service unavailable

RPC_S_NO_BINDINGS No bindings
RPC_S_NO_CALL_ACTIVE No remote procedure active in this

thread
RPC_S_NO_CONTEXT_AVAILABLE No security context is available to

perform impersonation
RPC_S_NO_ENDPOINT_FOUND No endpoint found
RPC_S_NO_ENTRY_NAME No entry name for binding
RPC_S_NO_ENV_SETUP No environment variable is set up
RPC_S_NO_INTERFACES No interfaces are registered
RPC_S_NO_INTERFACES_EXPORTE
D

No interfaces have been exported

RPC_S_NO_MORE_BINDINGS No more bindings
RPC_NO_MORE_ELEMENTS There are no more elements.
RPC_S_NO_MORE_MEMBERS No more members
RPC_S_NO_NS_PRIVILEGE No privilege for name-service operation
RPC_S_NO_PRINC_NAME No principal name is registered
RPC_S_NO_PROTSEQS No supported protocol sequences
RPC_S_NO_PROTSEQS_REGISTERE
D

No protocol sequences registered

RPC_S_NOT_ALL_OBJS_UNEXPORT
ED

Not all objects unexported

RPC_S_NOT_CANCELLED The thread is not canceled
RPC_S_NOT_LISTENING Server not listening
RPC_S_NOT_RPC_ERROR The status code requested is not

valid

RPC_S_NOTHING_TO_EXPORT Nothing to export
RPC_S_NOTHING_TO_UNEXPORT Nothing to unexport
RPC_S_OBJECT_NOT_FOUND Object not found
RPC_S_OK Success
RPC_S_OUT_OF_MEMORY Out of memory
RPC_S_OUT_OF_RESOURCES Out of resources
RPC_S_OUT_OF_THREADS Out of threads
RPC_S_PROCNUM_OUT_OF_RANGE Procedure number is out of range
RPC_S_PROTOCOL_ERROR An RPC protocol error occurred
RPC_S_PROTSEQ_NOT_FOUND Protocol sequence not found
RPC_S_PROTSEQ_NOT_SUPPORTE
D

Protocol sequence not supported

RPC_S_SERVER_OUT_OF_MEMORY Server out of memory
RPC_S_SERVER_TOO_BUSY Server too busy
RPC_S_SERVER_UNAVAILABLE The server is unavailable
RPC_S_STRING_TOO_LONG String too long
RPC_S_TYPE_ALREADY_REGISTERE
D

Type UUID already registered

RPC_S_UNKNOWN_AUTHN_LEVEL Unknown authentication level
RPC_S_UNKNOWN_AUTHN_SERVICE Unknown authentication service
RPC_S_UNKNOWN_AUTHN_TYPE Unknown authentication type
RPC_S_UNKNOWN_IF Unknown interface
RPC_S_UNKNOWN_MGR_TYPE Unknown manager type
RPC_S_UNSUPPORTED-TRANS_SYN Transfer syntax is not supported by

the server
RPC_S_UNSUPPORTED_NAME_SYN
TAX

Unsupported name syntax

RPC_S_UNSUPPORTED_TYPE Unsupported UUID type
RPC_S_UUID_LOCAL_ONLY The UUID that is only valid for this

computer has been allocated
RPC_S_UUID_NO_ADDRESS No network address is available to use

to construct a UUID
RPC_S_WRONG_KIND_OF_BINDING Wrong kind of binding for operation
RPC_S_ZERO_DIVIDE Attempt to divide an integer by zero
RPC_X_BAD_STUB_DATA The stub received bad data
RPC_X_BYTE_COUNT_TOO_SMALL Byte count is too small
RPC_X_ENUM_VALUE_OUT_OF
RANGE

The enumeration value is out of range

RPC_X_ENUM_VALUE_TOO_LARGE The enumeration value is out of range
RPC_X_INVALID_BOUND Specified bounds of an array

inconsistent
RPC_X_INVALID_TAG Discriminant value does not match any

case values; no default case
RPC_X_NO_MEMORY Insufficient memory available to set up

necessary data structures
RPC_X_NO_MORE_ENTRIES List of servers available for AutoHandle

binding has been exhausted
RPC_X_NULL_REF_POINTER A null reference pointer was passed to

the stub
RPC_X_SS_BAD_ES_VERSION The operation for the serializing handle

is not valid
RPC_X_SS_CANNOT_GET_CALL_HA
NDLE

The stub is unable to get the remote
procedure call handle

RPC_X_SS_CHAR_TRANS_OPEN_FAI
L

File designated by
DCERPCCHARTRANS cannot be
opened

RPC_X_SS_CHAR_TRANS_SHORT_FI
LE

File containing character-translation
table has fewer than 512 bytes

RPC_X_SS_CONTEXT_DAMAGED Only raised on caller side; UUID in in,
out context handle changed during call

RPC_X_SS_CONTEXT_MISMATCH Only raised on callee side; UUID in in
handle does not correspond to any
known context

RPC_X_SS_HANDLES_MISMATCH The binding handles passed to a
remote procedure call don't match

RPC_X_SS_IN_NULL_CONTEXT Null context handle passed in in
parameter position

RPC_X_SS_INVALID_BUFFER The buffer is not valid for the operation.
RPC_X_SS_WRONG_ES_VERSION The software version is incorrect
RPC_X_SS_WRONG_STUB_VERSION The stub version is incorrect

Remarks

The RpcRaiseException routine raises an exception; this exception can then be handled by the
exception handler.

Return Values

No value is returned.

See Also

RpcAbnormalTermination, RpcExcept, RpcFinally

 RpcRevertToSelf QuickInfo

After calling RpcImpersonateClient and completing any tasks that require client impersonation, the
server calls RpcRevertToSelf to end impersonation and to reestablish its own security identity.

#include <rpc.h>
RPC_STATUS RPC_ENTRY
RpcRevertToSelf (void);

This function is supported only by 32-bit Windows NT platforms.

Return Values

Value Meaning
RPC_S_OK Success
RPC_S_NO_CALL_ACTIVE Server does not have a client to

impersonate
RPC_S_CANNOT_SUPPORT Not supported for this operating

system, this transport, or this
security subsystem

See Also

RpcImpersonateClient

 RpcServerInqBindings QuickInfo

The RpcServerInqBindings function returns the binding handles over which remote procedure calls
can be received.

#include <rpc.h>
RPC_STATUS RPC_ENTRY
RpcServerInqBindings(

RPC_BINDING_VECTOR * * BindingVector);

This function is supported by both the 32-bit Windows NT and Windows 95 platforms.

Parameter

BindingVector
Returns a pointer to a pointer to a vector of server binding handles.

Remarks

A server application calls the RpcServerInqBindings routine to obtain a vector of server binding
handles. Binding handles are created by the RPC run-time library when a server application calls the
following routines to register protocol sequences:

· RpcServerUseAllProtseqs
· RpcServerUseProtseq
· RpcServerUseAllProtseqsIf
· RpcServerUseProtseqIf
· RpcServerUseProtseqEp

The returned binding vector can contain binding handles with dynamic endpoints or binding handles
with well-known endpoints, depending on which of the above routines the server application called.

A server uses the vector of binding handles for exporting to the name service, for registering with the
local endpoint-map database, or for conversion to string bindings.

If there are no binding handles (no registered protocol sequences), this routine returns the
RPC_S_NO_BINDINGS status code and a BindingVector argument value of NULL.

The server is responsible for calling the RpcBindingVectorFree routine to release the memory used
by the vector.

Return Values

Value Meaning
RPC_S_OK Success
RPC_S_NO_BINDINGS No bindings

See Also

RpcBindingVectorFree, RpcEpRegister, RpcEpRegisterNoReplace, RpcNsBindingExport,
RpcServerUseAllProtseqs, RpcServerUseAllProtseqsIf, RpcServerUseProtseq,
RpcServerUseProtseqEp, RpcServerUseProtseqIf

 RpcServerInqDefaultPrincName

The RpcServerInqDefaultPrincName function obtains the default principal name from the server.

#include <rpc.h>
RPC_STATUS RPC_ENTRY
RpcServerInqDefaultPrincName(

unsigned long AuthnSvc,
RPC_CHAR * * PrincName,
);

This function is supported only by Windows 95 platforms.

Parameters

AuthnSvc
Specifies an authentication service to use when the server receives a request for a remote
procedure call.

PrincName
Points to the principal name to use for the server when authenticating remote procedure calls using
the service specified by the AuthnSvc argument. The content of the name and its syntax are defined
by the authentication service in use.

Remarks

In a NetWare-only environment, server application calls the RpcServerInqDefaultPrincName routine
to obtain the name of the NetWare server when authenticated RPC is required. The value obtained
from this routine is then passed to RpcServerRegisterAuthInfo.

Return Values

Value Meaning
RPC_S_OK Success
RPC_S_OUT_OF_MEMORY Insufficient memory to complete

the operation

See Also

RpcBindingSetAuthInfo, RpcServerRegisterAuthInfo

 RpcServerInqIf QuickInfo

The RpcServerInqIf function returns the manager entry-point vector (EPV) registered for an interface.

#include <rpc.h>
RPC_STATUS RPC_ENTRY
RpcServerInqIf(

RPC_IF_HANDLE IfSpec,
UUID * MgrTypeUuid,
RPC_MGR_EPV * * MgrEpv);

This function is supported by both the 32-bit Windows NT and Windows 95 platforms.

Parameters

IfSpec
Specifies the interface whose manager EPV is returned.

MgrTypeUuid
Points to the manager type UUID whose manager EPV is returned.
Specifying an argument value of NULL (or a nil UUID) signifies to return the manager EPV
registered with IfSpec and the nil manager type UUID.

MgrEpv
Returns a pointer to the manager EPV for the requested interface.

Remarks

A server application calls the RpcServerInqIf routine to determine the manager EPV for a registered
interface and manager type UUID.

Return Values

Value Meaning
RPC_S_OK Success
RPC_S_UNKNOWN_IF Unknown interface
RPC_S_UNKNOWN_MGR_TYPE Unknown manager type

See Also

RpcServerRegisterIf

 RpcServerListen QuickInfo

The RpcServerListen function tells the RPC run-time library to listen for remote procedure calls.

#include <rpc.h>
RPC_STATUS RPC_ENTRY
RpcServerListen(

unsigned int MinimumCallThreads,
unsigned int MaxCalls,
unsigned int DontWait);

This function is supported by both the 32-bit Windows NT and Windows 95 platforms.

Parameters

MinimumCallThreads
Specifies the minimum number of call threads.

MaxCalls
Specifies the recommended maximum number of concurrent remote procedure calls the server can
execute. To allow efficient performance, the RPC run-time libraries interpret the MaxCalls parameter
as a suggested limit rather than as an absolute upper bound.
Use RPC_C_LISTEN_MAX_CALLS_DEFAULT to specify the default value.

DontWait
Specifies a flag controlling the return from RpcServerListen. A value of non-zero indicates that
RpcServerListen should return immediately after completing function processing. A value of zero
indicates that RpcServerListen should not return until RpcMgmtStopServerListening has been
called and all remote calls have completed.

Remarks

Note The Microsoft RPC implementation of RpcServerListen includes two new, additional
parameters that do not appear in the DCE specification: DontWait and MinimumCallThreads.

A server calls the RpcServerListen routine when the server is ready to process remote procedure
calls. RPC allows a server to simultaneously process multiple calls. The MaxCalls argument
recommends the maximum number of concurrent remote procedure calls the server should execute.

The MaxCalls value should be equal to or greater than the largest MaxCalls value specified to the
routines RpcServerUseProtseq, RpcServerUseProtseqEp, RpcServerUseProtseqIf,
RpcServerUseAllProtseqs, and RpcServerUseAllProtseqsIf.

A server application is responsible for concurrency control between the server manager routines
because each routine executes in a separate thread.

When the DontWait parameter has a value of zero, the RPC run-time library continues listening for
remote procedure calls (that is, the routine does not return to the server application) until one of the
following events occurs:

· One of the server application's manager routines calls the RpcMgmtStopServerListening routine.
· A client calls a remote procedure provided by the server that directs the server to call

RpcMgmtStopServerListening.
· A client calls RpcMgmtStopServerListening with a binding handle to the server.

Once it receives a stop-listening request, the RPC run-time library stops accepting new remote
procedure calls for all registered interfaces. Executing calls are allowed to complete, including
callbacks.

After all calls complete, the RpcServerListen routine returns to the caller.

When the DontWait parameter has a non-zero value, RpcServerListen returns to the server
immediately after processing all the instructions associated with the function. You can use the
RpcMgmtWaitServerListen routine to perform the "wait" operation usually associated with
RpcServerListen.

Return Values

Value Meaning
RPC_S_OK Success
RPC_S_ALREADY_LISTENING Server already listening
RPC_S_NO_PROTSEQS_REGISTE
RED

No protocol sequences registered

RPC_S_MAX_CALLS_TOO_SMALL Maximum calls value too small

See Also

RpcMgmtStopServerListening, RpcMgmtWaitServerListen, RpcServerRegisterIf,
RpcServerUseAllProtseqs, RpcServerUseAllProtseqsIf, RpcServerUseProtseq,
RpcServerUseProtseqEp, RpcServerUseProtseqIf

 RpcServerRegisterAuthInfo QuickInfo

The RpcServerRegisterAuthInfo function registers authentication information with the RPC run-time
library.

#include <rpc.h>
RPC_STATUS RPC_ENTRY
RpcServerRegisterAuthInfo(

unsigned char * ServerPrincName,
unsigned long AuthnSvc,
RPC_AUTH_KEY_RETRIEVAL_FN GetKeyFn,
void * Arg);

This function is supported by both the 32-bit Windows NT and Windows 95 platforms.

Parameters

ServerPrincName
Points to the principal name to use for the server when authenticating remote procedure calls using
the service specified by the AuthnSvc argument. The content of the name and its syntax are defined
by the authentication service in use.

AuthnSvc
Specifies an authentication service to use when the server receives a request for a remote
procedure call.

GetKeyFn
Specifies the address of a server-application-provided routine that returns encryption keys.
Specify a NULL argument value to use the default method of encryption-key acquisition. In this case,
the authentication service specifies the default behavior. Set this parameter to NULL when using the
RPC_C_AUTHN_WINNT authentication service.

Authentication service GetKeyF
n

Arg Run-time
behavior

RPC_C_AUTHN_DCE_PRIV
ATE

NULL Non-
null

Uses default
method of
encryption-key
acquisition from
specified key
table; specified
argument is
passed to default
acquisition
function

RPC_C_AUTHN_DCE_PRIV
ATE

Non-null NULL Uses specified
encryption-key
acquisition
function to obtain
keys from default
key table

RPC_C_AUTHN_DCE_PRIV
ATE

Non-null Non-
null

Uses specified
encryption-key
acquisition
function to obtain
keys from
specified key
table; specified

argument is
passed to
acquisition
function

RPC_C_AUTHN_DEC_PUB
LIC

Ignored Ignore
d

Reserved for
future use

RPC_C_AUTHN_WINNT Ignored Ignore
d

Does not support

The following C-language definition for RPC_AUTH_KEY_RETRIEVAL_FN illustrates the prototype
for RpcServerRegisterAuthInfo:
typedef void (* RPC_AUTH_KEY_RETRIEVAL_FN)(
 void * arg, /* in */
 unsigned char * ServerPrincName, /* in */
 unsigned int key_ver, /* in */
 void * * key, /* out */
 unsigned int * status /* out */);

The RPC run-time library passes the ServerPrincName argument value from
RpcServerRegisterAuthInfo as the ServerPrincName argument value to the GetKeyFn acquisition
function.
The RPC run-time library automatically provides a value for the key version (KeyVer) argument. For
a KeyVer argument value of zero, the acquisition function must return the most recent key available.
The retrieval function returns the authentication key in the Key argument.
If the acquisition function called from RpcServerRegisterAuthInfo returns a status other than
RPC_S_OK, RpcServerRegisterAuthInfo fails and returns an error code to the server application.
If the acquisition function called by the RPC run-time library while authenticating a client's remote
procedure call request returns a status other than RPC_S_OK, the request fails and the RPC run-
time library returns an error code to the client application.

Arg
Points to an argument to pass to the GetKeyFn routine, if specified.

Remarks

A server application calls the RpcServerRegisterAuthInfo routine to register an authentication service
to use for authenticating remote procedure calls. A server calls this routine once for each authentication
service and/or principal name the server wants to register.

The authentication service specified by a client application (using RpcBindingSetAuthInfo or
RpcServerRegisterAuthInfo) must be one of the authentication services specified by the server
application. Otherwise, the client's remote procedure call fails and an
RPC_S_UNKNOWN_AUTHN_SERVICE status code is returned.

Return Values

Value Meaning
RPC_S_OK Success
RPC_S_UNKNOWN_AUTHN_SERVIC
E

Unknown authentication service

See Also

RpcBindingSetAuthInfo

 RpcServerRegisterIf QuickInfo

The RpcServerRegisterIf function registers an interface with the RPC run-time library.

#include <rpc.h>
RPC_STATUS RPC_ENTRY
RpcServerRegisterIf(

RPC_IF_HANDLE IfSpec,
UUID * MgrTypeUuid,
RPC_MGR_EPV * MgrEpv);

This function is supported by both the 32-bit Windows NT and Windows 95 platforms.

Parameters

IfSpec
Specifies a MIDL-generated data structure indicating the interface to register.

MgrTypeUuid
Points to a type UUID to associate with the MgrEpv argument. Specifying a null argument value (or
a nil UUID) registers IfSpec with a nil type UUID.

MgrEpv
Specifies the manager routines' entry-point vector (EPV). To use the
MIDL-generated default EPV, specify a null value.

Remarks

A server can register an unlimited number of interfaces with the RPC run-time library. Registration
makes an interface available to clients using a binding handle to the server.

To register an interface, the server application code calls the RpcServerRegisterIf routine. For each
implementation of an interface offered by a server, it must register a separate manager EPV.

To register an interface, the server provides the following information:

· Interface specification
The interface specification is a data structure that the MIDL compiler generates. The server specifies
the interface using the IfSpec argument.

· Manager type UUID and manager EPV
The manager type UUID and the manager EPV determine which manager routine executes when a
server receives a remote procedure call request from a client.
The server specifies the manager type UUID and EPV using the MgrTypeUuid and MgrEpv
arguments. Note that when specifying a non-nil manager type UUID, the server must also call the
RpcObjectSetType routine to register objects of this non-nil type.

 Specifying the Manager EPV

If the routine names used by a manager correspond to those of the interface definition, you can register
this manager using the default EPV of the interface generated by the MIDL compiler. You can also
register a manager using a server-application-supplied EPV.

 The Default Manager EPV

By default, the MIDL compiler uses the procedure names from an interface's IDL file to generate a
manager EPV, which the compiler places directly into the server stub. This default EPV is statically
initialized using the procedure names declared in the interface definition.

To register a manager using the default EPV, specify NULL as the value of the MgrEpv argument (a
null EPV).

 Server-Supplied Manager EPVs

A server can (and sometimes must) create and register a non-null manager EPV for an interface. To
select a server-application-supplied EPV, pass a non-null EPV whose value has been declared by the
server as the value of the MgrEpv argument. A non-null value for the MgrEpv argument always
overrides a default EPV in the server stub.

The MIDL compiler automatically generates a manager EPV data type (RPC_MGR_EPV) for a server
application to use in constructing manager EPVs. A manager EPV must contain exactly one entry point
(function address) for each procedure defined in the IDL file.

A server must supply a non-null EPV in the following cases:

· When the names of manager routines differ from the procedure names declared in the interface
definition.

· When the server uses the default EPV for registering another implementation of the interface.

A server declares a manager EPV by initializing a variable of type
if-name_SERVER_EPV for each implementation of the interface.

 Registering Only One Manager of an Interface

When a server offers only one implementation of an interface, the server calls the
RpcServerRegisterIf routine only once. In the simplest case, the server uses the default manager
EPV. (The exception is when the manager uses routine names that differ from those declared in the
interface.)

For the simple case, you supply the following values in the RpcServerRegisterIf call:

· Manager EPVs
To use the default EPV, you specify a null value for the MgrEpv argument.

· Manager type UUID
When using the default EPV, you can register the interface with a nil manager type UUID by
supplying either a null value or a nil UUID for the MgrTypeUuid argument. In this case, all remote
procedure calls, regardless of the object UUID in their binding handle, are dispatched to the default
EPV, assuming no RpcObjectSetType calls have been made.
You can also provide a non-nil manager type UUID. In this case, you must also call the
RpcObjectSetType routine.

 Registering Multiple Implementations of an Interface

To offer multiple implementations of an interface, a server must register each implementation by calling
the RpcServerRegisterIf routine separately. For each implementation a server registers, it supplies
the same IfSpec argument but a different pair of MgrTypeUuid and MgrEpv arguments.

In the case of multiple managers, use the RpcServerRegisterIf routine as follows:

· Manager EPVs
To offer multiple implementations of an interface, a server must:
· Create a non-null manager EPV for each additional implementation.
· Specify a non-null value for the MgrEpv argument in the RpcServerRegisterIf routine.
Please note that the server can also register with the default manager EPV.

· Manager type UUID
Provide a manager type UUID for each EPV of the interface. The nil type UUID (or null value) for the
MgrTypeUuid argument can be specified for one of the manager EPVs. Each type UUID must be
different.

 Rules for Invoking Manager Routines

The RPC run-time library dispatches an incoming remote procedure call to a manager that offers the
requested RPC interface. When multiple managers are registered for an interface, the RPC run-time
library must select one of them. To select a manager, the RPC run-time library uses the object UUID
specified by the call's binding handle.

The run-time library applies the following rules when interpreting the object UUID of a remote
procedure call:

· Nil object UUIDs
A nil object UUID is automatically assigned the nil type UUID (it is illegal to specify a nil object UUID
in the RpcObjectSetType routine). Therefore, a remote procedure call whose binding handle
contains a nil object UUID is automatically dispatched to the manager registered with the nil type
UUID, if any.

· Non-nil object UUIDs
In principle, a remote procedure call whose binding handle contains a non-nil object UUID should be
processed by a manager whose type UUID matches the type of the object UUID. However,
identifying the correct manager requires that the server has specified the type of that object UUID by
calling the RpcObjectSetType routine.

If a server fails to call the RpcObjectSetType routine for a non-nil object UUID, a remote procedure
call for that object UUID goes to the manager EPV that services remote procedure calls with a nil
object UUID (that is, the nil type UUID).

Remote procedure calls with a non-nil object UUID in the binding handle cannot be executed if the
server assigned that non-nil object UUID a type UUID by calling the RpcObjectSetType routine but did
not also register a manager EPV for that type UUID by calling the RpcServerRegisterIf routine.

Object
UUID of
call

Server set
type for
object
UUID?

Server
registere
d EPV
type?

Dispatching action

Nil Not
applicable

Yes Uses the manager with the nil
type UUID.

Nil Not
applicable

No Error
(RPC_S_UNSUPPORTED_TYP
E); rejects the remote procedure
call.

Non-nil Yes Yes Uses the manager with the same
type UUID.

Non-nil No Ignored Uses the manager with the nil
type UUID; if no manager with
the nil type UUID, error
(RPC_S_UNSUPPORTEDTYPE)
; rejects the remote procedure
call.

Non-nil Yes No Error
(RPC_S_UNSUPPORTEDTYPE)
; rejects the remote procedure
call.

The object UUID of the call is the object UUID found in a binding handle for a remote procedure call.

The server sets the type of the object UUID by calling RpcObjectSetType to specify the type UUID for

an object.

The server registers the type for the manager EPV by calling RpcServerRegisterIf using the same
type UUID.

The nil object UUID is always automatically assigned the nil type UUID. It is illegal to specify a nil
object UUID in the RpcObjectSetType routine.

 Dispatching a Remote Procedure Call to a Server-Manager Routine

The following tables show the steps taken by the RPC run-time library to dispatch a remote procedure
call to a server-manager routine.

Assume a simple case where the server registers the default manager EPV, as described in the
following tables:

Interface registry table
Interface UUID Manager type

UUID
Entry-point vector

uuid1 Nil Default EPV

Object registry table
Object UUID Object type
Nil Nil
(Any other object UUID) Nil

Mapping the binding handle to an entry-point vector
Interface
UUID (from
client
binding
handle)

Object UUID
(from client
binding handle)

Object type
(from object
registry table)

Manager EPV
(from interface
registry table)

 uuid1 Nil Nil Default EPV
Same as
above

uuidA Nil Default EPV

The following steps describe the actions taken by the RPC server run-time library:

1. The server calls RpcServerRegisterIf to associate an interface it offers with the nil manager type
UUID and with the MIDL-generated default manager EPV. This call adds an entry in the interface
registry table. The interface UUID is contained in the IfSpec argument.

2. By default, the object registry table associates all object UUIDs with the nil type UUID. In this
example, the server does not call RpcObjectSetType.

3. The server run-time library receives a remote procedure code containing the interface UUID the call
belongs to and the object UUID from the call's binding handle.
See the following function reference entries for discussions of how an object UUID is set into a
binding handle:
· RpcNsBindingImportBegin
· RpcNsBindingLookupBegin
· RpcBindingFromStringBinding
· RpcBindingSetObject

4. Using the interface UUID from the remote procedure call, the server's
run-time library locates that interface UUID in the interface registry table.
If the server did not register the interface using RpcServerRegisterIf, the remote procedure call
returns to the caller with an RPC_S_UNKNOWN_IF status code.

5. Using the object UUID from the binding handle, the server's run-time library locates that object UUID
in the object registry table. In this example, all object UUIDs map to the nil object type.

6. The server's run-time library locates the nil manager type in the interface registry table.
7. Combining the interface UUID and nil type in the interface registry table resolves to the default EPV,

which contains the server-manager routines to be executed for the interface UUID found in the
remote procedure call.

Assume that the server offers multiple interfaces and multiple implementations of each interface, as
described in the following tables:

Interface registry table
Interface UUID Manager type UUID Entry-point vector
uuid1 Nil epv1
uuid1 uuid3 epv4
uuid2 uuid4 epv2
uuid2 uuid7 epv3

Object registry table
Object UUID Object type
uuidA uuid3
uuidB uuid7
uuidC uuid7
uuidD uuid3
uuidE uuid3
uuidF uuid8
Nil Nil
(Any other UUID) Nil

Mapping the binding handle to an entry-point vector
Interface
UUID (from
client binding
handle)

Object UUID
(from client
binding handle)

Object type
(from object
registry table)

Manager EPV
(from interface
registry table)

uuid1 Nil Nil epv1
uuid1 uuidA uuid3 epv4
uuid1 uuidD uuid3 epv4
uuid1 uuidE uuid3 epv4
uuid2 uuidB uuid7 epv3
uuid2 uuidC uuid7 epv3

The following steps describe the actions taken by the server's run-time library as depicted in the
preceding tables when called by a client with interface UUID uuid2 and object UUID uuidC:

1. The server calls RpcServerRegisterIf to associate the interfaces it offers with the different manager
EPVs. The entries in the interface registry table reflect four calls of RpcServerRegisterIf to offer two
interfaces, with two implementations (EPVs) for each interface.

2. The server calls RpcObjectSetType to establish the type of each object it offers. In addition to the
default association of the nil object to a nil type, all other object UUIDs not explicitly found in the
object registry table also map to the nil type UUID.
In this example, the server calls the RpcObjectSetType routine six times.

3. The server run-time library receives a remote procedure call containing the interface UUID the call
belongs to and an object UUID from the call's binding handle.

4. Using the interface UUID from the remote procedure call, the server's
run-time library locates the interface UUID in the interface registry table.

5. Using the object UUID from the binding handle, uuidC, the server's run-time library locates the
object UUID in the object registry table and finds that it maps to type uuid7.

6. The server's run-time library locates the manager type by combining the interface UUID, uuid2, and
type uuid7 in the interface registry table. This resolves to epv3, which contains the server-manager
routine to be executed for the remote procedure call.

The routines in epv2 will never be executed because the server has not called the RpcObjectSetType
routine to add any objects with a type UUID of uuid4 to the object registry table.

A remote procedure call with interface UUID uuid2 and object UUID uuidF returns to the caller with an
RPC_S_UNKNOWN_MGR_TYPE status code because the server did not call the
RpcServerRegisterIf routine to register the interface with a manager type of uuid8.

Return Values

Value Meaning
RPC_S_OK Success
RPC_S_TYPE_ALREADY_REGISTER
ED

Type UUID already registered

See Also

RpcBindingFromStringBinding, RpcBindingSetObject, RpcNsBindingExport,
RpcNsBindingImportBegin, RpcNsBindingLookupBegin, RpcObjectSetType,
RpcServerUnregisterIf

 RpcServerUnregisterIf QuickInfo

The RpcServerUnregisterIf function unregisters an interface from the RPC run-time library.

#include <rpc.h>
RPC_STATUS RPC_ENTRY
RpcServerUnregisterIf(

RPC_IF_HANDLE IfSpec,
UUID * MgrTypeUuid,
unsigned int WaitForCallsToComplete);

This function is supported by both the 32-bit Windows NT and Windows 95 platforms.

Parameters

IfSpec
Specifies the interface to unregister.
Specify a null value to unregister all interfaces previously registered with the type UUID value
specified in the MgrTypeUuid argument.

MgrTypeUuid
Points to the type UUID of the manager entry-point vector (EPV) to unregister. The value of
MgrTypeUuid should be the same value as was provided in a call to the RpcServerRegisterIf
routine.
Specify a null value to unregister the interface specified in the IfSpec argument for all previously
registered type UUIDs.
Specify a nil UUID to unregister the MIDL-generated default manager
EPV. In this case, all manager EPVs registered with a non-nil type UUID remain registered.

WaitForCallsToComplete
Specifies a flag that indicates whether to unregister immediately or to wait until all current calls are
complete.
Specify a value of zero to disregard calls in progress and unregister immediately. Specify any non-
zero value to wait until all active calls complete.

Remarks

A server calls the RpcServerUnregisterIf routine to remove the association between an interface and
a manager EPV.

Specify the manager EPV to remove in the MgrTypeUuid argument by providing the type UUID value
that was specified in a call to the RpcServerRegisterIf routine. Once unregistered, an interface is no
longer available to client applications.

When an interface is unregistered, the RPC run-time library stops accepting new calls for that interface.
Executing calls on the interface are allowed to complete, including callbacks.

The following table summarizes the behavior of RpcServerUnregisterIf:

IfSpec MgrTypeUuid Behavior
Non-null Non-null Unregisters the manager EPV

associated with the specified
arguments.

Non-null NULL Unregisters all manager EPVs
associated with the IfSpec
argument.

NULL Non-null Unregisters all manager EPVs
associated with the MgrTypeUuid

argument.
NULL NULL Unregisters all manager EPVs. This

call has the effect of preventing the
server from receiving any new
remote procedure calls because all
the manager EPVs for all interfaces
have been unregistered.

Return Values

Value Meaning
RPC_S_OK Success
RPC_S_UNKNOWN_MGR_TYPE Unknown manager type
RPC_S_UNKNOWN_IF Unknown interface

See Also

RpcServerRegisterIf

 RpcServerUseAllProtseqs QuickInfo

The RpcServerUseAllProtseqs function tells the RPC run-time library to use all supported protocol
sequences for receiving remote procedure calls.

#include <rpc.h>
RPC_STATUS RPC_ENTRY
RpcServerUseAllProtseqs(

unsigned int MaxCalls,
void * SecurityDescriptor);

This function is supported by both the 32-bit Windows NT and Windows 95 platforms.

For a list of procotol sequences supported by RPC, see RPC Data Types and Structures.

Parameters

MaxCalls
Specifies the maximum number of concurrent remote procedure call requests the server can accept.
The RPC run-time library guarantees that the server can accept at least this number of concurrent
call requests. The actual number can be greater and can vary for each protocol sequence.
Use RPC_C_PROTSEQ_MAX_REQS_DEFAULT to specify the default value.

SecurityDescriptor
Points to an optional parameter provided for the Microsoft Windows NT security subsystem.

Remarks

Note The Microsoft RPC implementation of RpcServerUseAllProtseqs includes a new, additional
parameter, SecurityDescriptor, that does not appear in the DCE specification.

A server application calls the RpcServerUseAllProtseqs routine to register all of the supported
protocol sequences with the RPC run-time library. To receive remote procedure calls, a server must
register at least one protocol sequence with the RPC run-time library.

For each protocol sequence registered by a server, the RPC run-time library creates one or more
binding handles through which the server receives remote procedure call requests. The RPC run-time
library creates different binding handles for each protocol sequence. Each binding handle contains an
endpoint dynamically generated by the RPC run-time library or the operating system.

The MaxCalls argument allows the server to specify the maximum number of concurrent remote
procedure call requests the server wants to be able to handle.

After registering protocol sequences, a server typically calls the following routines:

· RpcServerInqBindings to obtain a vector containing all of the server's binding handles.
· RpcEpRegister or RpcEpRegisterNoReplace to register the binding handles with the endpoint-

mapping service. During implementation and debugging, server developers can communicate their
binding information to clients using string bindings. This allows them to establish a client-server
relationship without using the endpoint-map database or name-service database.
To establish such a relationship, use RpcBindingToStringBinding to convert one or more binding
handles in the binding-handle vector to a string binding and provide, via mail, on paper, or by some
other means, the string binding to the client.

· RpcNsBindingExport to place the binding handles in the name-service database for access by any
client.

· RpcBindingVectorFree to free the vector of server binding handles.
· RpcServerRegisterIf to register the interfaces offered by the server with the RPC run-time library.

This is a required call.

· RpcServerListen to begin receiving remote procedure call requests. This is a required call.

To selectively register protocol sequences, a server calls the RpcServerUseProtseq,
RpcServerUseProtseqIf, or RpcServerUseProtseqEp routine.

Return Values

Value Meaning
RPC_S_OK Success
RPC_S_NO_PROTSEQS No supported protocol sequences
RPC_S_OUT_OF_MEMORY Insufficient memory available
RPC_S_INVALID_SECURITY_DES
C

Security descriptor invalid

See Also

RpcBindingToStringBinding, RpcBindingVectorFree, RpcEpRegister, RpcEpRegisterNoReplace,
RpcNsBindingExport, RpcServerInqBindings, RpcServerListen, RpcServerRegisterIf,
RpcServerUseAllProtseqsIf, RpcServerUseProtseq, RpcServerUseProtseqEp,
RpcServerUseProtseqIf

 RpcServerUseAllProtseqsIf QuickInfo

The RpcServerUseAllProtseqsIf function tells the RPC run-time library to use all the specified
protocol sequences and endpoints in the interface specification for receiving remote procedure calls.

#include <rpc.h>
RPC_STATUS RPC_ENTRY
RpcServerUseAllProtseqsIf(

unsigned int MaxCalls,
RPC_IF_HANDLE IfSpec,
void * SecurityDescriptor);

This function is supported by both the 32-bit Windows NT and Windows 95 platforms.

For a list of procotol sequences supported by RPC, see RPC Data Types and Structures.

Parameters

MaxCalls
Specifies the maximum number of concurrent remote procedure call requests the server can accept.
The RPC run-time library guarantees that the server can accept at least this number of concurrent
call requests. The actual number can be greater and can vary for each protocol sequence.
Use RPC_C_PROTSEQ_MAX_REQS_DEFAULT to specify the default value.

IfSpec
Specifies the interface containing the protocol sequences and corresponding endpoint information to
use in creating binding handles.

SecurityDescriptor
Points to an optional parameter provided for the Microsoft Windows NT security subsystem.

Remarks

Note The Microsoft RPC implementation of RpcServerUseAllProtseqsIf includes a new, additional
parameter, SecurityDescriptor, that does not appear in the DCE specification.

A server application calls the RpcServerUseAllProtseqsIf routine to register with the RPC run-time
library all the protocol sequences and associated endpoint-address information provided in the IDL file.

To receive remote procedure call requests, a server must register at least one protocol sequence with
the RPC run-time library.

For each protocol sequence registered by a server, the RPC run-time library creates one or more
binding handles through which the server receives remote procedure call requests. The RPC run-time
library creates different binding handles for each protocol sequence.

The MaxCalls argument allows the server to specify the maximum number of concurrent remote
procedure call requests the server wants to handle.

See RpcServerUseAllProtseqs for the list of routines a server typically calls after calling
RpcServerUseAllProtseqsIf.

To register selected protocol sequences specified in the IDL file, a server calls the
RpcServerUseProtseqIf routine.

Return Values

Value Meaning
RPC_S_OK Success
RPC_S_NO_PROTSEQS No supported protocol

sequences
RPC_S_INVALID_ENDPOINT_FORMAT Invalid endpoint format
RPC_S_OUT_OF_MEMORY Out of memory
RPC_S_DUPLICATE_ENDPOINT Endpoint is duplicate
RPC_S_INVALID_SECURITY_DESC Security descriptor invalid
RPC_S_INVALID_RPC_PROTSEQ RPC protocol sequence

invalid

See Also

RpcBindingVectorFree, RpcEpRegister, RpcEpRegisterNoReplace, RpcNsBindingExport,
RpcServerInqBindings, RpcServerListen, RpcServerRegisterIf, RpcServerUseAllProtseqs,
RpcServerUseProtseq, RpcServerUseProtseqEp, RpcServerUseProtseqIf

 RpcServerUseProtseq QuickInfo

The RpcServerUseProtseq function tells the RPC run-time library to use the specified protocol
sequence for receiving remote procedure calls.

#include <rpc.h>
RPC_STATUS RPC_ENTRY
RpcServerUseProtseq(

unsigned char * ProtSeq,
unsigned int MaxCalls,
void * SecurityDescriptor);

This function is supported by both the 32-bit Windows NT and Windows 95 platforms.

For a list of procotol sequences supported by RPC, see RPC Data Types and Structures.

Parameters

ProtSeq
Points to a string identifier of the protocol sequence to register with the RPC run-time library.

MaxCalls
Specifies the maximum number of concurrent remote procedure call requests the server wants to
handle.
The RPC run-time library guarantees that the server can accept at least this number of concurrent
call requests. The actual number can be greater, depending on the selected protocol sequence.
Use RPC_C_PROTSEQ_MAX_REQS_DEFAULT to specify the default value.

SecurityDescriptor
Points to an optional parameter provided for the Microsoft Windows NT security subsystem.

Remarks

Note The Microsoft RPC implementation of RpcServerUseProtseq includes a new, additional
parameter, SecurityDescriptor, that does not appear in the DCE specification.

A server application calls the RpcServerUseProtseq routine to register one protocol sequence with
the RPC run-time library. To receive remote procedure call requests, a server must register at least one
protocol sequence with the RPC run-time library. A server application can call RpcServerUseProtseq
multiple times to register additional protocol sequences.

For each protocol sequence registered by a server, the RPC run-time library creates one or more
binding handles through which the server receives remote procedure call requests. The RPC run-time
library creates different binding handles for each protocol sequence. Each binding handle contains an
endpoint dynamically generated by the RPC run-time library.

The MaxCalls argument allows the server to specify the maximum number of concurrent remote
procedure call requests the server wants to handle.

See RpcServerUseAllProtseqs for the list of routines a server typically calls after calling
RpcServerUseProtseq.

To register all protocol sequences, a server calls the RpcServerUseAllProtseqs routine.

Return Values

Value Meaning
RPC_S_OK Success
RPC_S_PROTSEQ_NOT_SUPPOR
TED

Protocol sequence not supported on
this host

RPC_S_INVALID_RPC_PROTSEQ Invalid protocol sequence
RPC_S_OUT_OF_MEMORY Out of memory
RPC_S_INVALID_SECURITY_DES
C

Security descriptor invalid

See Also

RpcBindingVectorFree, RpcEpRegister, RpcEpRegisterNoReplace, RpcNetworkIsProtseqValid,
RpcNsBindingExport, RpcServerInqBindings, RpcServerListen, RpcServerRegisterIf,
RpcServerUseAllProtseqs, RpcServerUseAllProtseqsIf, RpcServerUseProtseqEp,
RpcServerUseProtseqIf

 RpcServerUseProtseqEp QuickInfo

The RpcServerUseProtseqEp function tells the RPC run-time library to use the specified protocol
sequence combined with the specified endpoint for receiving remote procedure calls.

#include <rpc.h>
RPC_STATUS RPC_ENTRY
RpcServerUseProtseqEp(

unsigned char * Protseq,
unsigned int MaxCalls,
unsigned char * Endpoint,
void * SecurityDescriptor);

This function is supported by both the 32-bit Windows NT and Windows 95 platforms.

For a list of procotol sequences supported by RPC, see RPC Data Types and Structures.

Parameters

Protseq
Points to a string identifier of the protocol sequence to register with the RPC run-time library.

MaxCalls
Specifies the maximum number of concurrent remote procedure call requests the server wants to
handle.
The RPC run-time library guarantees that the server can accept at least this number of concurrent
call requests. The actual number can be greater, depending on the selected protocol sequence.
Use RPC_C_PROTSEQ_MAX_REQS_DEFAULT to specify the default value.

Endpoint
Points to the endpoint-address information to use in creating a binding for the protocol sequence
specified in the Protseq argument.

SecurityDescriptor
Points to an optional parameter provided for the Microsoft Windows NT security subsystem.

Remarks

Note The Microsoft RPC implementation of RpcServerUseProtseqEp includes a new, additional
parameter, SecurityDescriptor, that does not appear in the DCE specification.

A server application calls the RpcServerUseProtseqEp routine to register one protocol sequence with
the RPC run-time library. With each protocol sequence registration, RpcServerUseProtseqEp
includes the specified endpoint-address information.

To receive remote procedure call requests, a server must register at least one protocol sequence with
the RPC run-time library. A server application can call this routine multiple times to register additional
protocol sequences and endpoints.

For each protocol sequence registered by a server, the RPC run-time library creates one or more
binding handles through which the server receives remote procedure call requests.

The MaxCalls argument allows the server to specify the maximum number of concurrent remote
procedure call requests the server wants to be able to handle.

See RpcServerUseAllProtseqs for the list of routines a server typically calls after calling
RpcServerUseProtseqEp.

Return Values

Value Meaning

RPC_S_OK Success
RPC_S_PROTSEQ_NOT_SUPPORTED Protocol sequence not

supported on this host
RPC_S_INVALID_RPC_PROTSEQ Invalid protocol sequence
RPC_S_INVALID_ENDPOINT_FORMAT Invalid endpoint format
RPC_S_OUT_OF_MEMORY Out of memory
RPC_S_DUPLICATE_ENDPOINT Endpoint is duplicate
RPC_S_INVALID_SECURITY_DESC Security descriptor invalid

See Also

RpcBindingVectorFree, RpcEpRegister, RpcEpRegisterNoReplace, RpcNsBindingExport,
RpcServerInqBindings, RpcServerListen, RpcServerRegisterIf, RpcServerUseAllProtseqs,
RpcServerUseAllProtseqsIf, RpcServerUseProtseq, RpcServerUseProtseqIf

 RpcServerUseProtseqIf QuickInfo

The RpcServerUseProtseqIf function tells the RPC run-time library to use the specified protocol
sequence combined with the endpoints in the interface specification for receiving remote procedure
calls.

#include <rpc.h>
RPC_STATUS RPC_ENTRY
RpcServerUseProtseqIf(

unsigned char * Protseq,
unsigned int MaxCalls,
RPC_IF_HANDLE IfSpec,
void * SecurityDescriptor);

This function is supported by both the 32-bit Windows NT and Windows 95 platforms.

For a list of procotol sequences supported by RPC, see RPC Data Types and Structures.

Parameters

Protseq
Points to a string identifier of the protocol sequence to register with the RPC run-time library.

MaxCalls
Specifies the maximum number of concurrent remote procedure call requests the server wants to be
able to handle.
The RPC run-time library guarantees that the server can accept at least this number of concurrent
call requests. The actual number can be greater, depending on the selected protocol sequence.
Use RPC_C_PROTSEQ_MAX_REQS_DEFAULT to specify the default value.

IfSpec
Specifies the interface containing endpoint information to use in creating a binding for the protocol
sequence specified in the Protseq argument.

SecurityDescriptor
Points to an optional parameter provided for the Microsoft Windows NT security subsystem.

Remarks

Note The Microsoft RPC implementation of RpcServerUseProtseqIf includes a new, additional
parameter, SecurityDescriptor, that does not appear in the DCE specification.

A server application calls the RpcServerUseProtseqIf routine to register one protocol sequence with
the RPC run-time library. With each protocol-sequence registration, the routine includes the endpoint-
address information provided in the IDL file.

To receive remote procedure call requests, a server must register at least one protocol sequence with
the RPC run-time library. A server application can call this routine multiple times to register additional
protocol sequences.

For each protocol sequence registered by a server, the RPC run-time library creates one or more
binding handles through which the server receives remote procedure call requests.

The MaxCalls argument allows the server to specify the maximum number of concurrent remote
procedure call requests the server wants to be able to handle.

See RpcServerUseAllProtseqs for the list of routines a server typically calls after calling
RpcServerUseProtseqIf.

To register all protocol sequences from the IDL file, a server calls the RpcServerUseAllProtseqsIf
routine.

Return Values

Value Meaning
RPC_S_OK Success
RPC_S_PROTSEQ_NOT_FOUND The endpoint for this

protocol sequence not
specified in the IDL file

RPC_S_PROTSEQ_NOT_SUPPORTED Protocol sequence not
supported on this host

RPC_S_INVALID_RPC_PROTSEQ Invalid protocol sequence
RPC_S_INVALID_ENDPOINT_FORMAT Invalid endpoint format
RPC_S_OUT_OF_MEMORY Out of memory
RPC_S_INVALID_SECURITY_DESC Security descriptor invalid

See Also

RpcBindingVectorFree, RpcEpRegister, RpcEpRegisterNoReplace, RpcNsBindingExport,
RpcServerInqBindings, RpcServerListen, RpcServerRegisterIf, RpcServerUseAllProtseqs,
RpcServerUseAllProtseqsIf, RpcServerUseProtseq, RpcServerUseProtseqEp

 RpcSmAllocate

The RpcSmAllocate function allocates memory within the RPC stub memory management function
and returns a pointer to the allocated memory or NULL.

#include <rpc.h>
void * RPC_ENTRY
RpcSmAllocate(

size_t Size
RPC_STATUS* pStatus);

Parameters

Size
Specifies the size of memory to allocate (in bytes).

pStatus
Specifies a pointer to the returned status.

Remarks

The RpcSmAllocate routine allows an application to allocate memory within the RPC stub memory
management environment. Prior to calling RpcSmAllocate, the memory management environment
must already be established. For memory management called within the stub, the server stub itself
may establish the necessary environment. See RpcSmEnableAllocate for more information. When
using RpcSmAllocate to allocate memory not called from the stub, the application must call
RpcSmEnableAllocate to establish the required memory management environment.

The RpcSmAllocate routine returns a pointer to the allocated memory if the call is successful.
Otherwise, a NULL is returned.

When the stub establishes the memory management, it frees any memory allocated by
RpcSmAllocate. The application can free such memory before returning to the calling stub by calling
RpcSmFree.

By contrast, when the application establishes the memory management, it must free any memory
allocated. It does so by calling either RpcSmFree or RpcSmDisableAllocate.

To manage the same memory within the stub memory management environment, multiple threads can
call RpcSmAllocate and RpcSmFree. In this case, the threads must share the same stub memory
management thread handle. Applications pass thread handles from thread to thread by calling
RpcSmGetThreadHandle and RpcSmSetThreadHandle.

See Memory Management for a complete discussion of the various memory management conditions
supported by RPC.

Return Values

Value Meaning

RPC_S_OK Success
RPC_S_OUT_OF_MEMORY Out of Memory

See Also

RpcSmEnableAllocate, RpcSmDisableAllocate, RpcSmFree, RpcSmGetThreadHandle,
RpcSmSetThreadHandle

 RpcSmClientFree

The RpcSmClientFree function frees memory returned from a client stub.

#include <rpc.h>
RPC_STATUS RPC_ENTRY
RpcSmClientFree(

void * NodeToFree);

Parameter

NodeToFree
Specifies a pointer to memory returned from a client stub.

Remarks

The RpcSmClientFree routine releases memory allocated and returned from a client stub. The
memory management handle of the thread calling this routine must match the handle of the thread that
made the RPC call. Use RpcSmGetThreadHandle and RpcSmSetThreadHandle to pass handles
from thread to thread.

Note that using RpcSmClientFree allows a routine to free dynamically-allocated memory returned by
an RPC call without knowing the memory management environment from which it was called.

Return Value

Value Meaning

RPC_S_OK Success

See Also

RpcSmFree, RpcSmGetThreadHandle, RpcSmSetClientAllocFree, RpcSmSetThreadHandle,
RpcSmSwapClientAllocFree

 RpcSmDestroyClientContext

The RpcSmDestroyClientContext function reclaims the client memory resources for a context handle
and makes the context handle NULL.

#include <rpc.h>
RPC_STATUS RPC_ENTRY
RpcSmDestroyClientContext(

void* * ContextHandle);

Parameter

ContextHandle
Specifies the context handle that can no longer be used.

Remarks

The RpcSmDestroyClientContext routine is used by client applications to reclaim resources used for
an inactive context handle. Applications can call RpcSmDestroyClientContext after a
communications error makes the context handle unusable.

Note that when this routine reclaims the memory resources, it also makes the context handle NULL.

Return Values

Value Meaning

RPC_S_OK Success
RPC_X_SS_CONTEXT_MISMATC
H

Invalid handle

See Also

RpcSmFree, RpcSmGetThreadHandle, RpcSmSetClientAllocFree, RpcSmSetThreadHandle,
RpcSmSwapClientAllocFree

 RpcSmDisableAllocate

The RpcSmDisableAllocate function frees resources and memory within the stub memory
management environment.

#include <rpc.h>
RPC_STATUS RPC_ENTRY
RpcSmDisableAllocate (void);

Remarks

The RpcSmDisableAllocate routine frees all the resources used by a call to RpcSmEnableAllocate.
It also releases memory that was allocated by a call to RpcSmAllocate after the call to
RpcSmEnableAllocate.

Note that RpcSmEnableAllocate and RpcSmDisableAllocate must be used together as matching
pairs.

Return Value

Value Meaning

RPC_S_OK Success

See Also

RpcSmAllocate, RpcSmEnableAllocate

 RpcSmEnableAllocate

The RpcSmEnableAllocate function establishes the stub memory management environment.

#include <rpc.h>
RPC_STATUS RPC_ENTRY
RpcSmEnableAllocate (void);

Remarks

In cases where the stub memory management is not enabled by the server stub itself, the
RpcSmEnableAllocate routine is called by applications to establish the stub memory management
environment. This environment must be established prior to making a call to RpcSmAllocate. In
default mode, for server manager code called from the stub, the memory management environment
may be established by the server stub itself by using pointer manipulation or the enable_allocate
attribute. For ms_ext or c_ext modes, the environment is established only upon request by using the
enable_allocate attribute (see The MIDL Reference.) Otherwise, call RpcSmEnableAllocate before
calling RpcSmAllocate. See Memory Management for a complete discussion of the memory
management conditions used by RPC. RpcSmGetThreadHandle and RpcSmSetThreadHandle

Return Values

Value Meaning

RPC_S_OK Success
RPC_S_OUT_OF_MEMORY Out of memory

See Also

RpcSmAllocate, RpcSmDisableAllocate

 RpcSmFree

The RpcSmFree function releases memory allocated by RpcSmAllocate.

#include <rpc.h>
RPC_STATUS RPC_ENTRY
RpcSmFree(

void * NodeToFree);

Parameter

NodeToFree
Specifies a pointer to memory allocated by RpcSmAllocate or RpcSsAllocate.

Remarks

The RpcSmFree routine is used by applications to free memory allocated by RpcSmAllocate. In
cases where the stub allocates the memory for the application, the RpcSmFree routine can also be
used to release memory. See Memory Management for a complete discussion of memory
management conditions supported by RPC.

Note that the handle of the thread calling RpcSmFree must match the handle of the thread that
allocated the memory by calling RpcSmAllocate. Use RpcSmGetThreadHandle and
RpcSmSetThreadHandle to pass handles from thread to thread.

Return Value

Value Meaning

RPC_S_OK Success

See Also

RpcSmAllocate, RpcSmGetThreadHandle, RpcSmSetThreadHandle

 RpcSmGetThreadHandle

The RpcSmGetThreadHandle function returns a thread handle, or NULL, for the stub memory
management environment.

#include <rpc.h>
RPC_SS_THREAD_HANDLE RPC_ENTRY
RpcSmGetThreadHandle (

RPC_STATUS * pStatus)

Parameter

pStatus
Specifies a pointer to the returned status.

Remarks

The RpcSmGetThreadHandle routine is called by applications to obtain a thread handle for the stub
memory management environment. A thread used to manage memory for the stub memory
management environment uses RpcSmGetThreadHandle to receive a handle for its memory
environment. In this way, another thread that calls RpcSmSetThreadHandle by using this handle can
then use the same memory management environment.

The same memory management thread handle must be used by multiple threads calling
RpcSmAllocate and RpcSmFree in order to manage the same memory. Before spawning new
threads to manage the same memory, the thread that established the memory management
environment (parent thread) calls RpcSmGetThreadHandle to obtain a thread handle for this
environment. Then, the spawned threads call RpcSmSetThreadHandle with the new manager handle
provided by the parent thread.

Note that the RpcSmGetThreadHandle routine is usually called by a server manager procedure
before additional threads are spawned. The stub sets up the memory management environment for the
manager procedure ,and the manager calls RpcSmGetThreadHandle to make this environment
available to the other threads.

A thread can also call RpcSmGetThreadHandle and RpcSmSetThreadHandle to save and restore its
memory management environment.

Return Value

Value Meaning

RPC_S_OK Success

See Also

RpcSmAllocate, RpcSmFree, RpcSmSetThreadHandle

 RpcSmSetClientAllocFree

The RpcSmSetClientAllocFree function enables the memory allocation and release mechanisms
used by the client stubs.

#include <rpc.h>
RPC_STATUS RPC_ENTRY
RpcSmSetClientAllocFree(

RPC_CLIENT_ALLOC * pfnAllocate,
RPC_CLIENT_FREE * pfnFree);

Parameters

pfnAllocate
Specifies the routine used to allocate memory.

pfnFree
Specifies the routine used to release memory and used with the routine specified by pfnAllocate.

Remarks

By overriding the default routines used by the client stub to manage memory, the
RpcSmSetClientAllocFree routine establishes the memory allocation and memory freeing
mechanisms. Note that the default routines are free and malloc, unless the remote call occurs within
manager code. In this case, the default memory management routines are RpcSmFree and
RpcSmAllocate.

Return Values

Value Meaning

RPC_S_OK Success
RPC_S_OUT_OF_MEMORY Out of memory

See Also

RpcSmAllocate, RpcSmFree

 RpcSmSetThreadHandle

The RpcSmSetThreadHandle function sets a thread handle for the stub memory management
environment.

#include <rpc.h>
RPC_STATUS RPC_ENTRY
RpcSmSetThreadHandle (

RPC_SS_THREAD_HANDLE Handle);

Parameter

Handle
Specifies a thread handle returned by a call to RpcSmGetThreadHandle.

Remarks

The RpcSmSetThreadHandle routine is called by an application to set a thread handle for the stub
memory management environment. A thread used to manage memory for the stub memory
management environment calls RpcSmGetThreadHandle to obtain a handle for its memory
environment. In this way, another thread that calls RpcSmSetThreadHandle by using this handle can
then use the same memory management environment.

The same memory management thread handle must be used by multiple threads calling
RpcSmAllocate and RpcSmFree in order to manage the same memory. Before spawning new
threads to manage the same memory, the thread that established the memory management
environment (parent thread) calls RpcSmGetThreadHandle to obtain a thread handle for this
environment. Then, the spawned threads call RpcSmSetThreadHandle with the new manager handle
provided by the parent thread.

Note that the RpcSmSetThreadHandle routine is usually called by a thread spawned by a server
manager procedure. The stub sets up the memory management environment for the manager
procedure ,and the manager calls RpcSmGetThreadHandle to obtain a thread handle. Then, each
spawned thread calls RpcSmGetThreadHandle to get access to the manager's memory management
environment.

A thread can also call RpcSmGetThreadHandle and RpcSmSetThreadHandle to save and restore its
memory management environment.

Return Value

Value Meaning

RPC_S_OK Success

See Also

RpcSmAllocate, RpcSmGetThreadHandle, RpcSmFree

 RpcSmSwapClientAllocFree

The RpcSmSwapClientAllocFree function exchanges the memory allocation and release
mechanisms used by the client stubs with one supplied by the client.

#include <rpc.h>
RPC_STATUS RPC_ENTRY
RpcSmSwapClientAllocFree(

RPC_CLIENT_ALLOC * pfnAllocate,
RPC_CLIENT_FREE * pfnFree,
RPC_CLIENT_ALLOC ** pfnOldAllocate,
RPC_CLIENT_FREE ** pfnOldFree);

Parameters

pfnAllocate
Specifies a new routine to allocate memory.

pfnFree
Specifies a new routine to release memory.

pfnOldAllocate
Returns the previous routine to allocate memory before the call to this routine.

pfnOldFree
Returns the previous routine to release memory before the call to this routine.

Remarks

The RpcSmSwapClientAllocFree routine exchanges the current memory allocation and memory
freeing mechanisms with those supplied by the client.

Return Values

Value Meaning

RPC_S_OK Success
RPC_S_INVALID_ARG Invalid argument(s)

See Also

RpcSmAllocate, RpcSmFree, RpcSmSetClientAllocFree

 RpcSsAllocate

The RpcSsAllocate function allocates memory within the RPC stub memory management function,
and returns a pointer to the allocated memory or NULL.

#include <rpc.h>
void __RPC_FAR * RPC_ENTRY
RpcSsAllocate(

size_t Size);

Parameter

Size
Specifies the size of memory to allocate (in bytes).

Remarks

The RpcSsAllocate routine allows an application to allocate memory within the RPC stub memory
management function. Prior to calling RpcSsAllocate, the memory management environment must
already be established. For memory management called within the stub, the stub itself usually
establishes the necessary environment. See Chapter 8 , "Memory Management," for a complete
discussion of the various memory management conditions supported by RPC. When using
RpcSsAllocate to allocate memory not called from the stub, the application must call
RpcSsEnableAllocate to establish the required memory management environment.

The RpcSsAllocate routine returns a pointer to the allocated memory, if the call was successful.
Otherwise, it raises an exception.

When the stub establishes the memory management, it frees any memory allocated by
RpcSsAllocate. The application can free such memory before returning to the calling stub by calling
RpcSsFree.

By contrast, when the application establishes the memory management, it must free any memory
allocated. It does so by calling either RpcSsFree or RpcSsDisableAllocate.

To manage the same memory within the stub memory management environment, multiple threads can
call RpcSsAllocate and RpcSsFree. In this case, the threads must share the same stub memory
management thread handle. Applications pass thread handles from thread to thread by calling
RpcSsGetThreadHandle and RPCSsSetThreadHandle.

Note The RpcSsAllocate routine raises exceptions, while the RpcSmAllocate routine returns the
error code.

Return Value

Value Meaning

RPC_S_OUT_OF_MEMORY Out of memory

See Also

RpcSmAllocate, RpcSsDisableAllocate, RpcSsEnableAllocate, RpcSsFree,
RpcSsGetThreadHandle, RpcSsSetThreadHandle

 RpcSsDestroyClientContext QuickInfo

The RpcSsDestroyClientContext function destroys a context handle no longer needed by the client
without contacting the server.

#include <rpc.h>
void RPC_ENTRY
RpcSsDestroyClientContext(
void * * ContextHandle,
);

Parameter

ContextHandle
Specifies the context handle to be destroyed. The handle is set to NULL before
RpcSsDestroyClientContext returns.

Remarks

RpcSsDestroyClientContext is used by the client application to reclaim the memory resources used
to maintain a context handle on the client. This function is used when ContextHandle is no longer valid,
such as when a communication failure has occurred and the server is no longer available. The context
handle is set to NULL.

Do not use RpcSsDestroyClientContext to replace a server function that closes the context handle.

Return Values

Value Meaning
RPC_S_OK Success
RPC_X_SS_CONTEXT_MISMATC
H

Invalid context handle

See Also

RpcBindingReset

 RpcSsDisableAllocate

The RpcSsDisableAllocate function frees resources and memory within the stub memory
management environment.

#include <rpc.h>
void RPC_ENTRY
RpcSsDisableAllocate (void);

Remarks

The RpcSsDisableAllocate routine frees all the resources used by a call to RpcSsEnableAllocate. It
also releases memory that was allocated by a call to RpcSsAllocate after the call to
RpcSsEnableAllocate.

RpcSsEnableAllocate and RpcSsDisableAllocate must be used together as matching pairs.

See Also

RpcSmDisableAllocate, RpcSsAllocate, RpcSsEnableAllocate

 RpcSsEnableAllocate

The RpcSsEnableAllocate function establishes the stub memory management environment.

#include <rpc.h>
void RPC_ENTRY
RpcSsEnableAllocate (void);

Remarks

In cases where the stub memory management is not enabled by the stub itself, the
RpcSsEnableAllocate routine is called by applications to establish the stub memory management
environment. This environment must be established prior to making a call to RpcSsAllocate. For
server manager code called from the stub, the memory management environment is usually
established by the stub itself. Otherwise, call RpcSsEnableAllocate before calling RpcSsAllocate.
See Memory Management for a complete discussion of the memory management conditions used by
RPC. To learn how spawned threads use a stub memory management environment, see
RpcSsGetThreadHandle and RpcSsSetThreadHandle later in this section.

Note The RpcSsEnableAllocate routine raises exceptions, while the RpcSmEnableAllocate routine
returns the error code.

Return Value

Value Meaning

RPC_S_OUT_OF_MEMORY Out of memory

See Also

RpcSmEnableAllocate, RpcSsAllocate, RpcSsDisableAllocate

 RpcSsFree

The RpcSsFree function releases memory allocated by RpcSsAllocate.

#include <rpc.h>
void RPC_ENTRY
RpcSsFree(

void * NodeToFree);

Parameter

NodeToFree
Specifies a pointer to memory allocated by RpcSsAllocate or RpcSmAllocate.

Remarks

The RpcSsFree routine is used by applications to free memory allocated by RpcSsAllocate. In cases
where the stub allocates the memory for the environment, the RpcSsFree routine can also be used to
release memory. See Memory Management for a complete discussion of memory management
conditions supported by RPC.

Note that the handle of the thread calling RpcSsFree must match the handle of the thread that
allocated the memory by calling RpcSsAllocate. Use RpcSsGetThreadHandle and
RpcSsSetThreadHandle to pass handles from thread to thread.

See Also

RpcSmFree, RpcSsAllocate, RpcSsGetThreadHandle, RpcSsSetThreadHandle

 RpcSsGetThreadHandle

The RpcSsGetThreadHandle function returns a thread handle for the stub memory management
environment.

#include <rpc.h>
RPC_SS_THREAD_HANDLE RPC_ENTRY
RpcSsGetThreadHandle (void);

Remarks

The RpcSsGetThreadHandle routine is called by applications to obtain a thread handle for the stub
memory management environment. A thread used to manage memory for the stub memory
management environment uses RpcSsGetThreadHandle to receive a handle for its memory
environment. In this way, another thread that calls RpcSsSetThreadHandle by using this handle can
then use the same memory management environment.

The same thread handle must be used by multiple threads calling RpcSsAllocate and RpcSsFree in
order to manage the same memory. Before spawning new threads to manage the same memory, the
thread that established the memory management environment (parent thread) calls
RpcSsGetThreadHandle to obtain a thread handle for this environment. Then, the spawned threads
call RpcSsSetThreadHandle with the handle provided by the parent thread.

The RpcSsGetThreadHandle routine is usually called by a server manager procedure before
additional threads are spawned. The stub sets up the memory management environment for the
manager procedure, and the manager calls RpcSsGetThreadHandle to make this environment
available to the other threads.

A thread can also call RpcSsGetThreadHandle and RpcSsSetThreadHandle to save and restore its
memory management environment.

Note The RpcSsGetThreadHandle routine raises exceptions, while the RpcSmGetThreadHandle
routine returns the error code.

Return Value

Value Meaning

RPC_S_OK Success

See Also

RpcSmGetThreadHandle, RpcSsAllocate, RpcSsFree, RpcSsSetThreadHandle

 RpcSsSetClientAllocFree

The RpcSsSetClientAllocFree function enables the memory allocation and release mechanisms used
by the client stubs.

#include <rpc.h>
void RPC_ENTRY
RpcSsSetClientAllocFree(

RPC_CLIENT_ALLOC * pfnAllocate,
RPC_CLIENT_FREE * pfnFree);

Parameters

pfnAllocate
Specifies the routine used to allocate memory.

pfnFree
Specifies the routine used to release memory and used with the routine specified by pfnAllocate.

Remarks

By overriding the default routines used by the client stub to manage memory, the
RpcSsSetClientAllocFree routine establishes the memory allocation and memory freeing
mechanisms. Note that the default routines are free and malloc, unless the remote call occurs within
manager code. In this case, the default memory management routines are RpcSsFree and
RpcSsAllocate.

Note that when this routine reclaims the memory resources, it also makes the context handle NULL.

Note The RpcSsSetClientAllocFree routine raises exceptions, while the RpcSmSetClientAllocFree
routine returns the error code.

Return Value

Value Meaning

RPC_S_OUT_OF_MEMORY Out of memory

See Also

RpcSmSetClientAllocFree, RpcSsAllocate, RpcSsFree

 RpcSsSetThreadHandle

The RpcSsSetThreadHandle function sets a thread handle for the stub memory management
environment.

#include <rpc.h>
void RPC_ENTRY
RpcSsSetThreadHandle (

RPC_SM_THREAD_HANDLE Handle);

Parameter

Handle
Specifies a thread handle returned by a call to RpcSsGetThreadHandle.

Remarks

The RpcSsSetThreadHandle routine is called by an application to set a thread handle for the stub
memory management environment. A thread used to manage memory for the stub memory
management environment calls RpcSsGetThreadHandle to obtain a handle for its memory
environment. In this way, another thread that calls RpcSsSetThreadHandle by using this handle can
then use the same memory management environment.

The same thread handle must be used by multiple threads calling RpcSsAllocate and RpcSsFree in
order to manage the same memory. Before spawning new threads to manage the same memory, the
thread that established the memory management environment (parent thread) calls
RpcSsGetThreadHandle to obtain a thread handle for this environment. Then, the spawned threads
call RpcSsSetThreadHandle with the handle provided by the parent thread.

The RpcSsSetThreadHandle routine is usually called by a thread spawned by a server manager
procedure. The stub sets up the memory management environment for the manager procedure, and
the manager calls RpcSsGetThreadHandle to obtain a thread handle. Then, each spawned thread
calls RpcSsGetThreadHandle to get access to the manager's memory management environment.

A thread can also call RpcSsGetThreadHandle and RpcSsSetThreadHandle to save and restore its
memory management environment.

Note The RpcSsSetThreadHandle routine raises exceptions, while the RpcSmSetThreadHandle
routine returns the error code.

See Also

RpcSmSetThreadHandle, RpcSsAllocate, RpcSsFree, RpcSsGetThreadHandle

 RpcSsSwapClientAllocFree

The RpcSsSwapClientAllocFree function exchanges the memory allocation and release mechanisms
used by the client stubs with one supplied by the client.

#include <rpc.h>
void RPC_ENTRY
RpcSsSwapClientAllocFree(

RPC_CLIENT_ALLOC* pfnAllocate,
RPC_CLIENT_FREE* pfnFree,
RPC_CLIENT_ALLOC** pfnOldAllocate,
RPC_CLIENT_FREE** pfnOldFree);

Parameters

pfnAllocate
Specifies a new routine to allocate memory.

pfnFree
Specifies a new routine to release memory.

pfnOldAllocate
Returns the previous routine to allocate memory before the call to this routine.

pfnOldFree
Returns the previous routine to release memory before the call to this routine.

Remarks

The RpcSsSwapClientAllocFree routine exchanges the current memory allocation and memory
freeing mechanisms with those supplied by the client.

Note The RpcSsSwapClientAllocFree routine raises exceptions, while the
RpcSmSwapClientAllocFree routine returns the error code.

Return Values

Value Meaning

RPC_S_OK Success
RPC_S_OUT_OF_MEMORY Out of memory

See Also

RpcSmSwapClientAllocFree, RpcSsAllocate, RpcSsFree, RpcSsSetClientAllocFree

 RpcStringBindingCompose QuickInfo

The RpcStringBindingCompose function combines the components of a string binding into a string
binding.

#include <rpc.h>
RPC_STATUS RPC_ENTRY
RpcStringBindingCompose(

unsigned char * ObjUuid,
unsigned char * ProtSeq,
unsigned char * NetworkAddr,
unsigned char * EndPoint,
unsigned char * Options,
unsigned char * * StringBinding);

Parameters

ObjUuid
Points to a NULL-terminated string representation of an object UUID. For example, the string
"6B29FC40-CA47-1067-B31D-00DD010662DA" represents a valid UUID.

ProtSeq
Points to a NULL-terminated string representation of a protocol sequence. For more information, see
the RPC data types and structures reference entry for string binding. For a list of procotol sequences
supported by RPC, see RPC Data Types and Structures.

NetworkAddr
Points to a NULL-terminated string representation of a network address. The network-address
format is associated with the protocol sequence. For more information, see the RPC data types and
structures reference entry for string binding.

EndPoint
Points to a NULL-terminated string representation of an endpoint. The endpoint format and content
are associated with the protocol sequence. For example, the endpoint associated with the protocol
sequence ncacn_np is a pipe name in the format "\pipe\pipename". For more information, see the
RPC data types and structures reference entry for string binding.

Options
Points to a NULL-terminated string representation of network options. The option string is associated
with the protocol sequence. For more information, see the RPC data types and structures reference
entry for string binding.

StringBinding
Returns a pointer to a pointer to a NULL-terminated string representation of a binding handle.
Specify a null value to prevent RpcStringBindingCompose from returning the StringBinding
argument. In this case, the application does not call the RpcStringFree routine. For more
information, see the RPC data types and structures reference entry for string binding.

Remarks

An application calls the RpcStringBindingCompose routine to combine the components of a string-
binding handle into a string-binding handle.

The RPC run-time library allocates memory for the string returned in the StringBinding argument. The
application is responsible for calling the RpcStringFree routine to deallocate that memory.

Specify a null argument value or provide an empty string ("\0") for each input string that has no data.

Literal backslash characters within C-language strings must be quoted. The actual C string for the
server name appears as "\\\\servername", and the actual C string for a pipe name appears as "\\pipe\\
pipename".

Return Values

Value Meaning
RPC_S_OK Success
RPC_S_INVALID_STRING_UUID String representation of the UUID

not valid.

See Also

RpcBindingFromStringBinding, RpcBindingToStringBinding, RpcStringBindingParse,
RpcStringFree

 RpcStringBindingParse QuickInfo

The RpcStringBindingParse function returns the object UUID part and the address parts of a string
binding as separate strings.

#include <rpc.h>
RPC_STATUS RPC_ENTRY
RpcStringBindingParse(

unsigned char * StringBinding,
unsigned char * * ObjectUuid ,
unsigned char * * ProtSeq ,
unsigned char * * NetworkAddr ,
unsigned char * * EndPoint ,
unsigned char * * NetworkOptions);

Parameters

StringBinding
Points to a NULL-terminated string representation of a binding.

ObjectUuid
Returns a pointer to a pointer to a NULL-terminated string representation of an object UUID.
Specify a null value to prevent RpcStringBindingParse from returning the ObjectUuid argument. In
this case, the application does not call the RpcStringFree routine.

ProtSeq
Returns a pointer to a pointer to a NULL-terminated string representation of a protocol sequence.
For a list of procotol sequences supported by RPC, see RPC Data Types and Structures. Specify a
null value to prevent RpcStringBindingParse from returning the ProtSeq argument. In this case,
the application does not call the RpcStringFree routine.

NetworkAddr
Returns a pointer to a pointer to a NULL-terminated string representation of a network address.
Specify a null value to prevent RpcStringBindingParse from returning the NetworkAddr argument.
In this case, the application does not call the RpcStringFree routine.

EndPoint
Returns a pointer to a pointer to a NULL-terminated string representation of an endpoint.
Specify a null value to prevent RpcStringBindingParse from returning the EndPoint argument. In
this case, the application does not call the RpcStringFree routine.

NetworkOptions
Returns a pointer to a pointer to a NULL-terminated string representation of network options.
Specify a null value to prevent RpcStringBindingParse from returning the NetworkOptions
argument. In this case, the application does not call the RpcStringFree routine.

Remarks

An application calls the RpcStringBindingParse routine to parse a string representation of a binding
handle into its component fields.

The RPC run-time library allocates memory for each component string returned. The application is
responsible for calling the RpcStringFree routine once for each returned string to deallocate the
memory for that string.

If any field of the StringBinding argument is empty, the RpcStringBindingParse routine returns an
empty string ("\0") in the corresponding output argument.

Return Values

Value Meaning
RPC_S_OK Success
RPC_S_INVALID_STRING_BINDIN
G

Invalid string binding

See Also

RpcBindingFromStringBinding, RpcBindingToStringBinding, RpcStringBindingCompose,
RpcStringFree

 RpcStringFree QuickInfo

The RpcStringFree function frees a character string allocated by the RPC run-time library.

#include <rpc.h>
RPC_STATUS RPC_ENTRY
RpcStringFree(

unsigned char * * String);

Parameter

String
Points to a pointer to the character string to free.

Remarks

The RpcStringFree routine deallocates the memory containing a NULL-terminated character string
returned by the RPC run-time library.

An application is responsible for calling RpcStringFree once for each character string allocated and
returned by calls to other RPC run-time library routines.

Return Value

Value Meaning
RPC_S_OK Success

See Also

RpcBindingToStringBinding, RpcNsBindingInqEntryName, RpcStringBindingParse

 RpcTestCancel QuickInfo

The RpcTestCancel function checks for a cancel indication.

#include <rpc.h>
RPC_STATUS RPC_ENTRY
RpcTestCancel(

);

This function is supported only by 32-bit Windows NT platforms.

Remarks

An application server stub calls the RpcTestCancel routine to determine whether the call has been
cancelled. If the call has been cancelled, RPC_S_OK is returned; otherwise, another value is returned.

This routine should be called periodically by the server stub so that it can respond to cancels in a timely
fashion. If the routine returns RPC_S_OK, the stub should clean up its data structures and return to the
client.

Return Values

Value Meaning
RPC_S_OK Call has been cancelled
Other values Call has not been cancelled

 RpcTryExcept QuickInfo

See

RpcExcept

 RpcTryFinally QuickInfo

See

RpcFinally

 RpcWinSetYieldInfo

The RpcWinSetYieldInfo function configures Microsoft Windows 3.x client applications to yield to
other applications during remote procedure calls.

 #include <rpc.h>
RPC_STATUS
RpcWinSetYieldInfo(HWND hWnd,

BOOL fCustomYield,
WORD wMsg,
DWORD dwOtherInfo);

This function is only supported by Windows 3.x applications.

Parameters

hWnd
Identifies the application window that receives messages relating to yielding. Applications should
usually specify the parent window of the dialog box.
Standard yield applications receive messages for both the start and end of the yield period. Custom
yield applications receive messages that indicate when the RPC operation has completed.

fCustomYield
Specifies the yielding method. The following values are defined:
Value Yield method
TRUE Custom yield
FALSE Standard yield

wMsg
Specifies the message that is posted by the RPC run-time library to notify the application of RPC
events. The message value should be in the range beginning with WM_USER. If a zero value is
specified, no message is posted.
For standard-yield applications, the message indicates the beginning or end of the yield period. This
allows the application to refrain from performing operations that are illegal during an RPC operation.
Standard-yield applications use the following values of wParam and lParam with this message:
Parameter Value Description
wParam 1 Yield period beginning
wParam 0 Yield period ending
lParam - Unused

For a custom-yield application, the wMsg message notifies the application that the RPC operation is
complete. When the application receives this message, it should immediately return control to the
RPC run-time library by having the callback function return. The values of wParam and lParam are
set to zero and are not used.

dwOtherInfo
Specifies additional information about the yielding behavior.
For standard-yield applications, dwOtherInfo contains an optional HANDLE to an application-
supplied dialog-box resource. This handle is passed as the second parameter to the
DialogBoxIndirect function. If the handle specified by dwOtherInfo is zero, the default dialog box
supplied by the RPC run-time library is used. For more informatin about DialogBoxIndirect, see
your Windows API reference documentation.
For custom-yield applications, dwOtherInfo contains the procedure-instance address of the
application-supplied callback function.

Remarks

The RpcWinSetYieldInfo function supports two yielding methods:

· Standard yield method. The RPC run-time library provides a standard modal dialog box that includes
a single push-button control with an IDCANCEL ID. The dialog box prevents direct user input, such
as mouse and keyboard events, from being sent to the application. The application continues to
receive messages while the dialog box is present. The IDCANCEL message indicates that the
application user wants to end the remote procedure.

· Custom yield method. The application provides a callback function that the RPC run-time library
calls while a remote operation is in progress. The callback function must retrieve messages from the
message queue (including mouse and keyboard messages) and must process messages (both
queued and non-queued). The RPC run-time library posts a message to the application's queue
when the RPC operation is complete. The callback function returns a boolean value to the RPC run-
time library.

When a conventional RPC client application makes a remote procedure call, the MIDL-generated stub
calls the RPC run-time library and the library calls the appropriate transport. These calls are
synchronous and block until the server side sends back a response. In the cooperatively multitasked
Windows 3.x environment, an active, blocked application prevents Windows and other Windows
applications from running. The RpcWinSetYieldInfo function allows you to direct the application to
yield to Windows and other Windows applications while waiting for an RPC operation to finish.

Windows RPC client applications can be organized into three classes that correspond to levels of
yielding support: no yielding, standard yielding, and custom yielding.

· Some applications do not yield. RPC calls block until completion.
· Standard-yield applications are RPC-aware applications that yield but do not need to perform

special handling.
· Custom-yield applications are those that are RPC aware and want to perform special handling while

an RPC operation is in progress.

You can replace the provided dialog-box resource with an application-specified dialog-box resource.
The resource must use the same style as the default and must contain a single push-button control
with an IDCANCEL ID. The dialog-box function is part of the RPC run-time library and cannot be
replaced.

To yield in a well-behaved manner from within the context of a pending RPC operation, applications
must observe the following rules:

· Do not make another RPC call. If the RPC run-time library detects that a new call is being made
during the yielding period, it returns an error to the caller. This is particularly important if the
application makes RPC calls in response to common messages, such as WM_PAINT.

· Do not exit the application. Do not close the window specified by the hWnd handle parameter. Your
application can process WM_CLOSE messages in the window procedure and not call
DefWindowProc during the yielding period. For more information about DefWindowProc, see your
Windows API reference documentation.

· Return FALSE in response to WM_QUERYENDSESSION messages. Alternatively, a custom-yield
application can use this message as a signal to cause YieldFunctionName to return FALSE to the
RPC run-time library and end the yielding period.

There is no guarantee that any code that supports yielding will be invoked. Whether or not an
application yields depends on the specific call, the current state of the underlying system, and the
implementation of the underlying RPC transport. Applications should not rely on this code to do
anything other than manage yielding.

The RpcWinSetYieldInfo function can be called more than once by an application. Each call simply
replaces the information stored in the previous calls.

Yielding is not necessary for Win32 applications. Environments that support Win32 applications are
preemptively multitasked and are multithreaded. For efficiency, a Win32-only application should not call
RpcWinSetYieldInfo.

Return Values

Value Meaning
RPC_S_OK The information was set

successfully.
RPC_S_OUT_OF_MEMORY Memory could not be allocated to

store the information for this task.

See Also

DefWindowProc, DialogBoxIndirect, MakeProcInstance, YieldFunctionName

 RpcWinSetYieldTimeout

The RpcWinSetYieldTimeout function configures the amount of time an RPC call will wait for the
server to respond before invoking the application's RPC yielding mechanism. This function is only
supported by Windows 3.x applications.

#include <rpc.h>
RPC_STATUS RPC_ENTRY
RpcWinSetYieldTimeout (
unsigned int Timeout);

Parameter

Timeout
Specifies the timeout value in milliseconds. If this function is not called, the default is 500
milliseconds.

Remarks

Depending on the type of yielding specified in RpcWinSetYieldInfo, this can either produce a dialog
box or signal the application.

If the Timeout value is small, the yielding mechanism can be invoked too often. This results in loss of
performance. Conversely, if the value specified for Timeout is too large, the application and system
will be frozen for the timeout period. To avoid this, use timeouts in the range of 500 to 2000
milliseconds.

The RpcWinSetYieldTimeout function can be called more than once by an application. Each call
simply replaces the information stored in the previous calls.

Return Values

Value Meaning
RPC_S_OK Success
RPC_S_CANNOT_SUPPORT RpcWinSetYieldInfo must be called

prior to RpcWinSetYieldTimeout.

See Also

RpcWinSetYieldInfo

 UuidCompare QuickInfo

The UuidCompare function compares two UUIDs.

#include <rpc.h>
signed int RPC_ENTRY
UuidCompare(

UUID * Uuid1,
UUID * Uuid2,
RPC_STATUS * Status);

Parameters

Uuid1
Specifies a pointer to a UUID. This UUID is compared with the UUID specified in the Uuid2
argument.

Uuid2
Specifies a pointer to a UUID. This UUID is compared with the UUID specified in the Uuid1
argument.

Status
Returns any errors that may occur, and will normally be set by the function to RPC_S_OK upon
return.

Remarks

An application calls the UuidCompare routine to compare two UUIDs and determine their order. To
determine order, one of the following is returned:

Returned Value Meaning
-1 The Uuid1 argument is less than the

Uuid2 argument.
0 The Uuid1 argument is equal to the

Uuid2 argument.
1 The Uuid1 argument is greater than

the Uuid2 argument.

See Also

UuidCreate

 UuidCreate QuickInfo

The UuidCreate function creates a new UUID.

#include <rpc.h>
RPC_STATUS RPC_ENTRY
UuidCreate(

UUID * Uuid);

Parameter

Uuid
Returns a pointer to the created UUID.

Remarks

An application calls the UuidCreate routine to create a new UUID.

Return Values

Value Meaning
RPC_S_OK Success
RPC_S_UUID_NO_ADDRESS Cannot get Ethernet or token-ring

hardware address for this computer

See Also

UuidFromString, UuidToString

 UuidCreateNil QuickInfo

The UuidCreateNil function creates a nil-valued UUID.

#include <rpc.h>
RPC_ENTRY
UuidCreateNil(

UUID * Nil_Uuid,
RPC_STATUS * Status);

Parameters

Nil_Uuid
Returns a nil-valued UUID.

Status
Returns any errors that may occur. The parameter is typically set by the function to RPC_S_OK
upon return.

Remarks

An application calls the UuidCreateNil routine to create a nil-valued UUID.

 UuidEqual QuickInfo

The UuidEqual function determines if two UUIDs are equal.

#include <rpc.h>
int RPC_ENTRY
UuidEqual(

UUID * Uuid1,
UUID * Uuid2,
RPC_STATUS * Status);

Parameters

Uuid1
Specifies a pointer to a UUID. This UUID is compared with the UUID specified in the Uuid2
argument.

Uuid2
Specifies a pointer to a UUID. This UUID is compared with the UUID specified in the Uuid1
argument.

Status
Returns any errors that may occur, and will normally be set by the function to RPC_S_OK upon
return.

Remarks

An application calls the UuidEqual routine to compare two UUIDs and determine whether they are
equal. Upon completion, one of the following is returned:

Returned Value Meaning
TRUE The Uuid1 argument is equal to the

Uuid2 argument.
FALSE The Uuid1 argument is not equal to

the Uuid2 argument.

See Also

UuidCreate

 UuidFromString QuickInfo

The UuidFromString function converts a string to a UUID.

#include <rpc.h>
RPC_STATUS RPC_ENTRY
UuidFromString(

unsigned char * StringUuid,
UUID * Uuid);

Parameters

StringUuid
Points to a string representation of a UUID.

Uuid
Returns a pointer to a UUID in binary form.

Remarks

An application calls the UuidFromString routine to convert a string UUID to a binary UUID.

Return Values

Value Meaning
RPC_S_OK Success
RPC_S_INVALID_STRING_UUID The string UUID is invalid

See Also

UuidToString

 UuidHash QuickInfo

The UuidHash function creates a hash value for a UUID.

#include <rpc.h>
unsigned short RPC_ENTRY
UuidHash(

UUID * Uuid,
RPC_STATUS * Status);

Parameters

Uuid
Specifies the UUID for which a hash value is created.

Status
Returns any errors that may occur, and will normally be set by the function to RPC_S_OK upon
return.

Remarks

An application calls the UuidHash routine to generate a hash value for a specified UUID. The hash
value returned is implementation dependent and may vary from implementation to implementation.

See Also

UuidCreate

 UuidIsNil QuickInfo

The UuidIsNil function determines if a UUID is a nil-valued UUID.

#include <rpc.h>
int RPC_ENTRY
UuidIsNil(

UUID * Uuid,
RPC_STATUS * Status);

Parameters

Uuid
Specifies a UUID to test for nil value.

Status
Returns any errors that may occur, and will typically be set by the function to RPC_S_OK upon
return.

Remarks

An application calls the UuidIsNil routine to determine whether the specified UUID is a nil-valued
UUID. This routine acts as though the application called the UuidCreateNil routine, and then called the
UuidEqual routine to compare the returned nil-value UUID to the UUID specified in the Uuid argument.

Upon completion, one of the following is returned:

Returned Value Meaning
TRUE The Uuid argument is a nil-valued

UUID.
FALSE The Uuid argument is not a nil-

valued UUID.

See Also

UuidCreate

 UuidToString QuickInfo

The UuidToString function converts a UUID to a string.

#include <rpc.h>
RPC_STATUS RPC_ENTRY
UuidToString(

UUID * Uuid,
unsigned char * * StringUuid);

Parameters

Uuid
Points to a binary UUID.

StringUuid
Returns a pointer to a pointer to the string representation of the UUID specified in the Uuid
argument.
Specify a null value to prevent UuidToString from returning the StringUuid argument. In this case,
the application does not call the RpcStringFree routine.

Remarks

An application calls UuidToString to convert a binary UUID to a string UUID. The RPC run-time library
allocates memory for the string returned in the StringUuid argument. The application is responsible for
calling the RpcStringFree routine to deallocate that memory.

Return Values

Value Meaning
RPC_S_OK Success
RPC_S_OUT_OF_MEMORY No memory

See Also

RpcStringFree, UuidFromString

 YieldFunctionName

YieldFunctionName is a placeholder name for the application-supplied function name provided as a
parameter to the RpcWinSetYieldInfo routine.

BOOL FAR PASCAL YieldFunctionName(void);

Remarks

The callback function must retrieve messages from the message queue (including mouse and
keyboard messages) and must process messages, both queued and non-queued.

YieldFunctionName should return TRUE when the application is notified that the RPC operation has
completed (by receiving the wMsg message). It is an error for YieldFunctionName to return TRUE if it
has not been notified that the RPC operation has completed.

YieldFunctionName should return FALSE if the user wants to cancel the RPC operation in progress.
The RPC run-time library then attempts to abort the current operation, which is likely to result in the
RPC call returning an error to the application. Note that due to race conditions, the operation can
complete successfully even if YieldFunctionName returns FALSE.

See Also

RpcWinSetYieldInfo

 Error Codes

RPC functions can return the following Win32 error codes:

Manifest Description
EPT_S_CANT_CREATE The endpoint-map database

cannot be created.
EPT_S_CANT_PERFORM_OP The operation cannot be

performed.
EPT_S_INVALID_ENTRY The entry is invalid.
EPT_S_NOT_REGISTERED There are no more endpoints

available from the endpoint-
map database.

RPC_S_ACCESS_DENIED The user does not have
sufficient privilege to complete
the operation.

RPC_S_ADDRESS_ERROR An addressing error has
occurred on the server.

RPC_S_ALREADY_LISTENING The server is already listening.
RPC_S_ALREADY_REGISTERED The object UUID has already

been registered.
RPC_S_BINDING_HAS_NO_AUTH The binding does not contain

any authentication information.
RPC_S_BINDING_INCOMPLETE The binding handle is a

required parameter.
RPC_S_BUFFER_TOO_SMALL The buffer used to transmit

data is too small.
RPC_S_CALL_CANCELLED The remote procedure call

exceeded the cancel timeout
and was cancelled.

RPC_S_CALL_FAILED The remote procedure call
failed.

RPC_S_CALL_FAILED_DNE The remote procedure call
failed and did not execute.

RPC_S_CALL_IN_PROGRESS A remote procedure call is
already in progress for this
thread.

RPC_S_CANNOT_SUPPORT The requested operation is not
supported.

RPC_S_CANT_CREATE_ENDPOINT The endpoint cannot be
created.

RPC_S_COMM_FAILURE Unable to communicate with
the server.

RPC_S_DUPLICATE_ENDPOINT The endpoint is a duplicate.
RPC_S_ENTRY_ALREADY_EXISTS The entry already exists.
RPC_S_ENTRY_NOT_FOUND The entry is not found.
RPC_S_FP_DIV_ZERO A floating-point operation at

the server has caused a divide
by zero.

RPC_S_FP_OVERFLOW A floating-point overflow has
occurred at the server.

RPC_S_FP_UNDERFLOW A floating-point underflow
occurred at the server.

RPC_S_GROUP_MEMBER_NOT_FOU
ND

The group member has not
been found.

RPC_S_INCOMPLETE_NAME The entry name is incomplete.
RPC_S_INTERFACE_NOT_FOUND The interface has not been

found.
RPC_S_INTERNAL_ERROR An internal error has occurred

in a remote procedure call.
RPC_S_INVALID_ARG The specified argument is not

valid.
RPC_S_INVALID_AUTH_IDENTITY The security context is invalid.
RPC_S_INVALID_BINDING The binding handle is invalid.
RPC_S_INVALID_BOUND The array bounds are invalid.
RPC_S_INVALID_ENDPOINT_FORMA
T

The endpoint format is invalid.

RPC_S_INVALID_LEVEL The level parameter is invalid.
RPC_S_INVALID_NAF_ID The network-address family is

invalid.
RPC_S_INVALID_NAME_SYNTAX The name syntax is invalid.
RPC_S_INVALID_NET_ADDR The network address is

invalid.
RPC_S_INVALID_NETWORK_OPTION
S

The network options are
invalid.

RPC_S_INVALID_OBJECT The object is invalid.
RPC_S_INVALID_RPC_PROTSEQ The RPC protocol sequence is

invalid.
RPC_S_INVALID_SECURITY_DESC The security descriptor is not

in the valid format.
RPC_S_INVALID_STRING_BINDING The string binding is invalid.
RPC_S_INVALID_STRING_UUID The string UUID is invalid.
RPC_S_INVALID_TAG The discriminant value does

not match any of the case
values. There is no default
case.

RPC_S_INVALID_TIMEOUT The timeout value is invalid.
RPC_S_INVALID_VERS_OPTION The version option is invalid.
RPC_S_MAX_CALLS_TOO_SMALL The maximum number of calls

is too small.
RPC_S_NAME_SERVICE_UNAVAILAB
LE

The name service is
unavailable.

RPC_S_NO_BINDINGS There are no bindings.
RPC_S_NO_CALL_ACTIVE There is no remote procedure

call active in this thread.
RPC_S_NO_CONTEXT_AVAILABLE No security context is

available to allow

impersonation.
RPC_S_NO_ENDPOINT_FOUND No endpoint has been found.
RPC_S_NO_ENTRY_NAME The binding does not contain

an entry name.
RPC_S_NO_ENV_SETUP No environment variable

is set up.
RPC_S_NO_INTERFACES No interfaces are registered.
RPC_S_NO_INTERFACES_EXPORTE
D

No interfaces have been
exported.

RPC_S_NO_MORE_BINDINGS There are no more bindings.
RPC_S_NO_MORE_ELEMENTS There are no more elements.
RPC_S_NO_MORE_MEMBERS There are no more members.
RPC_S_NO_NS_PRIVILEGE There is no privilege for a

name-service operation.
RPC_S_NO_PRINC_NAME No principal name is

registered.
RPC_S_NO_PROTSEQS There are no protocol

sequences.
RPC_S_NO_PROTSEQS_REGISTERE
D

No protocol sequences have
been registered.

RPC_S_NOT_ALL_OBJS_UNEXPORT
ED

Not all objects are unexported.

RPC_S_NOT_CANCELLED The thread is not cancelled.
RPC_S_NOT_LISTENING The server is not listening.
RPC_S_NOT_RPC_ERROR The status code requested is

not valid.

RPC_S_NOTHING_TO_EXPORT There is nothing to export.
RPC_S_OBJECT_NOT_FOUND The object UUID has not been

found.
RPC_S_OK The call has completed

successfully.
RPC_S_OUT_OF_MEMORY The needed memory is not

available.
RPC_S_OUT_OF_RESOURCES Not enough resources are

available to complete this
operation.

RPC_S_OUT_OF_THREADS The RPC run-time library was
not able to create another
thread.

RPC_S_PROCNUM_OUT_OF_RANGE The procedure number is out
of range.

RPC_S_PROTOCOL_ERROR An RPC protocol error has
occurred.

RPC_S_PROTSEQ_NOT_FOUND The RPC protocol sequence
has not been found.

RPC_S_PROTSEQ_NOT_SUPPORTE
D

The RPC protocol sequence is
not supported.

RPC_S_SEC_PKG_ERROR There is an error with the

security package.
RPC_S_SERVER_NOT_LISTENING The server is not listening for

remote procedure calls.
RPC_S_SERVER_OUT_OF_MEMORY The server has insufficient

memory to complete this
operation.

RPC_S_SERVER_TOO_BUSY The server is too busy to
complete this operation.

RPC_S_SERVER_UNAVAILABLE The server is unavailable.
RPC_S_STRING_TOO_LONG The string is too long.
RPC_S_TYPE_ALREADY_REGISTERE
D

The type UUID has already
been registered.

RPC_S_UNKNOWN_AUTHN_LEVEL The authentication level is
unknown.

RPC_S_UNKNOWN_AUTHN_SERVICE The authentication service is
unknown.

RPC_S_UNKNOWN_AUTHN_TYPE The authentication type is
unknown.

RPC_S_UNKNOWN_AUTHZ_SERVICE The authorization service is
unknown.

RPC_S_UNKNOWN_IF The interface is unknown.
RPC_S_UNKNOWN_MGR_TYPE The manager type is

unknown.
RPC_S_UNSUPPORTED_AUTHN_LEVE
L

The authentication level is not
supported.

RPC_S_UNSUPPORTED_NAME_SYN
TAX

The name syntax is not
supported.

RPC_S_UNSUPPORTED_TRANS_SYN The transfer syntax is not
supported by the server.

RPC_S_UNSUPPORTED_TYPE The type UUID is not
supported.

RPC_S_UUID_LOCAL_ONLY The UUID that is only valid for
this computer has been
allocated.

RPC_S_UUID_NO_ADDRESS No network address is
available for constructing a
UUID.

RPC_S_WRONG_KIND_OF_BINDING The binding handle is not the
correct type.

RPC_S_ZERO_DIVIDE The server has attempted an
integer divide by zero.

RPC_X_BAD_STUB_DATA The stub has received bad
data.

RPC_X_BYTE_COUNT_TOO_SMAL The byte count is too small.
RPC_X_ENUM_VALUE_OUT_OF_RAN
GE

The enumeration value is out
of range.

RPC_X_ENUM_VALUE_TOO_LARGE The enumeration constant
must be less than 65535.

RPC_X_INVALID_BOUND The specified bounds of an

array are inconsistent.
RPC_X_INVALID_TAG The discriminant value does

not match any of the case
values. There is no default
case.

RPC_X_NO_MEMORY Insufficient memory is
available.

RPC_X_NO_MORE_ENTRIES The list of servers available for
the auto_handle binding has
been exhausted.

RPC_X_NULL_REF_POINTER A null reference pointer has
been passed to the stub.

RPC_X_SS_BAD_ES_VERSION The operation for the
serializing handle is not valid.

RPC_X_SS_CANNOT_GET_CALL_HA
NDLE

The stub is unable to get the
call handle.

RPC_X_SS_CHAR_TRANS_OPEN_FAI
L

The file designated by
DCERPCCHARTRANS
cannot be opened.

RPC_X_SS_CHAR_TRANS_SHORT_FI
LE

The file containing the
character-translation table has
fewer than 512 bytes.

RPC_X_SS_CONTEXT_DAMAGED The context handle changed
during a call. Only raised on
the client side.

RPC_X_SS_CONTEXT_MISMATCH The context handle does not
match any known context
handles.

RPC_X_SS_HANDLES_MISMATCH The binding handles passed to
a remote procedure call do not
match.

RPC_X_SS_IN_NULL_CONTEXT A null context handle is
passed in an in parameter
position.

RPC_X_SS_INVALID_BUFFER The buffer is not valid for the
operation.

RPC_X_SS_WRONG_ES_VERSION The software version is
incorrect.

RPC_X_SS_WRONG_STUB_VERSION The stub version is incorrect.

 Legal Information

Information in this document is subject to change without notice. Companies, names, and data used in
examples herein are fictitious unless otherwise noted. No part of this manual may be reproduced or
transmitted in any form or by any means, electronic or mechanical, for any purpose without the express
written permission of Microsoft Corporation.

Microsoft may have patents or pending patent applications, trademarks, copyrights, or other intellectual
property rights covering subject matter in this document. The furnishing of this document does not give
you any license to these patents, trademarks, copyrights, or other intellectual property rights except as
expressly provided in any written license agreement from Microsoft.

Copyright (C) 1992-1995 Microsoft Corporation. All rights reserved.

Microsoft, MS, MS-DOS, Win32, Win32s, and Windows are registered trademarks, and Windows NT is
a trademark of Microsoft Corporation.

U.S. Patent No. 4955066

Portions of this documentation are provided under license from Digital Equipment Corporation.
Copyright (C) 1990, 1992 Digital Equipment Corporation. All rights reserved.

DEC is a registered trademark and DECnet and Pathworks are trademarks of Digital Equipment
Corporation.

 CLUUID

This directory contains the files for the sample distributed application "cluuid":

File Description

README.TXT Readme file for the cluuid sample CLUUID.IDL Interface definition language file
CLUUID.ACF Attribute configuration file CLUUIDC.C Client main program CLUUIDS.C
Server main program CLUUIDP.C Remote procedures MAKEFILE Nmake file to build for NT
MAKEFILE.DOS Nmake file to build for MS-DOS

This sample program demonstrates how to supply multiple implementations of the remote procedure
specified in the interface. It also demonstrates how the client selects among the implementations by
providing a client object uuid.

The server calls RpcObjectSetType to associate a client object uuid with the object uuid in the Object
Registry Table. The server initializes a manager entry point vector (manager epv) and then calls
RpcRegisterIf to associate the interface uuid and the object uuid with the manager epv in the Interface
Registry Table.

When the client makes a remote procedure call, the client object uuid is mapped to the object uuid in
the Object Registry Table. The resulting object uuid and the interface uuid are mapped to a manager
entry point vector in the Interface Registry Table.

By default, in this example, the server registers two implementations of the "hello, world" function
HelloProc and HelloProc2. The HelloProc2 implementation is associated with the object uuid
"11111111-1111-1111-1111-111111111111". When the client makes a procedure call with a null uuid, the
client's request is mapped to the original HelloProc. When the client makes a procedure call with the
client object uuid "11111111-1111-1111-1111-11111111111", the client's request is mapped to HelloProc2
(which prints the string in reverse).

--- BUILDING CLIENT AND SERVER APPLICATIONS FOR
MICROSOFT WINDOWS NT: ---

The following environment variables should be set for you already. set CPU=i386

 set INCLUDE=c:\mstools\h
 set LIB=c:\mstools\lib
 set PATH=c:\winnt\system32;c:\mstools\bin;

For mips, set CPU=mips For alpha, set
CPU=alpha

Build the sample distributed application:

 nmake cleanall
 nmake

This builds the executable programs cluuidc.exe (client) and cluuids.exe (server).

--- BUILDING THE CLIENT APPLICATION FOR
MS-DOS ---

After installing the Microsoft Visual C/C++ version 1.50 development environment and the Microsoft
RPC version 2.0 toolkit on a Windows NT computer, you can build the sample client application from
Windows NT.

 nmake -f makefile.dos cleanall
 nmake -f makefile.dos

This builds the client application cluuidc.exe.

You may also execute the Microsoft Visual C/C++ compiler under MS-DOS. This requires a two step
build process.

 Step One: Compile the .IDL files under Windows NT
 nmake -a -f makefile.dos cluuid.h

 Step Two: Compile the C sources (stub and application) under MS-DOS
 nmake -f makefile.dos

-- RUNNING THE CLIENT AND SERVER APPLICATIONS
--

On the server, enter

 cluuids

On the client, enter

 net start workstation
 cluuidc

To call the second implementation of the function, on the client, enter

 cluuidc -u "11111111-1111-1111-1111-111111111111"

Note: The client and server applications can run on the same Microsoft Windows NT computer when
you use different screen groups.

Several command line switches are available to change settings for this program. For a listing of the
switches available from the client program, enter

 cluuidc -?

For a listing of switches available from the server program, enter

 cluuids -?

 MAKEFILE (CLUUID RPC Sample)

#***#
#** **#
#** Microsoft RPC Examples **#
#** cluuid Application **#
#** Copyright(c) Microsoft Corp. 1992 **#
#** **#
#***#

!include <ntwin32.mak>

all : cluuidc cluuids

Make the client side application cluuidc
cluuidc : cluuidc.exe
cluuidc.exe : cluuidc.obj cluuid_c.obj
 $(link) $(linkdebug) $(conflags) -out:cluuidc.exe \
 cluuidc.obj cluuid_c.obj \
 rpcrt4.lib $(conlibs)

cluuidc main program
cluuidc.obj : cluuidc.c cluuid.h
 $(cc) $(cdebug) $(cflags) $(cvars) $*.c

cluuidc stub
cluuid_c.obj : cluuid_c.c cluuid.h
 $(cc) $(cdebug) $(cflags) $(cvars) $*.c

Make the server side application
cluuids : cluuids.exe
cluuids.exe : cluuids.obj cluuidp.obj cluuid_s.obj
 $(link) $(linkdebug) $(conflags) -out:cluuids.exe \
 cluuids.obj cluuid_s.obj cluuidp.obj \
 rpcrt4.lib $(conlibsmt)

cluuid server main program
cluuids.obj : cluuids.c cluuid.h
 $(cc) $(cdebug) $(cflags) $(cvarsmt) $*.c

remote procedures
cluuidp.obj : cluuidp.c cluuid.h
 $(cc) $(cdebug) $(cflags) $(cvarsmt) $*.c

cluuids stub file
cluuid_s.obj : cluuid_s.c cluuid.h
 $(cc) $(cdebug) $(cflags) $(cvarsmt) $*.c

Stubs and header file from the IDL file
cluuid.h cluuid_c.c cluuid_s.c : cluuid.idl cluuid.acf
 midl -oldnames -use_epv -no_cpp cluuid.idl

Clean up everything

cleanall : clean
 -del *.exe

Clean up everything but the .EXEs
clean :
 -del *.obj
 -del *.map
 -del cluuid_c.c
 -del cluuid_s.c
 -del cluuid.h

 CLUUIDC.C (CLUUID RPC Sample)

/
**
 Microsoft RPC Version 2.0
 Copyright Microsoft Corp. 1992, 1993, 1994
 Cluuid Example

 FILE: cluuidc.c

 USAGE: cluuidc -n network_address
 -p protocol_sequence
 -e endpoint
 -o options
 -s string_displayed_on_server
 -u client object uuid

 PURPOSE: Client side of RPC distributed application

 FUNCTIONS: main() - binds to server and calls remote procedure

 COMMENTS: This distributed application prints a string such as
 "hello, world" on the server. The client manages its
 connection to the server. The client uses the implicit
 binding handle ImpHandle defined in the file cluuid.h.

**
/

#include <stdio.h>
#include <stdlib.h>
#include <ctype.h>
#include "cluuid.h" // header file generated by MIDL compiler

void Usage(char * pszProgramName)
{
 fprintf(stderr, "Usage: %s\n", pszProgramName);
 fprintf(stderr, " -p protocol_sequence\n");
 fprintf(stderr, " -n network_address\n");
 fprintf(stderr, " -e endpoint\n");
 fprintf(stderr, " -o options\n");
 fprintf(stderr, " -s string\n");
 fprintf(stderr, " -u uuid\n");
 exit(1);
}

void _CRTAPI1 main(int argc, char **argv)
{
 RPC_STATUS status;
 unsigned char * pszUuid = NULL;
 unsigned char * pszProtocolSequence = "ncacn_np";
 unsigned char * pszNetworkAddress = NULL;
 unsigned char * pszEndpoint = "\\pipe\\cluuid";
 unsigned char * pszOptions = NULL;

 unsigned char * pszStringBinding = NULL;
 unsigned char * pszString = "hello, world";
 unsigned long ulCode;
 int i;

 /* allow the user to override settings with command line switches */
 for (i = 1; i < argc; i++) {
 if ((*argv[i] == '-') || (*argv[i] == '/')) {
 switch (tolower(*(argv[i]+1))) {
 case 'p': // protocol sequence
 pszProtocolSequence = argv[++i];
 break;
 case 'n': // network address
 pszNetworkAddress = argv[++i];
 break;
 case 'e':
 pszEndpoint = argv[++i];
 break;
 case 'o':
 pszOptions = argv[++i];
 break;
 case 's':
 pszString = argv[++i];
 break;
 case 'u':
 pszUuid = argv[++i];
 break;
 case 'h':
 case '?':
 default:
 Usage(argv[0]);
 }
 }
 else
 Usage(argv[0]);
 }

 /* Use a convenience function to concatenate the elements of */
 /* the string binding into the proper sequence. */
 status = RpcStringBindingCompose(pszUuid,
 pszProtocolSequence,
 pszNetworkAddress,
 pszEndpoint,
 pszOptions,
 &pszStringBinding);
 printf("RpcStringBindingCompose returned 0x%x\n", status);
 printf("pszStringBinding = %s\n", pszStringBinding);
 if (status) {
 exit(status);
 }

 /* Set the binding handle that will be used to bind to the server. */
 status = RpcBindingFromStringBinding(pszStringBinding,
 &ImpHandle);
 printf("RpcBindingFromStringBinding returned 0x%x\n", status);

 if (status) {
 exit(status);
 }

 printf("Calling the remote procedure 'HelloProc'\n");
 printf(" print the string '%s' on the server\n", pszString);

 RpcTryExcept {
 HelloProc(pszString); /* make call with user message */
 printf("Calling the remote procedure 'Shutdown'\n");
 Shutdown(); // shut down the server side
 }
 RpcExcept(1) {
 ulCode = RpcExceptionCode();
 printf("Runtime reported exception 0x%lx = %ld\n", ulCode, ulCode);
 }
 RpcEndExcept

 /* The calls to the remote procedures are complete. */
 /* Free the string and the binding handle */

 status = RpcStringFree(&pszStringBinding); // remote calls done; unbind
 printf("RpcStringFree returned 0x%x\n", status);
 if (status) {
 exit(status);
 }

 status = RpcBindingFree(&ImpHandle); // remote calls done; unbind
 printf("RpcBindingFree returned 0x%x\n", status);
 if (status) {
 exit(status);
 }

 exit(0);
}

/***/
/* MIDL allocate and free */
/***/

void __RPC_FAR * __RPC_USER midl_user_allocate(size_t len)
{
 return(malloc(len));
}

void __RPC_USER midl_user_free(void __RPC_FAR * ptr)
{
 free(ptr);
}

/* end file cluuidc.c */

 CLUUIDP.C (CLUUID RPC Sample)

/
**
 Microsoft RPC Version 2.0
 Copyright Microsoft Corp. 1992, 1993, 1994
 Cluuid Example

 FILE: cluuidp.c

 PURPOSE: Remote procedures that are linked with the server
 side of RPC distributed application

 FUNCTIONS: HelloProc() - prints "hello, world" or other string
 HelloProc2() - prints string backwards

 COMMENTS: This sample program demonstrates how to supply
 multiple implementations of the remote procedure
 specified in the interface. It also demonstrates
 how the client selects among the implementations
 by providing a client object uuid.

 The server calls RpcObjectSetType to associate a
 client object uuid with the object uuid in the
 Object Registry Table. The server initializes a
 manager entry point vector (manager epv) and
 then calls RpcRegisterIf to associate the interface
 uuid and the object uuid with the manager epv in the
 Interface Registry Table.

 When the client makes a remote procedure call,
 the client object uuid is mapped to the object uuid
 in the Object Registry Table. The resulting
 object uuid and the interface uuid are mapped to
 a manager entry point vector in the Interface
 Registry Table.

 By default, in this example, the server registers
 two implementations of the "hello, world" function
 HelloProc and HelloProc2. The HelloProc2
 implementation is associated with the object uuid
 "11111111-1111-1111-1111-111111111111". When
 the client makes a procedure call with a null
 uuid, the client's request is mapped to the
 original HelloProc. When the client makes a
 procedure call with the client object uuid
 "11111111-1111-1111-1111-11111111111", the
 client's request is mapped to HelloProc2 (which
 prints the string in reverse).

**
/

#include <stdlib.h>

#include <stdio.h>
#include <string.h>
#include "cluuid.h" // header file generated by MIDL compiler

void HelloProc(unsigned char * pszString)
{
 printf("%s\n", pszString);
}

void HelloProc2(unsigned char * pszString)
{
 printf("%s\n", strrev(pszString));
}

void Shutdown(void)
{
 RPC_STATUS status;

 printf("Calling RpcMgmtStopServerListening\n");
 status = RpcMgmtStopServerListening(NULL);
 printf("RpcMgmtStopServerListening returned: 0x%x\n", status);
 if (status) {
 exit(status);
 }

 printf("Calling RpcServerUnregisterIf\n");
 status = RpcServerUnregisterIf(NULL, NULL, FALSE);
 printf("RpcServerUnregisterIf returned 0x%x\n", status);
 if (status) {
 exit(status);
 }
}

/* end of file cluuidp.c */

 CLUUIDS.C (CLUUID RPC Sample)

/
**
 Microsoft RPC Version 2.0
 Copyright Microsoft Corp. 1992, 1993, 1994
 Cluuid Example

 FILE: cluuids.c

 USAGE: cluuids -p protocol_sequence
 -e endpoint
 -m max calls
 -n min calls
 -f flag for RpcServerListen
 -1 client object uuid
 -2 manager epv uuid

 PURPOSE: Server side of RPC distributed application hello

 FUNCTIONS: main() - registers server as RPC server

 COMMENTS: Print "hello, world" on the server.
 When you supply a type UUID, the client must
 supply the same UUID.

**
/

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <ctype.h>
#include "cluuid.h" // header file generated by MIDL compiler

// the second implementation of the remote procedure
extern void HelloProc2(unsigned char * pszString);

#define PURPOSE \
"This Microsoft RPC Version 2.0 sample program demonstrates how\n\
to supply multiple implementations of the remote procedure\n\
specified in the interface. It also demonstrates how the client\n\
selects among the implementations by providing a client object uuid.\n\n"

#define NULL_UUID_STRING "00000000-0000-0000-0000-000000000000"

void Usage(char * pszProgramName)
{
 fprintf(stderr, "%s", PURPOSE);
 fprintf(stderr, "Usage: %s\n", pszProgramName);
 fprintf(stderr, " -p protocol_sequence\n");
 fprintf(stderr, " -e endpoint\n");
 fprintf(stderr, " -m maxcalls\n");
 fprintf(stderr, " -n mincalls\n");

 fprintf(stderr, " -f flag_wait_op\n");
 fprintf(stderr, " -1 client uuid\n");
 fprintf(stderr, " -2 manager uuid\n");
 exit(1);
}

/* main: register the interface, start listening for clients */
void _CRTAPI1 main(int argc, char * argv[])
{
 RPC_STATUS status;
 UUID MgrTypeUuid, ClientUuid;
 unsigned char * pszProtocolSequence = "ncacn_np";
 unsigned char * pszSecurity = NULL;
 unsigned char * pszClientUuid = NULL_UUID_STRING;
 unsigned char * pszMgrTypeUuid = "11111111-1111-1111-1111-
111111111111";
 unsigned char * pszEndpoint = "\\pipe\\cluuid";
 unsigned int cMinCalls = 1;
 unsigned int cMaxCalls = 20;
 unsigned int fDontWait = FALSE;
 int i;

 cluuid_SERVER_EPV epv2; // the mgr_epv for the 2nd implementation

 /* allow the user to override settings with command line switches */
 for (i = 1; i < argc; i++) {
 if ((*argv[i] == '-') || (*argv[i] == '/')) {
 switch (tolower(*(argv[i]+1))) {
 case 'p': // protocol sequence
 pszProtocolSequence = argv[++i];
 break;
 case 'e':
 pszEndpoint = argv[++i];
 break;
 case 'm':
 cMaxCalls = (unsigned int) atoi(argv[++i]);
 break;
 case 'n':
 cMinCalls = (unsigned int) atoi(argv[++i]);
 break;
 case 'f':
 fDontWait = (unsigned int) atoi(argv[++i]);
 break;
 case '1':
 pszMgrTypeUuid = argv[++i];
 break;
 case '2':
 pszClientUuid = argv[++i];
 break;
 case 'h':
 case '?':
 default:
 Usage(argv[0]);
 }
 }

 else
 Usage(argv[0]);
 }

 status = RpcServerUseProtseqEp(pszProtocolSequence,
 cMaxCalls,
 pszEndpoint,
 pszSecurity); // Security descriptor
 printf("RpcServerUseProtseqEp returned 0x%x\n", status);
 if (status) {
 exit(status);
 }

 status = UuidFromString(pszClientUuid, &ClientUuid);
 printf("UuidFromString returned 0x%x = %d\n", status, status);
 if (status) {
 exit(status);
 }

 status = UuidFromString(pszMgrTypeUuid, &MgrTypeUuid);
 printf("UuidFromString returned 0x%x = %d\n", status, status);
 if (status) {
 exit(status);
 }
 if (strcmp (pszMgrTypeUuid, NULL_UUID_STRING) == 0) {
 printf("Register object using non-null uuid %s\n", pszMgrTypeUuid);
 exit(1);
 }

 if (strcmp (pszClientUuid, NULL_UUID_STRING) == 0) {
 printf("Register object using non-null uuid %s\n", pszMgrTypeUuid);
 ClientUuid = MgrTypeUuid;
 }

 RpcObjectSetType(&ClientUuid, &MgrTypeUuid); // associate type UUID
with nil UUID
 printf("RpcObjectSetType returned 0x%x\n", status);
 if (status) {
 exit(status);
 }

 status = RpcServerRegisterIf(cluuid_ServerIfHandle, // interface to
register
 NULL, // MgrTypeUuid
 NULL); // MgrEpv; null means use default
 printf("RpcServerRegisterIf returned 0x%x\n", status);
 if (status) {
 exit(status);
 }

 /* register the second manager epv and associate it with the
 specified uuid. the second uuid must be non-null so that
 it will not conflict with the NULL uuid already registered
 for this interface

 */
 epv2.HelloProc = HelloProc2;
 epv2.Shutdown = Shutdown;
 status = RpcServerRegisterIf(cluuid_ServerIfHandle, // interface to
register
 &MgrTypeUuid, // MgrTypeUuid
 &epv2); // 2nd manager epv
 printf("RpcServerRegisterIf returned 0x%x\n", status);
 if (status) {
 exit(status);
 }

 printf("Calling RpcServerListen\n");
 status = RpcServerListen(cMinCalls,
 cMaxCalls,
 fDontWait);
 printf("RpcServerListen returned: 0x%x\n", status);
 if (status) {
 exit(status);
 }

 if (fDontWait) {
 printf("Calling RpcMgmtWaitServerListen\n");
 status = RpcMgmtWaitServerListen(); // wait operation
 printf("RpcMgmtWaitServerListen returned: 0x%x\n", status);
 if (status) {
 exit(status);
 }
 }

} // end main()

/***/
/* MIDL allocate and free */
/***/

void __RPC_FAR * __RPC_USER midl_user_allocate(size_t len)
{
 return(malloc(len));
}

void __RPC_USER midl_user_free(void __RPC_FAR * ptr)
{
 free(ptr);
}

/* end file cluuids.c */

 INTEROP

/***/ /**
/ / Microsoft RPC Examples **/ /** OSF DCE
Interop Sample Application **/ /** Copyright(c) Microsoft Corp. 1993-1994
/ / **/
/***/

Overview: ---------

This is a small demo RPC application. It is designed to be portable between OSF DCE RPC and
Microsoft RPC platforms.

The most important part of the demo is the header file dceport.h. This header file maps OSF DCE
RPC APIs and data structures to the Microsoft RPC equivalents.

The program just sends simple messages (strings) from the client to the server.

Building on Windows/NT ----------------------

The following environment variables should be set for you already.

 set CPU=i386
 set INCLUDE=c:\mstools\h
 set LIB=c:\mstools\lib
 set PATH=c:c:\winnt\system32;\mstools\bin;

For mips, set CPU=mips For alpha, set CPU=alpha

Build the sample distributed application:

 nmake cleanall
 nmake

Building on MS-DOS Systems --------------------------

After installing the Microsoft Visual C/C++ version 1.50 development environment and the Microsoft
RPC version 2.0 toolkit on a Windows NT computer, you can build the sample client application from
Windows NT.

 nmake -f makefile.dos cleanall
 nmake -f makefile.dos

This builds the client application callc.exe.

You may also execute the Microsoft Visual C/C++ compiler under MS-DOS. This requires a two step
build process.

 Step One: Compile the .IDL files under Windows NT
 nmake -a -f makefile.dos msg.h

 Step Two: Compile the C sources (stub and application)
 nmake -f makefile.dos

Building on DCE Systems ________________________

You need to copy the following files to the DCE machine: client.c server.c manager.c msg.idl msg.acf
makefile.dce

 make -f makefile.dce cleanall all

Note: You will probably need to change the CFLAGS and LIBS variables in makefile.dce to match your
platform.

Using the program: ------------------

The basic example:

Run server
on the server machine.

Run: client -n <server name> -s "Hi, I'm a client"
on the client machine to send the message.

Run: client -n <server name> -s "Okay, stop this example" -x
on the client to send the message and cause the server to stop.

You can use fixed endpoints by adding the -e switch:

server -e 3452 client -e 3452 -n <server name> -s "Hi, I'm a client" client -e 3452 -n <server name> -s
"Okay, stop this example" -x

You can run the demo over a different protocol by adding a -t switch to both the client and server:

server -t ncacn_np client -t ncacn_np -n <server name> -s "Hi, I'm a client" client -t ncacn_np -n
<server name> -s "Okay, stop this example" -x

Options: --------

The -h switch displays a usage message.

The -s <message> switch is used to change with message sent from the client

 to the server. Without it the message "Hello World" is sent.

The -n <server_name> switch is used for specifying a server machine.

 Without it the server is assumed to run on the same machine.

The -e <endpoint> switch is used to specify a fixed endpoint to be used.

 Without it a dynamic endpoint will be used and registered with the
 endpoint mapper.

The -t <protseq> switch is used to specify which protocol to use. Without

 it the protocol sequence "ncacn_ip_tcp" will be used.

 MAKEFILE (INTEROP RPC Sample)

#***#
#** **#
#** Microsoft RPC Examples **#
#** OSF DCE Interop Application **#
#** Copyright(c) Microsoft Corp. 1993 **#
#** **#
#***#

!include <ntwin32.mak>

!if "$(CPU)" == "i386"
cflags = $(cflags:G3=Gz)
cflags = $(cflags:Zi=Z7)
!endif

all : client.exe server.exe

Make the client
client : client.exe
client.exe : client.obj msg_c.obj midluser.obj
 $(link) $(linkdebug) $(conflags) -out:client.exe -map:client.map \
 client.obj msg_c.obj midluser.obj \
 rpcrt4.lib $(conlibs)

client main program
client.obj : client.c msg.h
 $(cc) $(cdebug) $(cflags) $(cvars) $*.c

client stub
msg_c.obj : msg_c.c msg.h
 $(cc) $(cdebug) $(cflags) $(cvars) $*.c

Make the server executable
server : server.exe
server.exe : server.obj manager.obj msg_s.obj midluser.obj
 $(link) $(linkdebug) $(conflags) -out:server.exe -map:server.map \
 server.obj manager.obj msg_s.obj midluser.obj \
 rpcrt4.lib $(conlibsmt)

server main program
server.obj : msg.h
 $(cc) $(cdebug) $(cflags) $(cvarsmt) $*.c

remote procedures
manager.obj : msg.h
 $(cc) $(cdebug) $(cflags) $(cvarsmt) $*.c

server stub
msg_s.obj : msg_s.c msg.h

 $(cc) $(cdebug) $(cflags) $(cvarsmt) $*.c

midl_user* routines
midluser.obj : midluser.c
 $(cc) $(cdebug) $(cflags) $(cvarsmt) $*.c

Stubs and header file from the IDL file
msg.h msg_s.c msg_c.c : msg.idl msg.acf
 midl -cpp_cmd $(cc) -cpp_opt "-E" msg.idl

Clean up everything
cleanall : clean
 -del *.exe

Clean up everything but the .EXEs
clean :
 -del *.obj
 -del *.map
 -del msg_?.c
 -del msg.h

 DCEPORT.H (INTEROP RPC Sample)

/*++

Copyright (c) 1993-1994 Microsoft Corporation

Module Name:

 dceport.h

Abstract:

 Include file defining types and macros which map DCE RPC APIs to
 Microsoft RPC APIs. Useful when porting DCE RPC applications to MS RPC.

--*/

#ifndef DCEPORT_H
#define DCEPORT_H

#ifdef __cplusplus
extern "C" {
#endif

/*
** Define various idl types
*/
#define idl_char unsigned char
#define idl_boolean unsigned char
#define idl_byte unsigned char
#define idl_small_int char
#define idl_usmall_int unsigned char
#define idl_short_int signed short
#define idl_ushort_int unsigned short
#define idl_long_int long
#define idl_ulong_int unsigned long
#define boolean32 unsigned long
#define unsigned32 unsigned long
#define unsigned16 unsigned short
#define idl_true 1
#define idl_false 0
#define unsigned_char_t unsigned char
typedef unsigned char __RPC_FAR *unsigned_char_p_t;
typedef void __RPC_FAR *idl_void_p_t;

#ifndef _ERROR_STATUS_T_DEFINED
typedef unsigned long error_status_t;
#define _ERROR_STATUS_T_DEFINED
#endif

/*
** Define various DCE RPC types
*/
#define rpc_if_handle_t RPC_IF_HANDLE

#define rpc_ns_handle_t RPC_NS_HANDLE
#define rpc_authz_handle_t RPC_AUTHZ_HANDLE
#define rpc_auth_identity_handle_t RPC_AUTH_IDENTITY_HANDLE
#define rpc_sm_thread_handle_t RPC_SS_THREAD_HANDLE
#define rpc_mgr_epv_t RPC_MGR_EPV __RPC_FAR *
#define rpc_object_inq_fn_t RPC_OBJECT_INQ_FN __RPC_FAR *
#define rpc_auth_key_retrieval_fn_t RPC_AUTH_KEY_RETRIEVAL_FN
#define rpc_mgmt_authorization_fn_t RPC_MGMT_AUTHORIZATION_FN

/*
** Define rpc_binding_vector_t to match DCE
*/
#ifdef rpc_binding_vector_t
#undef rpc_binding_vector_t
#endif

typedef struct
{
 unsigned long count;
 handle_t binding_h[1];
} rpc_binding_vector_t, __RPC_FAR *rpc_binding_vector_p_t;

/*
** Define rpc_protseq_vector_t to match DCE
*/

typedef struct
{
 unsigned long count;
 unsigned char * protseq[1];
} rpc_protseq_vector_t, __RPC_FAR *rpc_protseq_vector_p_t;

/*
** Define rpc_stats_vector_t to match DCE
*/

typedef struct
{
 unsigned long count;
 unsigned long stats[1];
} rpc_stats_vector_t, __RPC_FAR *rpc_stats_vector_p_t;

/*
** Define uuid_t to match DCE
*/
#ifdef uuid_t
#undef uuid_t
#endif

typedef struct
{
 unsigned long time_low;
 unsigned short time_mid;
 unsigned short time_hi_and_version;
 unsigned char clock_seq_hi_and_reserved;

 unsigned char clock_seq_low;
 unsigned char node[6];
} uuid_t, __RPC_FAR *uuid_p_t;

/*
** Define uuid_vector_t to match DCE
*/
#ifdef uuid_vector_t
#undef uuid_vector_t
#endif

typedef struct
{
 unsigned long count;
 uuid_p_t uuid[1];
} uuid_vector_t, __RPC_FAR *uuid_vector_p_t;

/*
** Define rpc_if_id_t and rpc_if_id_p_t to match DCE
*/

typedef struct
{
 uuid_t uuid;
 unsigned short vers_major;
 unsigned short vers_minor;
} rpc_if_id_t, __RPC_FAR *rpc_if_id_p_t;

/*
** Define rpc_if_id_vector_t to match DCE
*/

typedef struct
{
 unsigned long count;
 rpc_if_id_p_t if_id[1];
} rpc_if_id_vector_t, __RPC_FAR *rpc_if_id_vector_p_t;

/*
** The MinThreads parameters to RpcServerListen()
** is not part of the DCE API rpc_server_listen().
** This is the default value.
*/

#define rpc_c_listen_min_threads_default 1

/*
** Define various constants
*/
#define rpc_c_ns_syntax_default RPC_C_NS_SYNTAX_DEFAULT
#define rpc_c_ns_syntax_dce RPC_C_SYNTAX_DCE
#define rpc_c_ns_default_exp_age RPC_C_DEFAULT_EXP_AGE
#define rpc_c_protseq_max_reqs_default RPC_C_PROTSEQ_MAX_REQS_DEFAULT
#define rpc_c_protseq_max_calls_default RPC_C_PROTSEQ_MAX_REQS_DEFAULT

#define rpc_c_listen_max_calls_default RPC_C_LISTEN_MAX_CALLS_DEFAULT
#define rpc_c_ep_all_elts RPC_C_EP_ALL_ELTS
#define rpc_c_ep_match_by_if RPC_C_EP_MATCH_BY_IF
#define rpc_c_ep_match_by_obj RPC_C_EP_MATCH_BY_OBJ
#define rpc_c_ep_match_by_both RPC_C_EP_MATCH_BY_BOTH
#define rpc_c_vers_all RPC_C_VERS_ALL
#define rpc_c_vers_compatible RPC_C_VERS_COMPATIBLE
#define rpc_c_vers_exact RPC_C_VERS_EXACT
#define rpc_c_vers_major_only RPC_C_VERS_MAJOR_ONLY
#define rpc_c_vers_upto RPC_C_VERS_UPTO
#define rpc_c_profile_default_elt RPC_C_PROFILE_DEFAULT_ELT
#define rpc_c_profile_all_elts RPC_C_PROFILE_ALL_ELTS
#define rpc_c_profile_match_by_if RPC_C_PROFILE_MATCH_BY_IF
#define rpc_c_profile_match_by_mbr RPC_C_PROFILE_MATCH_BY_MBR
#define rpc_c_profile_match_by_both RPC_C_PROFILE_MATCH_BY_BOTH
#define rpc_c_binding_min_timeout RPC_C_BINDING_MIN_TIMEOUT
#define rpc_c_binding_default_timeout RPC_C_BINDING_DEFAULT_TIMEOUT
#define rpc_c_binding_max_timeout RPC_C_BINDING_MAX_TIMEOUT
#define rpc_c_binding_infinite_timeout RPC_C_BINDING_INFINITE_TIMEOUT
#define rpc_c_stats_calls_in RPC_C_STATS_CALLS_IN
#define rpc_c_stats_calls_out RPC_C_STATS_CALLS_OUT
#define rpc_c_stats_pkts_in RPC_C_STATS_PKTS_IN
#define rpc_c_stats_pkts_out RPC_C_STATS_PKTS_OUT
#define rpc_c_mgmt_inq_if_ids RPC_C_MGMT_INQ_IF_IDS
#define rpc_c_mgmt_inq_princ_name RPC_C_MGMT_INQ_PRINC_NAME
#define rpc_c_mgmt_inq_stats RPC_C_MGMT_INQ_STATS
#define rpc_c_mgmt_inq_server_listen RPC_C_MGMT_INQ_SERVER_LISTEN
#define rpc_c_mgmt_stop_server_listen RPC_C_MGMT_STOP_SERVER_LISTEN
#define rpc_c_mgmt_cancel_infinite_timeout RPC_C_CANCEL_INFINITE_TIMEOUT

/*
** Define DCE API equivalents
*/
#define rpc_binding_copy(source,dest,status) \
 *(status) = RpcBindingCopy(source,dest)

#define rpc_binding_free(binding,status) *(status) = RpcBindingFree(binding)

#define rpc_binding_from_string_binding(string_binding,binding,status) \
 *(status) =
RpcBindingFromStringBinding(string_binding,binding)

#define
rpc_binding_inq_auth_client(binding,privs,princ_name,protect_level, \
 authn_svc,authz_svc,status) \
 *(status) =
RpcBindingInqAuthClient(binding,privs,princ_name, \
 protect_level,authn_svc,authz_svc)

#define rpc_binding_inq_auth_info(binding,princ_name,protect_level,\
 authn_svc,auth_identity,authz_svc,status) \
 *(status) = RpcBindingInqAuthInfo(binding,princ_name, \
 protect_level,authn_svc,auth_identity,authz_svc)

#define rpc_binding_inq_object(binding,object_uuid,status) \

 *(status) = RpcBindingInqObject(binding,\
 (UUID __RPC_FAR *)object_uuid)

#define rpc_binding_reset(binding,status) *(status) =
RpcBindingReset(binding)

#define rpc_binding_server_from_client(cbinding,sbinding,status) \
 *(status) = RpcBindingServerFromClient(cbinding,sbinding)

#define rpc_binding_set_auth_info(binding,princ_name,protect_level,\
 authn_svc,auth_identity,authz_svc,status) \
 *(status) = RpcBindingSetAuthInfo(binding,princ_name,\
 protect_level,authn_svc,auth_identity,authz_svc)

#define rpc_binding_set_object(binding,object_uuid,status) \
 *(status) = RpcBindingSetObject(binding,\
 (UUID __RPC_FAR *)object_uuid)

#define rpc_binding_to_string_binding(binding,string_binding,status) \
 *(status) =
RpcBindingToStringBinding(binding,string_binding)

#define rpc_binding_vector_free(binding_vector,status) \
 *(status) = RpcBindingVectorFree(\
 (RPC_BINDING_VECTOR __RPC_FAR * __RPC_FAR *)binding_vector)

#define rpc_ep_register(if_spec,binding_vec,object_uuid_vec,annotation,\
 status)\
 *(status) = RpcEpRegister(if_spec,\
 (RPC_BINDING_VECTOR __RPC_FAR *)binding_vec, \
 (UUID_VECTOR __RPC_FAR *)object_uuid_vec, annotation)

#define rpc_ep_register_no_replace(if_spec,binding_vec,object_uuid_vec,\
 annotation,status) \
 *(status) = RpcEpRegisterNoReplace(if_spec,\
 (RPC_BINDING_VECTOR __RPC_FAR *)binding_vec,\
 (UUID_VECTOR __RPC_FAR *)object_uuid_vec,annotation)

#define rpc_ep_resolve_binding(binding_h,if_spec,status) \
 *(status) = RpcEpResolveBinding(binding_h,if_spec)

#define rpc_ep_unregister(if_spec,binding_vec,object_uuid_vec,status) \
 *(status) = RpcEpUnregister(if_spec,\
 (RPC_BINDING_VECTOR __RPC_FAR *)binding_vec,\
 (UUID_VECTOR __RPC_FAR *)object_uuid_vec)

#define rpc_if_id_vector_free(if_id_vector,status) \
 *(status) = RpcIfIdVectorFree(\
 (RPC_IF_ID_VECTOR __RPC_FAR * __RPC_FAR *)if_id_vector)

#define rpc_if_inq_id(if_spec,if_id,status) \
 *(status) = RpcIfInqId(if_spec,(RPC_IF_ID __RPC_FAR *)if_id)

#define rpc_if_register_auth_info(if_spec,princ_name,protect_level,\

 authn_svc,auth_identity,authz_svc,status) \
 *(status) = RpcIfRegisterAuthInfo(if_spec,princ_name,\
 protect_level,authn_svc,auth_identity,authz_svc)

#define
rpc_mgmt_ep_elt_inq_begin(ep_binding,inquiry_type,if_id,vers_option,\
 object_uuid,inquiry_context,status) \
 *(status) =
RpcMgmtEpEltInqBegin(ep_binding,inquiry_type,if_id,\
 vers_option,object_uuid,inquiry_context)

#define rpc_mgmt_ep_elt_inq_done(inquiry_context,status) \
 *(status) = RpcMgmtEpEltInqDone(inquiry_context)

#define rpc_mgmt_ep_elt_inq_next(inquiry_context,if_id,binding,object_uuid,\
 annotation,status) \
 *(status) =
RpcMgmtEpEltInqNext(inquiry_context,if_id,binding,\
 object_uuid,annotation)

#define
rpc_mgmt_ep_unregister(ep_binding,if_id,binding,object_uuid,status) \
 *(status) = RpcMgmtEpUnregister(ep_binding,if_id,binding,\
 object_uuid)

#define rpc_mgmt_inq_com_timeout(binding,timeout,status) \
 *(status) = RpcMgmtInqComTimeout(binding,timeout)

#define rpc_mgmt_inq_dflt_protect_level(authn_svc,level,status) \
 *(status) = RpcMgmtInqDefaultProtectLevel(authn_svc,level)

#define rpc_mgmt_inq_if_ids(binding,if_id_vector,status) \
 *(status) = RpcMgmtInqIfIds((bindings),\
 (RPC_IF_ID_VECTOR __RPC_FAR * __RPC_FAR *)(if_id_vector))

#define
rpc_mgmt_inq_server_princ_name(binding,authn_svc,princ_name,status) \
 *(status) = RpcMgmtInqServerPrincName(binding,authn_svc,\
 princ_name)

#define rpc_mgmt_inq_stats(binding,statistics,status) \
 *(status) = RpcMgmtInqStats(binding,\
 (RPC_STATS_VECTOR __RPC_FAR * __RPC_FAR *)statistics)

#define rpc_mgmt_is_server_listening(binding,status) \
 (((*(status) = RpcMgmtIsServerListening(binding)) ==
RPC_S_OK) \
 ? (1) : (*(status) == RPC_S_NOT_LISTENING) \
 ? (*(status) = RPS_S_OK, 0) : (0))

#define rpc_mgmt_set_authorization_fn(authz_fn,status) \
 *(status) = RpcMgmtSetAuthorizathionFn(authz_fn)

#define rpc_mgmt_set_cancel_timeout(seconds,status) \
 *(status) = RpcMgmtSetCancelTimeout(seconds)

#define rpc_mgmt_set_com_timeout(binding,timeout,status) \
 *(status) = RpcMgmtSetComTimeout(binding,timeout)

#define rpc_mgmt_set_server_stack_size(size,status) \
 *(status) = RpcMgmtSetServerStackSize(size)

#define rpc_mgmt_stats_vector_free(stats,status) \
 *(status) = RpcMgmtStatsVectorFree(\
 (RPC_STATS_VECTOR __RPC_FAR * __RPC_FAR *)stats)

#define rpc_mgmt_stop_server_listening(binding,status) \
 *(status) = RpcMgmtStopServerListening(binding)

#define rpc_network_inq_protseqs(prots,status) \
 *(status) = RpcNetworkInqProtseqs(\
 (RPC_PROTSEQ_VECTOR __RPC_FAR * __RPC_FAR *)prots)

#define rpc_network_is_protseq_valid(protseq,status) \
 *(status) = RpcNetworkIsProtseqValid(protseq)

/*
** Define NSI equivalents
*/
#define rpc_ns_binding_export(name_syntax,entry_name,if_spec,\
 binding_vector, uuid_vector,status) \
 *(status) = RpcNsBindingExport(name_syntax,entry_name,\
 if_spec, (RPC_BINDING_VECTOR *)binding_vector,\
 (UUID_VECTOR __RPC_FAR *)uuid_vector)

#define rpc_ns_binding_import_begin(name_syntax,entry_name,if_spec,\
 object_uuid,import_context,status) \
 *(status) = RpcNsBindingImportBegin(name_syntax,entry_name,\
 if_spec,(UUID __RPC_FAR *)object_uuid,import_context)

#define rpc_ns_binding_import_done(import_context,status) \
 *(status) = RpcNsBindingImportDone(import_context)

#define rpc_ns_binding_import_next(import_context,binding,status) \
 *(status) = RpcNsBindingImportNext(import_context,binding)

#define
rpc_ns_binding_inq_entry_name(binding,name_syntax,entry_name,status)\
 *(status) = RpcNsBindingInqEntryName(binding,name_syntax,\
 entry_name)

#define rpc_ns_binding_lookup_begin(name_syntax,entry_name,if_spec,\
 object_uuid,max_count,lookup_context,status) \
 *(status) = RpcNsBindingLookupBegin(name_syntax,entry_name,\
 if_spec,(UUID __RPC_FAR
*)object_uuid,max_count,lookup_context)

#define rpc_ns_binding_lookup_done(lookup_context,status) \
 *(status) = RpcNsBindingLookupDone(lookup_context)

#define rpc_ns_binding_lookup_next(lookup_context,binding_vector,status) \
 *(status) = RpcNsBindingLookupNext(lookup_context, \
 (RPC_BINDING_VECTOR __RPC_FAR * __RPC_FAR *)binding_vector)

#define rpc_ns_binding_select(binding_vector,binding,status) \
 *(status) = RpcNsBindingSelect(\
 (RPC_BINDING_VECTOR __RPC_FAR *)binding_vector,binding)

#define rpc_ns_binding_unexport(name_syntax,entry_name,if_spec,\
 uuid_vector,status) \
 *(status) = RpcNsBindingUnexport(name_syntax,entry_name,\
 if_spec, (UUID_VECTOR __RPC_FAR *)uuid_vector)

#define rpc_ns_entry_expand_name(name_syntax,entry_name,expanded_name,\
 status)\
 *(status) = RpcNsEntryExpandName(name_syntax,entry_name,\
 expanded_name)

#define rpc_ns_entry_object_inq_begin(name_syntax,entry_name,\
 inquiry_context,status)\
 *(status) = RpcNsEntryObjectInqBegin(name_syntax,\
 entry_name,inquiry_context)

#define rpc_ns_entry_object_inq_done(inquiry_context,status) \
 *(status) = RpcNsEntryObjectInqDone(inquiry_context)

#define rpc_ns_entry_object_inq_next(inquiry_context,object_uuid,status) \
 *(status) = RpcNsEntryObjectInqNext(inquiry_context,\
 (UUID __RPC_FAR *)object_uuid)

#define rpc_ns_group_delete(name_syntax,group_name,status) \
 *(status) = RpcNsGroupDelete(name_syntax,group_name)

#define rpc_ns_group_mbr_add(name_syntax,group_name,member_name_syntax,\
 member_name,status) \
 *(status) = RpcNsGroupMbrAdd(name_syntax,group_name,\
 member_name_syntax,member_name)

#define
rpc_ns_group_mbr_inq_begin(name_syntax,group_name,member_name_syntax,\
 inquiry_context,status) \
 *(status) = RpcNsGroupMbrInqBegin(name_syntax,group_name,\
 member_name_syntax,inquiry_context)

#define rpc_ns_group_mbr_inq_done(inquiry_context,status) \
 *(status) = RpcNsGroupMbrInqDone(inquiry_context)

#define rpc_ns_group_mbr_inq_next(inquiry_context,member_name,status) \
 *(status) =
RpcNsGroupMbrInqNext(inquiry_context,member_name)

#define rpc_ns_group_mbr_remove(name_syntax,group_name,member_name_syntax,\
 member_name,status) \

 *(status) = RpcNsGroupMbrRemove(name_syntax,group_name,\
 member_name_syntax,member_name)

#define
rpc_ns_mgmt_binding_unexport(name_syntax,entry_name,if_id,vers_option,\
 uuid_vector,status) \
 *(status) =
RpcNsMgmtBindingUnexport(name_syntax,entry_name,\
 (RPC_IF_ID __RPC_FAR *)if_id,vers_option,\
 (UUID_VECTOR __RPC_FAR *)uuid_vector)

#define rpc_ns_mgmt_entry_create(name_syntax,entry_name,status) \
 *(status) = RpcNsMgmtEntryCreate(name_syntax,entry_name)

#define rpc_ns_mgmt_entry_delete(name_syntax,entry_name,status) \
 *(status) = RpcNsMgmtEntryDelete(name_syntax,entry_name)

#define rpc_ns_mgmt_entry_inq_if_ids(name_syntax,entry_name,if_id_vector,\
 status) \
 *(status) = RpcNsMgmtEntryInqIfIds(name_syntax,entry_name,\
 (RPC_IF_ID_VECTOR __RPC_FAR * __RPC_FAR *)if_id_vector)

#define rpc_ns_mgmt_handle_set_exp_age(ns_handle,expiration_age,status) \
 *(status) =
RpcNsMgmtHandleSetExpAge(ns_handle,expiration_age)

#define rpc_ns_mgmt_inq_exp_age(expiration_age,status) \
 *(status) = RpcNsMgmtInqExpAge(expiration_age)

#define rpc_ns_mgmt_set_exp_age(expiration_age,status) \
 *(status) = RpcNsMgmtSetExpAge(expiration_age)

#define rpc_ns_profile_delete(name_syntax,profile_name,status) \
 *(status) = RpcNsProfileDelete(name_syntax,profile_name)

#define rpc_ns_profile_elt_add(name_syntax,profile_name,if_id,\
 member_name_syntax,member_name,priority,annotation,status) \
 *(status) = RpcNsProfileEltAdd(name_syntax,profile_name,\
 (RPC_IF_ID __RPC_FAR
*)if_id,member_name_syntax,member_name,\
 priority,annotation)

#define rpc_ns_profile_elt_inq_begin(name_syntax,profile_name,inquiry_type,\
 if_id,if_vers_option,member_name_syntax,\
 member_name,inquiry_context,status) \
 *(status) =
RpcNsProfileEltInqBegin(name_syntax,profile_name,\
 inquiry_type,(RPC_IF_ID __RPC_FAR *)if_id,if_vers_option,\
 member_name_syntax,member_name,inquiry_context)

#define rpc_ns_profile_elt_inq_done(inquiry_context,status) \
 *(status) = RpcNsProfileEltInqDone(inquiry_context)

#define rpc_ns_profile_elt_inq_next(inquiry_context,if_id,member_name,\
 priority,annotation,status) \

 *(status) = RpcNsProfileEltInqNext(inquiry_context,\
 (RPC_IF_ID __RPC_FAR
*)if_id,member_name,priority,annotation)

#define rpc_ns_profile_elt_remove(name_syntax,profile_name,if_id,\
 member_name_syntax,member_name,status) \
 *(status) = RpcNsProfileEltRemove(name_syntax,profile_name,\
 (RPC_IF_ID __RPC_FAR *)if_id,member_name_syntax,member_name)

#define rpc_object_inq_type(object_uuid,type_uuid,status) \
 *(status) = RpcObjectInqType((UUID __RPC_FAR *)object_uuid,\
 (UUID __RPC_FAR *)type_uuid)

#define rpc_object_set_inq_fn(inq_fn,status) \
 *(status) = RpcObjectSetInqFn(inq_fn)

#define rpc_object_set_type(object_uuid,type_uuid,status) \
 *(status) = RpcObjectSetType((UUID __RPC_FAR *)object_uuid,\
 (UUID __RPC_FAR *)type_uuid)

#define rpc_protseq_vector_free(protseq_vector,status) \
 *(status) = RpcProtseqVectorFree(\
 (RPC_PROTSEQ_VECTOR __RPC_FAR * __RPC_FAR *)protseq_vector)

#define rpc_server_inq_bindings(binding_vector,status) \
 *(status) = RpcServerInqBindings(\
 (RPC_BINDING_VECTOR __RPC_FAR * __RPC_FAR *)binding_vector)

#define rpc_server_inq_if(if_spec,type_uuid,mgr_epv,status) \
 *(status) = RpcServerInqIf(if_spec,(UUID __RPC_FAR
*)type_uuid,\
 (RPC_MGR_EPV __RPC_FAR *)mgr_epv)

#define rpc_server_listen(max_calls,status) \
 *(status) =
RpcServerListen(rpc_c_listen_min_threads_default,\
 max_calls,0)

#define rpc_server_register_auth_info(princ_name,auth_svc,get_key_func,arg,\
 status) \
 *(status) = RpcServerRegisterAuthInfo(princ_name,auth_svc,\
 get_key_func,arg)

#define rpc_server_register_if(if_spec,type_uuid,mgr_epv,status) \
 *(status) = RpcServerRegisterIf(if_spec,\
 (UUID __RPC_FAR *)type_uuid,(RPC_MGR_EPV __RPC_FAR
*)mgr_epv)

#define rpc_server_unregister_if(if_spec,type_uuid,status) \
 *(status) = RpcServerUnregisterIf(if_spec,(UUID
*)type_uuid,0)

#define rpc_server_use_all_protseqs(max_call_requests,status) \
 *(status) = RpcServerUseAllProtseqs(max_call_requests,0)

#define rpc_server_use_all_protseqs_if(max_call_requests,if_spec,status) \
 *(status) = RpcServerUseAllProtseqsIf(max_call_requests,\
 if_spec,0)

#define rpc_server_use_protseq(protseq,max_call_requests,status) \
 *(status) = RpcServerUseProtseq(protseq,max_call_requests,0)

#define
rpc_server_use_protseq_ep(protseq,max_call_requests,endpoint,status)\
 *(status) =
RpcServerUseProtseqEp(protseq,max_call_requests,\
 endpoint,0)

#define
rpc_server_use_protseq_if(protseq,max_call_requests,if_spec,status) \
 *(status) =
RpcServerUseProtseqIf(protseq,max_call_requests,\
 if_spec,0)

#define rpc_sm_alloce(size,status) *(status) = RpcSmAllocate(size)

#define rpc_sm_client_free(ptr,status) *(status) = RpcSmClientFree(ptr)

#define rpc_sm_destroy_client_context(context,status) \
 *(status) = RpcSmDestroyClientContext(context)

#define rpc_sm_disable_allocate(status) *(status) = RpcSmDisableAllocate()

#define rpc_sm_enable_allocate(status) *(status) = RpcSmEnableAllocate()

#define rpc_sm_free(ptr,status) *(status) = RpcSmFree(ptr)

#define rpc_sm_get_thread_handle(status) RpcSmGetThreadHandle(status)

#define rpc_sm_set_client_alloc_free(alloc,free,status) \
 *(status) = RpcSmSetClientAllocFree(alloc,free)

#define rpc_sm_set_thread_handle(id,status) \
 *(status) = RpcSmSetThreadHandle(id)

#define
rpc_sm_swap_client_alloc_free(alloc,free,old_alloc,old_free,status) \
 *(status) = RpcSmSwapClientAllocFree(alloc,free \
 old_alloc, old_free)

#define rpc_string_binding_compose(object_uuid,protseq,netaddr,endpoint,\
 options,binding,status) \
 *(status) = RpcStringBindingCompose(object_uuid,protseq,\
 netaddr,endpoint,options,binding)

#define
rpc_string_binding_parse(string_binding,object_uuid,protseq,netaddr,\
 endpoint,options,status) \
 *(status) = RpcStringBindingParse(string_binding,\

 object_uuid,protseq,netaddr,endpoint,options)

#define rpc_string_free(string,status) *(status) = RpcStringFree(string)

#define uuid_compare(uuid1,uuid2,status) \
 UuidCompare((UUID __RPC_FAR *)(uuid1),\
 (UUID __RPC_FAR *)(uuid2),(status))

#define uuid_create(uuid,status) \
 *(status) = UuidCreate((UUID __RPC_FAR *)uuid)

#define uuid_create_nil(uuid,status) \
 *(status) = UuidCreateNil((UUID __RPC_FAR *)uuid)

#define uuid_equal(uuid1,uuid2,status) \
 UuidEqual((UUID __RPC_FAR *)(uuid1), \
 (UUID __RPC_FAR *)(uuid2), (status))

#define uuid_from_string(string,uuid,status) \
 *(status) = UuidFromString(string,(UUID __RPC_FAR *)uuid)

#define uuid_hash(uuid,status) \
 UuidHash((UUID __RPC_FAR *)(uuid),(status))

#define uuid_is_nil(uuid,status) \
 UuidIsNil((UUID __RPC_FAR *)(uuid), (status))

#define uuid_to_string(uuid,string,status)\
 *(status) = UuidToString((UUID __RPC_FAR *)uuid,string)

#define true 1
#define false 0

/*
** Define exception handling equivalents
**
*/
#if defined (__RPC_WIN16__) || defined (__RPC_DOS__)

#define TRY \
 { \
 int _exception_mode_finally; \
 int _exception_code; \
 ExceptionBuff exception; \
 _exception_code = RpcSetException(&exception); \
 if (!_exception_code) \
 {

#define CATCH_ALL \
 _exception_mode_finally = false; \
 RpcLeaveException(); \
 } \
 else \

 {
/*
 * #define CATCH(X) \
 * }else if ((unsigned long)RpcExceptionCode()==(unsigned long)X) {
 */
#define FINALLY \
 _exception_mode_finally = true; \
 RpcLeaveException(); \
 } {
#define ENDTRY \
 } \
 if (_exception_mode_finally && _exception_code) \
 RpcRaiseException(_exception_code); \
 }

#endif /* WIN16 or DOS */

#if defined (__RPC_WIN32__)
#define TRY try {
/*
 * #define CATCH(X) \
 * } except (GetExceptionCode() == X ? \
 * EXCEPTION_EXECUTE_HANDLER : \
 * EXCEPTION_CONTINUE_SEARCH) {
 */
#define CATCH_ALL } except (EXCEPTION_EXECUTE_HANDLER) {
#define FINALLY } finally {
#define ENDTRY }
#endif /* WIN32 */

#define RAISE(v) RpcRaiseException(v)
#define RERAISE RpcRaiseException(RpcExceptionCode())
#define THIS_CATCH RpcExceptionCode()

/*
** DCE Status code mappings
*/
#ifndef rpc_s_ok
#define rpc_s_ok RPC_S_OK
#endif
#ifndef error_status_ok
#define error_status_ok RPC_S_OK
#endif
#define ept_s_cant_perform_op EPT_S_CANT_PERFORM_OP
#define ept_s_invalid_entry EPT_S_INVALID_ENTRY
#define ept_s_not_registered EPT_S_NOT_REGISTERED
#define rpc_s_already_listening RPC_S_ALREADY_LISTENING
#define rpc_s_already_registered RPC_S_ALREADY_REGISTERED
#define rpc_s_binding_has_no_auth RPC_S_BINDING_HAS_NO_AUTH
#define rpc_s_binding_imcomplete RPC_S_BINDING_IMCOMPLETE
#define rpc_s_call_cancelled RPC_S_CALL_CANCELLED
#define rpc_s_call_failed RPC_S_CALL_FAILED
#define rpc_s_cant_bind_socket RPC_S_CANNOT_BIND
#define rpc_s_cant_create_socket RPC_S_CANT_CREATE_ENDPOINT

#define rpc_s_comm_failure RPC_S_COMM_FAILURE
#define rpc_s_connect_no_resources RPC_S_OUT_OF_RESOURCES
#define rpc_s_cthread_create_failed RPC_S_OUT_OF_THREADS
#define rpc_s_endpoint_not_found RPC_S_NO_ENDPOINT_FOUND
#define rpc_s_entry_already_exists RPC_S_ENTRY_ALREADY_EXISTS
#define rpc_s_entry_not_found RPC_S_ENTRY_NOT_FOUND
#define rpc_s_fault_addr_error RPC_S_ADDRESS_ERROR
#define rpc_s_fault_fp_div_by_zero RPC_S_FP_DIV_ZERO
#define rpc_s_fault_fp_overflow RPC_S_FP_OVERFLOW
#define rpc_s_fault_fp_underflow RPC_S_FP_UNDERFLOW
#define rpc_s_fault_int_div_by_zero RPC_S_ZERO_DIVIDE
#define rpc_s_fault_invalid_bound RPC_S_INVALID_BOUND
#define rpc_s_fault_invalid_tag RPC_S_INVALID_TAG
#define rpc_s_fault_remote_no_memory RPC_S_SERVER_OUT_OF_MEMORY
#define rpc_s_fault_unspec RPC_S_CALL_FAILED
#define rpc_s_incomplete_name RPC_S_INCOMPLETE_NAME
#define rpc_s_interface_not_found RPC_S_INTERFACE_NOT_FOUND
#define rpc_s_internal_error RPC_S_INTERNAL_ERROR
#define rpc_s_inval_net_addr RPC_S_INVALID_NET_ADDR
#define rpc_s_invalid_arg RPC_S_INVALID_ARG
#define rpc_s_invalid_binding RPC_S_INVALID_BINDING
#define rpc_s_invalid_endpoint_format RPC_S_INVALID_ENDPOINT_FORMAT
#define rpc_s_invalid_naf_id RPC_S_INVALID_NAF_IF
#define rpc_s_invalid_name_syntax RPC_S_INVALID_NAME_SYNTAX
#define rpc_s_invalid_rpc_protseq RPC_S_INVALID_RPC_PROTSEQ
#define rpc_s_invalid_string_binding RPC_S_INVALID_STRING_BINDING
#define rpc_s_invalid_timeout RPC_S_INVALID_TIMEOUT
#define rpc_s_invalid_vers_option RPC_S_INVALID_VERS_OPTION
#define rpc_s_max_calls_too_small RPC_S_MAX_CALLS_TOO_SMALL
#define rpc_s_mgmt_op_disallowed RPC_S_ACCESS_DENIED
#define rpc_s_name_service_unavailable RPC_S_NAME_SERVICE_UNAVAILABLE
#define rpc_s_no_bindings RPC_S_NO_BINDINGS
#define rpc_s_no_entry_name RPC_S_NO_ENTRY_NAME
#define rpc_s_no_interfaces RPC_S_NO_INTERFACES
#define rpc_s_no_interfaces_exported RPC_S_NO_INTERFACES_EXPORTED
#define rpc_s_no_memory RPC_S_OUT_OF_MEMORY
#define rpc_s_no_more_elements RPC_X_NO_MORE_ENTRIES
#define rpc_s_no_more_bindings RPC_S_NO_MORE_BINDINGS
#define rpc_s_no_more_members RPC_S_NO_MORE_MEMBERS
#define rpc_s_no_ns_permission RPC_S_ACCESS_DENIED
#define rpc_s_no_princ_name RPC_S_NO_PRINC_NAME
#define rpc_s_no_protseqs RPC_S_NO_PROTSEQS
#define rpc_s_no_protseqs_registered RPC_S_NO_PROTSEQS_REGISTERED
#define rpc_s_not_rpc_tower RPC_S_CANNOT_SUPPORT
#define rpc_s_not_supported RPC_S_CANNOT_SUPPORT
#define rpc_s_not_authorized RPC_S_ACCESS_DENIED
#define rpc_s_nothing_to_unexport RPC_S_NOTHING_TO_UNEXPORT
#define rpc_s_object_not_found RPC_S_OBJECT_NOT_FOUND
#define rpc_s_protocol_error RPC_S_PROTOCOL_ERROR
#define rpc_s_protseq_not_supported RPC_S_PROTSEQ_NOT_SUPPORTED
#define rpc_s_server_too_busy RPC_S_SERVER_TOO_BUSY
#define rpc_s_string_too_long RPC_S_STRING_TOO_LONG
#define rpc_s_type_already_registered RPC_S_TYPE_ALREADY_REGISTERED
#define rpc_s_unknown_authn_service RPC_S_UNKNOWN_AUTHN_SERVICE

#define rpc_s_unknown_authz_service RPC_S_UNKNOWN_AUTHZ_SERVICE
#define rpc_s_unknown_if RPC_S_UNKNOWN_IF
#define rpc_s_unknown_mgr_type RPC_S_UNKNOWN_MGR_TYPE
#define rpc_s_unknown_reject RPC_S_CALL_FAILED_DNE
#define rpc_s_unsupported_name_syntax RPC_S_UNSUPPORTED_NAME_SYNTAX
#define rpc_s_unsupported_type RPC_S_UNSUPPORTED_TYPE
#define rpc_s_wrong_boot_time RPC_S_CALL_FAILED_DNE
#define rpc_s_wrong_kind_of_binding RPC_S_WRONG_KIND_OF_BINDING
#define uuid_s_ok RPC_S_OK
#define uuid_s_internal_error RPC_S_INTERNAL_ERROR
#define uuid_s_invalid_string_uuid RPC_S_INVALID_STRING_UUID
#define uuid_s_no_address RPC_S_UUID_NO_ADDRESS

/*
** DCE Exception mappings
*/

#define rpc_x_comm_failure RPC_S_COMM_FAILURE
#define rpc_x_connect_no_resources RPC_S_OUT_OF_RESOURCES
#define rpc_x_entry_not_found RPC_S_ENTRY_NOT_FOUND
#define rpc_x_incomplete_name RPC_S_INCOMPLETE_NAME
#define rpc_x_invalid_arg RPC_S_INVALID_ARG
#define rpc_x_invalid_binding RPC_S_INVALID_BINDING
#define rpc_x_invalid_bound RPC_X_INVALID_BOUND
#define rpc_x_invalid_endpoint_format RPC_S_INVALID_ENDPOINT_FORMAT
#define rpc_x_invalid_naf_id RPC_S_INVALID_NAF_IF
#define rpc_x_invalid_name_syntax RPC_S_INVALID_NAME_SYNTAX
#define rpc_x_invalid_rpc_protseq RPC_S_INVALID_RPC_PROTSEQ
#define rpc_x_invalid_tag RPC_X_INVALID_TAG
#define rpc_x_invalid_timeout RPC_S_INVALID_TIMEOUT
#define rpc_x_no_memory RPC_X_NO_MEMORY
#define rpc_x_object_not_found RPC_S_OBJECT_NOT_FOUND
#define rpc_x_protocol_error RPC_S_PROTOCOL_ERROR
#define rpc_x_protseq_not_supported RPC_S_PROTSEQ_NOT_SUPPORTED
#define rpc_x_server_too_busy RPC_S_SERVER_TOO_BUSY
#define rpc_x_ss_char_trans_open_fail RPC_X_SS_CHAR_TRANS_OPEN_FAIL
#define rpc_x_ss_char_trans_short_file RPC_X_SS_CHAR_TRANS_SHORT_FILE
#define rpc_x_ss_context_damaged RPC_X_SS_CONTEXT_DAMAGED
#define rpc_x_ss_context_mismatch RPC_X_SS_CONTEXT_MISMATCH
#define rpc_x_ss_in_null_context RPC_X_SS_IN_NULL_CONTEXT
#define rpc_x_string_too_long RPC_S_STRING_TOO_LONG
#define rpc_x_unknown_if RPC_S_UNKNOWN_IF
#define rpc_x_unknown_mgr_type RPC_S_UNKNOWN_MGR_TYPE
#define rpc_x_unsupported_name_syntax RPC_S_UNSUPPORTED_NAME_SYNTAX
#define rpc_x_unsupported_type RPC_S_UNSUPPORTED_TYPE
#define rpc_x_wrong_boot_time RPC_S_CALL_FAILED_DNE
#define rpc_x_wrong_kind_of_binding RPC_S_WRONG_KIND_OF_BINDING
#define uuid_x_internal_error RPC_S_INTERNAL_ERROR

#ifdef __cplusplus
}
#endif

#endif /* DCEPORT_H */

 CLIENT.C (INTEROP RPC Sample)

/***/
/** **/
/** Microsoft RPC Examples **/
/** OSF DCE Sample Application **/
/** Copyright(c) Microsoft Corp. 1992 **/
/** **/
/***/

#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <ctype.h>

#include "msg.h" /* header file generated by M/IDL compiler */

#if defined(__RPC_WIN32__) || defined(__RPC_DOS__)

/*
 On MS platforms we must include the dceport.h header file
 which maps OSF DCE style APIs to MS style APIs.
*/

#include "dceport.h"

#else
#include <pthread.h>
#endif

#ifndef _CRTAPI1
#define _CRTAPI1
#endif

void Usage()
{
 printf("Usage : client -n <server_name>\n");
 printf(" -t <transport> - optional, default ncacn_ip_tcp\
n");
 printf(" -e <endpoint> - optional, should match server\
n");
 printf(" -s <message> - optional, send a different
message\n");
 printf(" -x - use to stop the server\n");
 exit(1);
}

int _CRTAPI1
main(int argc, char *argv[])
{
 unsigned32 status;
 unsigned char * pszProtocolSequence = (unsigned char *)"ncacn_ip_tcp";
 unsigned char * pszNetworkAddress = NULL;
 unsigned char * pszEndpoint = NULL;

 unsigned char * pszStringBinding = NULL;
 unsigned char * pszMessage = (unsigned char *)"Hello World";
 int fStopServer = 0;
 int i;

 printf ("Microsoft RPC Demo - OSF DCE Interop Message Client\n");

 for (i = 1; i < argc; i++) {
 if ((*argv[i] == '-') || (*argv[i] == '/')) {
 switch (tolower(*(argv[i]+1))) {
 case 'n': /* network address */
 pszNetworkAddress = (unsigned char *)argv[++i];
 break;
 case 't': /* protocol sequence */
 pszProtocolSequence = (unsigned char *)argv[++i];
 break;
 case 'e': /* network endpoint */
 pszEndpoint = (unsigned char *)argv[++i];
 break;
 case 's': /* update message */
 pszMessage = (unsigned char *)argv[++i];
 break;
 case 'x': /* stop the server */
 fStopServer = 1;
 break;
 case 'h':
 case '?':
 default:
 Usage();
 }
 }
 else
 Usage();
 }

 rpc_string_binding_compose(0, /* no object uuid */
 pszProtocolSequence,
 pszNetworkAddress,
 pszEndpoint,
 0, /* no options */
 &pszStringBinding,
 &status);
 if (status) {
 printf("rpc_string_binding_compose returned 0x%x\n", status);
 return(status);
 }

 rpc_binding_from_string_binding(pszStringBinding,
 &interop_binding_handle,
 &status);
 if (status) {
 printf("rpc_binding_from_string_binding returned 0x%x\n", status);
 return(status);
 }

 rpc_string_free(&pszStringBinding,&status);
 if (status) {
 printf("rpc_string_free returned 0x%x\n", status);
 return(status);
 }

 TRY {
 ClientMessage(pszMessage);

 printf("Message sent okay\n");
 if (fStopServer)
 {
 ShutdownServer();
 printf("Server shutdown\n");
 }
 }
 CATCH_ALL {
 printf("RPC raised exception 0x%x\n", THIS_CATCH);
 }
 ENDTRY

 rpc_binding_free(&interop_binding_handle, &status);
 if (status) {
 printf("rpc_binding_free returned 0x%x\n", status);
 return(status);
 }

 return(0);
}

 MANAGER.C (INTEROP RPC Sample)

/***/
/** **/
/** Microsoft RPC Examples **/
/** OSF DCE Interop Application **/
/** Copyright(c) Microsoft Corp. 1993 **/
/** **/
/***/

#include <stdio.h>
#include "msg.h" /* header file generated by M/IDL compiler */

#if defined(__RPC_WIN32__) || defined(__RPC_DOS__)
#include "dceport.h"
#endif

/*
 * Print out client messages
 */

void ClientMessage(unsigned char *message)
{
 printf("%s\n", message);
 return;
}

/*
 * The client can stop the server by calling this operation.
 */
void ShutdownServer()
{
 unsigned32 status;
 rpc_mgmt_stop_server_listening(0, &status);
 if (status)
 {
 printf("rpc_mgmt_stop_server_listening returns 0x%x\n", status);
 }
 return;
}

 MIDLUSER.C (INTEROP RPC Sample)

/***/
/** **/
/** Microsoft RPC Examples **/
/** OSF DCE Interop Sample Application **/
/** Copyright(c) Microsoft Corp. 1993 **/
/** **/
/***/

#include <stdlib.h>
#include "msg.h"

/*
 * These are used in Microsoft clients and servers for stub memory
allocation
 */

void __RPC_FAR * __RPC_USER MIDL_user_allocate(size_t size)
{
 return malloc(size);
}

void __RPC_USER MIDL_user_free(void __RPC_FAR *p)
{
 free(p);
}

 SERVER.C (INTEROP RPC Sample)

/***/
/** **/
/** Microsoft RPC Examples **/
/** OSF DCE Interop Application **/
/** Copyright(c) Microsoft Corp. 1993 **/
/** **/
/***/

#include <stdlib.h>
#include <stdio.h>
#include <ctype.h>

#include "msg.h" /* header file generated by M/IDL compiler */

#if defined(__RPC_WIN32__) || defined(__RPC_DOS__)

/*
 On MS platforms we must include the dceport.h header file
 which maps OSF DCE style APIs to MS style APIs.

 Currently, we must also define a common interface handle name.
*/

#include "dceport.h"

#else
#include <pthread.h>
#endif

#ifndef _CRTAPI1
#define _CRTAPI1
#endif

void Usage()
{
 printf("Usage : server -e <endpoint> - optional endpoint\n");
 printf(" -t <transport> - optional, default ncacn_ip_tcp\
n");
 exit(1);
}

int _CRTAPI1
main(int argc, char *argv[])
{
 unsigned32 status;
 unsigned char * pszProtocolSequence = (unsigned char *)"ncacn_ip_tcp";
 unsigned char * pszEndpoint = NULL;
 unsigned int cMaxCalls = 20;
 rpc_binding_vector_p_t pbvBindings = NULL;
 int i;

 printf ("Microsoft RPC Demo - OSF DCE Interop Message Server\n");

 for (i = 1; i < argc; i++) {
 if ((*argv[i] == '-') || (*argv[i] == '/')) {
 switch (tolower(*(argv[i]+1))) {
 case 'e':
 pszEndpoint = (unsigned char *)argv[++i];
 break;
 case 't':
 pszProtocolSequence = (unsigned char *)argv[++i];
 break;
 case 'h':
 case '?':
 default:
 Usage();
 }
 }
 else
 Usage();
 }

 if (pszEndpoint != NULL)
 {
 /*
 Since we have an explict endpoint, use it and
 wait for client requests.
 */
 rpc_server_use_protseq_ep(pszProtocolSequence,
 cMaxCalls,
 pszEndpoint,
 &status);
 if (status) {
 printf("rpc_server_use_protseq_ep returned 0x%x\n", status);
 return status;
 }
 }
 else
 {
 /*
 No explict endpoint, use the protocol sequence and register
 the endpoint with the endpoint mapper.
 */
 rpc_server_use_protseq(pszProtocolSequence,
 cMaxCalls,
 &status);
 if (status) {
 printf("rpc_server_use_protseq returned 0x%x\n", status);
 return status;
 }

 rpc_server_inq_bindings(&pbvBindings, &status);
 if (status) {
 printf("rpc_server_inq_bindings returned 0x%x\n", status);
 return status;
 }

 rpc_ep_register(interop_v1_0_s_ifspec,
 pbvBindings,
 0,
 0,
 &status);
 if (status) {
 printf("rpc_ep_register returned 0x%x\n", status);
 return status;
 }
 }

 rpc_server_register_if(interop_v1_0_s_ifspec,
 0,
 0,
 &status);
 if (status) {
 printf("rpc_server_register_if returned 0x%x\n", status);
 return status;
 }

 printf("RPC server ready\n");
 rpc_server_listen(cMaxCalls,&status);

 if (status) {
 printf("rpc_server_listen returned: 0x%x\n", status);
 return status;
 }

 rpc_server_unregister_if(interop_v1_0_s_ifspec,
 0,
 &status);
 if (status) {
 printf("rpc_server_unregister_if returned 0x%x\n", status);
 return status;
 }

 if (pszEndpoint == NULL)
 {
 /*
 Unregister from endpoint mapper
 */
 rpc_ep_unregister(interop_v1_0_s_ifspec,
 pbvBindings,
 0,
 &status);
 if (status) {
 printf("rpc_ep_unregister returned 0x%x\n", status);
 return status;
 }

 rpc_binding_vector_free(&pbvBindings, &status);
 if (status) {
 printf("rpc_binding_vector_free returned 0x%x\n", status);
 return status;

 }
 }
}

 MANDEL

This directory contains the files for the sample distributed application "mandel":

File Description
README.TXT Readme file for the MANDEL sample
MDLRPC.IDL Interface definition language file
MDLRPC.ACF Attribute configuration file
MANDEL.C Client main program
MANDEL.H Client global data
REMOTE.C Client code that calls remote

procedures
RPC.ICO Client icon
MANDEL.DEF Client module definition file
MANDEL.RC Client resource script file
SERVER.C Server main program
CALC.C Remote procedures
MAKEFILE nmake utility for Windows NT
MAKEFILE.WIN nmake utility for Win 3.x

BUILDING CLIENT AND SERVER APPLICATIONS FOR MICROSOFT WINDOWS NT:

The following environment variables should be set for you already.

 set CPU=i386
 set INCLUDE=c:\mstools\h
 set LIB=c:\mstools\lib
 set PATH=c:\winnt\system32;c:\mstools\bin;

For mips, set CPU=mips For alpha, set CPU=alpha

Build the sample distributed application:

 nmake cleanall
 nmake

This builds the executable programs client.exe and server.exe for Microsoft Windows NT.

BUILDING THE CLIENT APPLICATION FOR WINDOWS 3.x

After installing the Microsoft Visual C/C++ version 1.50 development environment and the Microsoft
RPC version 2.0 toolkit on a Windows NT computer, you can build the sample client application from
Windows NT.

 nmake -f makefile.win cleanall
 nmake -f makefile.win

This builds the client application client.exe.

You can also execute the Microsoft Visual C/C++ compiler under MS-DOS. This requires a two-step
build process.

Step One: Compile the .IDL files under Windows NT

 nmake -a -f makefile.win yield.h

Step Two: Compile the C sources (stub and application) under MS-DOS.

 nmake -f makefile.win

RUNNING THE CLIENT AND SERVER APPLICATIONS

On the server, enter

 server

On the client, enter

 net start workstation
 client

Note The client and server applications can run on the same Microsoft Windows NT computer when
you use different screen groups. If you run the client on the Microsoft MS-DOS and Windows
computer, choose the Run command from the File menu in the Microsoft Windows 3.x Program
Manager and enter client.exe.

Several command line switches are available to change settings for the server program. For a listing of
switches available from the server program, enter

 server -?

 MAKEFILE (MANDEL RPC Sample)

#***#
#** **#
#** Microsoft RPC Examples **#
#** Mandelbrot RPC Application **#
#** Copyright(c) Microsoft Corp. 1991 **#
#** **#
#***#
The same source code is used to build either a standalone
or an RPC version of the Microsoft Windows (R) Mandelbrot
sample application. The flag RPC determines which version
is built. To build a standalone version, use the commands:
>nmake cleanall
>set NOTRPC=1
>nmake
To build the RPC version, use the commands:
>nmake cleanall
>set NOTRPC=
>nmake
!include <ntwin32.mak>

!ifdef NOTRPC
RPCFLAG =
!else
RPCFLAG = -DRPC
!endif

.c.obj:
 $(cc) $(cdebug) $(cflags) $(cvars) $(RPCFLAG) $<

Targets
The RPC version produces client and server executables.
The standalone version produces a single exe file, "mandel".

!ifndef NOTRPC
all: client.exe server.exe
!else
all: mandel.exe
!endif

mandel.exe: mandel.obj remote.obj mandel.def mandel.rbj calc.obj
 $(link) $(linkdebug) $(guiflags) -out:mandel.exe -map:mandel.map \
 mandel.obj remote.obj calc.obj mandel.rbj $(guilibs)

client.exe: mandel.obj remote.obj mandel.def mandel.rbj mdlrpc_c.obj
 $(link) $(linkdebug) $(guiflags) -out:client.exe -map:client.map \
 mandel.obj remote.obj mdlrpc_c.obj \
 mandel.rbj rpcrt4.lib $(guilibs)

server.exe: server.obj calc.obj mdlrpc_s.obj
 $(link) $(linkdebug) $(conflags) -out:server.exe -map:server.map \
 server.obj calc.obj mdlrpc_s.obj \
 rpcrt4.lib $(conlibs)

Update the resource if necessary
mandel.rbj: mandel.rc mandel.h
 rc -r mandel.rc
 cvtres -$(CPU) mandel.res -o mandel.rbj

Object file dependencies

server only built for RPC version; always needs mdlrpc.h
server.obj: server.c mandel.h mdlrpc.h

Compile differently for RPC, standalone versions
!ifndef NOTRPC
mandel.obj: mandel.c mandel.h mdlrpc.h
remote.obj: remote.c mandel.h mdlrpc.h
calc.obj : calc.c mandel.h mdlrpc.h
!else
mandel.obj: mandel.c mandel.h
remote.obj: remote.c mandel.h
calc.obj : calc.c mandel.h
!endif

client stub
mdlrpc_c.obj : mdlrpc_c.c mdlrpc.h

server stub file
mdlrpc_s.obj : mdlrpc_s.c mdlrpc.h

Stubs and header file from the IDL file
mdlrpc.h mdlrpc_c.c mdlrpc_s.c: mdlrpc.idl mdlrpc.acf
 midl -oldnames -cpp_cmd $(cc) -cpp_opt "-E" mdlrpc.idl

clean:
 -del client.exe
 -del server.exe
 -del mandel.exe

cleanall: clean
 -del *.obj
 -del *.map
 -del *.res
 -del *.rbj
 -del mdlrpc_*.c
 -del mdlrpc.h

 MANDEL.H (MANDEL RPC Sample)

/
**

 MANDEL.H -- Constants and function definitions for MANDEL.C

 Copyright (C) 1990, 1992 Microsoft Corporation

**
/

/* Constants */

#ifdef WIN16
#define APIENTRY PASCAL
#define UNREFERENCED_PARAMETER
#endif

#define IDM_ABOUT 100
#define IDM_ZOOMIN 101
#define IDM_ZOOMOUT 105
#define IDM_TOP 106
#define IDM_REDRAW 107
#define IDM_EXIT 108
#define IDM_CONTINUOUS 109
#define IDM_PROTSEQ 110
#define IDD_PROTSEQNAME 111
#define IDM_SERVER 112
#define IDD_SERVERNAME 113
#define IDM_ENDPOINT 114
#define IDD_ENDPOINTNAME 115
#define IDM_BIND 116
#define IDM_GO 117
#define IDM_1LINE 200
#define IDM_2LINES 201
#define IDM_4LINES 202

#define WIDTH 300
#define HEIGHT 300
#define LINES 4
#define BUFSIZE 1200 // (HEIGHT * LINES)
#define MAX_BUFSIZE 4800 // (BUFSIZE * sizeof(short))

#define POLL_TIME 2000

#define CNLEN 25 // computer name length
#define UNCLEN CNLEN+2 // \\computername
#define PATHLEN 260 // Path
#define MSGLEN 300 // arbitrary large number for message size
#define MAXPROTSEQ 20 // protocol sequence

#define NCOLORS 11

#define SVR_TABLE_SZ 20

// Status of connection to server
#define SS_DISCONN 0
#define SS_IDLE 1
#define SS_READPENDING 2
#define SS_PAINTING 3
#define SS_LOCAL 4

#define MINPREC 5.0E-9
#define MAXPREC 5.0E-3

#define WM_DOSOMEWORK (WM_USER+0)
#define WM_PAINTLINE (WM_USER+1)

#define EXCEPT_MSG "The remote procedure raised an exception.\n\
Check your connection settings."

/* Data Structures */

typedef struct _svr_table {
 char name[UNCLEN]; // name of remote server
 int hfPipe; // RPC handle
 int iStatus; // status of connection
 int cPicture; // picture id for this line
 DWORD dwLine; // line we're drawing
 int cLines; // lines in this chunk
} svr_table;

#ifndef RPC // If RPC, the following data would be
 // defined in the IDL file
typedef struct _cpoint {
 double real;
 double imag;
} CPOINT;

typedef CPOINT * PCPOINT;

typedef struct _LONGRECT {
 long xLeft;
 long yBottom;
 long xRight;
 long yTop;
} LONGRECT;

typedef LONGRECT *PLONGRECT;

typedef unsigned short LINEBUF[BUFSIZE];

#endif

typedef struct _calcbuf {
 LONGRECT rclDraw;
 double dblPrecision;
 DWORD dwThreshold;

 CPOINT cptLL;
} CALCBUF;

/* Function Prototypes */

int WINAPI WinMain(HINSTANCE, HINSTANCE, LPSTR, int);
BOOL InitApplication(HANDLE);
BOOL InitInstance(HANDLE, int);

LONG APIENTRY MainWndProc(HWND, UINT, UINT, LONG);
BOOL APIENTRY About(HWND, UINT, UINT, LONG);
BOOL APIENTRY Protseq(HWND, UINT, UINT, LONG);
BOOL APIENTRY Server(HWND, UINT, UINT, LONG);
BOOL APIENTRY Endpoint(HWND, UINT, UINT, LONG);

#ifdef RPC
RPC_STATUS Bind(HWND);
#endif

void CountHistogram(void);

BOOL InitRemote(HWND);
BOOL CheckDrawStatus(HWND);
void SetNewCalc(CPOINT, double, RECT);
void IncPictureID(void);
void ResetPictureID(void);
BOOL CheckDrawingID(int);
DWORD QueryThreshold(void);

// buffer routines
BOOL TakeDrawBuffer(void);
LPVOID LockDrawBuffer(void);
void UnlockDrawBuffer(void);
void ReturnDrawBuffer(void);
void FreeDrawBuffer(void);

#ifndef RPC // If RPC, MandelCalc() would be
 // defined in the IDL file
void MandelCalc(PCPOINT pcptLL,
 PLONGRECT prcDraw,
 double precision,
 DWORD ulThreshold,
 LINEBUF * pbBuf);
#endif

 CALC.C (MANDEL RPC Sample)

/
**
 Microsoft RPC Version 2.0
 Copyright Microsoft Corp. 1992, 1993, 1994
 mandel Example

 FILE: calc.c

 PURPOSE: Server side of the RPC distributed application Mandel

 FUNCTIONS: MandelCalc() - Do the calculations for the Windows
 Mandelbrot Set distributed drawing program.

**
/

#include <stdlib.h>
#include <stdio.h>
#include <windows.h>

#ifdef RPC
#include "mdlrpc.h"
#endif
#include "mandel.h"

short calcmand(double, double, short);

void MandelCalc(PCPOINT pcptLL,
 PLONGRECT prcDraw,
 double precision,
 DWORD ulThreshold,
 LINEBUF * pbBuf)
{
 DWORD h, height, width;
 double dreal, dimag, dimag2;
 short maxit = 0;
 short * pbPtr;

 pbPtr = *pbBuf; // LINEBUF is an array of shorts

 dreal = pcptLL->real + ((double)prcDraw->xLeft * precision);
 dimag = pcptLL->imag + ((double)prcDraw->yBottom * precision);

 maxit = (short) ulThreshold;

 height = (prcDraw->yTop - prcDraw->yBottom) + 1;
 width = (prcDraw->xRight - prcDraw->xLeft) + 1;

 for (; width > 0; --width, dreal += precision) {

 for (dimag2 = dimag, h = height; h > 0; --h, dimag2 += precision) {
 if ((dreal > 4.0) || (dreal < -4.0) ||
 (dimag2 > 4.0) || (dimag2 < -4.0))
 *(pbPtr++) = 0;
 else
 *(pbPtr++) = calcmand(dreal, dimag2, maxit);
 }
 }
}

/* C version of the assembly language program */
short calcmand(double dreal,
 double dimag,
 short maxit)
{
 double x, y, xsq, ysq;
 short k;

 k = maxit;
 x = dreal;
 y = dimag;

 while (1) {
 xsq = x * x;
 ysq = y * y;
 y = 2.0 * x * y + dimag;
 x = (xsq - ysq) + dreal;
 if (--k == 0)
 return((short) (maxit - k));
 if ((xsq + ysq) > 4.0)
 return((short) (maxit - k));
 }
}

 MANDEL.C (MANDEL RPC Sample)

/
**
 Microsoft RPC Version 2.0
 Copyright Microsoft Corp. 1992, 1993, 1994
 mandel Example

 FILE: mandel.c

 PURPOSE: Client side of the RPC distributed application

 COMMENTS: Main code for the Windows Mandelbrot Set distributed
 drawing program.

**
/

#include <stdio.h>
#include <stdlib.h>
#include <ctype.h>
#include <string.h>
#include <time.h>
#include <windows.h> // Required for all Windows applications
#include <windowsx.h> // Allow portability from Win16, Win32

#ifdef RPC
#include "mdlrpc.h" // header file generated by the MIDL compiler
#endif
#include "mandel.h"

/* data structures */

#ifdef RPC
char szTitle[] = "Mandelbrot RPC";
#else
char szTitle[] = "Mandelbrot Standalone";
#endif

CPOINT cptUL = { (double) -2.05, (double) 1.4 };
double dPrec = (double) .01;

HANDLE hInst; // current instance
HWND hWND; // Main window handle

svr_table SvrTable;
int iLines = LINES;

int fContinueZoom = TRUE;
int fZoomIn = TRUE;

// split current picture into 16 regions

// zoom on most complex region; region with most colors represented
int Histogram[4][4][NCOLORS+1] = {0};
int ColorCount[4][4] = {0};
int Max[4][4] = {0};

int iHistMaxI = 2;
int iHistMaxJ = 3;

RECT rcZoom;
BOOL fRectDefined = FALSE;

#ifdef RPC
int fBound = FALSE; // flag indicates whether bound to svr
unsigned char * pszUuid = NULL;
unsigned char pszProtocolSequence[MAXPROTSEQ] = "ncacn_np";
unsigned char pszEndpoint[PATHLEN] = "\\pipe\\mandel";
unsigned char * pszOptions = NULL;
unsigned char * pszStringBinding;
unsigned char pszNetworkAddress[UNCLEN+1] = {'\0'};
#endif

/* function prototypes */

void DoSomeWork(HWND, BOOL);
void InitHistogram(void);
void CalcHistogram(int, int, DWORD, DWORD);
void PaintLine(HWND, svr_table *, HDC, int);
void DrawRect(HWND, PRECT, BOOL, HDC);
COLORREF MapColor(DWORD, DWORD);

/*
 * FUNCTION: WinMain(HANDLE, HANDLE, LPSTR, int)
 *
 * PURPOSE: Calls initialization function, processes message loop
 *
 * COMMENTS:
 *
 * Windows recognizes this function by name as the initial entry point
 * for the program. This function calls the application initialization
 * routine, if no other instance of the program is running, and always
 * calls the instance initialization routine. It then executes a
message
 * retrieval and dispatch loop that is the top-level control structure
 * for the remainder of execution. The loop is terminated when a
WM_QUIT
 * message is received, at which time this function exits the
application
 * instance by returning the value passed by PostQuitMessage().
 *
 * If this function must abort before entering the message loop, it
 * returns the conventional value NULL.
 */

int WINAPI WinMain(

 HINSTANCE hInstance, /* current instance */
 HINSTANCE hPrevInstance, /* previous instance */
 LPSTR lpCmdLine, /* command line */
 int nCmdShow) /* show-window type (open/icon) */
{

 MSG msg;

 UNREFERENCED_PARAMETER(lpCmdLine);

 if (!hPrevInstance) /* Other instances of app running? */
 if (!InitApplication(hInstance)) /* Initialize shared things */
 return(FALSE); /* Exits if unable to initialize */

 /* Perform initializations that apply to a specific instance */
 if (!InitInstance(hInstance, nCmdShow))
 return(FALSE);

 /* Acquire and dispatch messages until a WM_QUIT message is received. */
 while (GetMessage(&msg, /* message structure */
 (HWND)NULL, /* handle of window receiving the message
*/
 0, /* lowest message to examine */
 0)) /* highest message to examine */
 {
 TranslateMessage(&msg); /* Translates virtual key codes */
 DispatchMessage(&msg); /* Dispatches message to window */
 }

 return(msg.wParam); /* Returns the value from PostQuitMessage */

}

/*
 * FUNCTION: InitApplication(HANDLE)
 *
 * PURPOSE: Initializes window data and registers window class
 *
 * COMMENTS:
 *
 * This function is called at initialization time only if no other
 * instances of the application are running. This function performs
 * initialization tasks that can be done once for any number of running
 * instances.
 *
 * In this case, we initialize a window class by filling out a data
 * structure of type WNDCLASS and calling the Windows RegisterClass()
 * function. Since all instances of this application use the same
window
 * class, we only need to do this when the first instance is
initialized.
 */

BOOL InitApplication(HANDLE hInstance) /* current instance */
{

 WNDCLASS wc;

 /* Fill in window class structure with parameters that describe the
*/
 /* main window.
*/
 wc.style = 0; /* Class style(s).
*/
 wc.lpfnWndProc = (WNDPROC)MainWndProc;
 /* Function to retrieve messages for
*/
 /* windows of this class.
*/
 wc.cbClsExtra = 0; /* No per-class extra data.
*/
 wc.cbWndExtra = 0; /* No per-window extra data.
*/
 wc.hInstance = hInstance; /* Application that owns the class.
*/
 wc.hIcon = LoadIcon(hInstance, "RPC_ICON");
 wc.hCursor = LoadCursor(0, IDC_ARROW);
 wc.hbrBackground = GetStockObject(WHITE_BRUSH);
 wc.lpszMenuName = "MandelMenu"; /* Name of menu resource in .RC
file. */
 wc.lpszClassName = "MandelClass"; /* Name used in call to
CreateWindow. */

 /* Register the window class and return success/failure code. */
 return(RegisterClass(&wc));

}

/*
 * FUNCTION: InitInstance(HANDLE, int)
 *
 * PURPOSE: Saves instance handle and creates main window.
 *
 * COMMENTS:
 *
 * This function is called at initialization time for every instance of
 * this application. This function performs initialization tasks that
 * cannot be shared by multiple instances.
 *
 * In this case, we save the instance handle in a static variable and
 * create and display the main program window.
 */

BOOL InitInstance(HANDLE hInstance, /* Current instance identifier.
*/
 int nCmdShow) /* Param for first ShowWindow()
call. */

{
 HMENU hMenu;
 RECT rc;

 /* Save the instance handle in static variable, which will be used in
*/
 /* many subsequence calls from this application to Windows.
*/
 hInst = hInstance;

 /* Create a main window for this application instance. */
 hWND = CreateWindow(
 "MandelClass", /* See RegisterClass() call.
*/
 szTitle, /* Text for window title bar.
*/
 WS_OVERLAPPED | WS_CAPTION | WS_SYSMENU | WS_BORDER |
WS_MINIMIZEBOX,
 CW_USEDEFAULT, /* Default horizontal position.
*/
 CW_USEDEFAULT, /* Default vertical position.
*/
 WIDTH, /* Default width.
*/
 HEIGHT, /* Default height.
*/
 (HWND) NULL, /* Overlapped windows have no parent.
*/
 (HMENU) NULL, /* Use the window class menu.
*/
 hInstance, /* This instance owns this window.
*/
 (LPVOID) NULL /* Pointer not needed.
*/
);

 /* If window could not be created, return "failure" */
 if (!hWND)
 return(FALSE);

 /* Make the window visible; update its client area; and return "success"
*/
 ShowWindow(hWND, nCmdShow); /* Show the window */
 UpdateWindow(hWND); /* Sends WM_PAINT message */
 rc.top = rc.left = 0;
 rc.bottom = HEIGHT-1;
 rc.right = WIDTH-1;

 SetNewCalc(cptUL, dPrec, rc);
 hMenu = GetMenu(hWND);

#ifndef RPC
 EnableMenuItem(hMenu, IDM_SERVER, MF_GRAYED); /* disable option */
#endif

 return(TRUE); /* Returns the value from PostQuitMessage */
}

/*
 * FUNCTION: MainWndProc(HWND, unsigned, WORD, LONG)
 *
 * PURPOSE: Processes messages
 *
 * MESSAGES:
 * WM_COMMAND - application menu
 * WM_DESTROY - destroy window
 *
 * COMMENTS:
 */

LONG APIENTRY MainWndProc(
 HWND hWnd, /* window handle */
 UINT message, /* type of message */
 UINT wParam, /* additional information */
 LONG lParam) /* additional information */
{
 DLGPROC lpProc; /* pointer to the dialog box function */
 PAINTSTRUCT ps;
 HDC hdc;
 static HDC hdcMem;
 static HBITMAP hbmMem;
 static int width;
 static int height;
 RECT rc;
 static BOOL fButtonDown = FALSE;
 static POINT pSelected;
 POINT pMove;
 int iWidthNew;
 int iHeightNew;
 static int miOldLines;
 double scaling;

 switch (message) {

 case WM_CREATE:

#ifdef WIN16
 RpcWinSetYieldInfo (hWnd, FALSE, 0, 0L); // To make TCP/IP happy
#else
 PostMessage(hWnd, WM_COMMAND, IDM_BIND, 0L); // bind to server
#endif

 if (!InitRemote(hWnd))
 return(FALSE);

 InitHistogram();

 hdc = GetDC(hWnd);

 hdcMem = CreateCompatibleDC(hdc);
 GetWindowRect(hWnd, &rc);
 width = rc.right - rc.left;
 height = rc.bottom - rc.top;
 hbmMem = CreateCompatibleBitmap(hdc, width, height);
 SelectObject(hdcMem, hbmMem);

 ReleaseDC(hWnd,hdc);

 rc.left = rc.top = 0;
 rc.right = width+1;
 rc.bottom = height + 1;
 FillRect(hdcMem, &rc, GetStockObject(WHITE_BRUSH));

 CheckMenuItem(GetMenu(hWnd), IDM_4LINES, MF_CHECKED);
 CheckMenuItem(GetMenu(hWnd), IDM_CONTINUOUS, MF_CHECKED);
 miOldLines = IDM_4LINES; // save to uncheck
 break;

 case WM_PAINT:
 hdc = BeginPaint(hWnd, &ps);
 BitBlt(hdc,
 ps.rcPaint.left,
 ps.rcPaint.top,
 ps.rcPaint.right - ps.rcPaint.left,
 ps.rcPaint.bottom - ps.rcPaint.top,
 hdcMem,
 ps.rcPaint.left,
 ps.rcPaint.top,
 SRCCOPY);
 EndPaint(hWnd, &ps);
 break;

 case WM_COMMAND: // message: command from application menu
 switch(wParam) {

 case IDM_BIND:

#ifdef RPC
 if (Bind(hWnd) != RPC_S_OK)
 PostMessage(hWnd, WM_DESTROY, 0, 0L);
#endif
 break;

 case IDM_ABOUT:
 lpProc = MakeProcInstance(About, hInst);

 DialogBox(hInst, // current instance
 "AboutBox", // resource to use
 hWnd, // parent handle
 lpProc); // About() instance address

 FreeProcInstance(lpProc);
 break;

 case IDM_ZOOMOUT:
 if (dPrec > (double)MAXPREC) // don't allow the zoom out
 break;

 rcZoom.left = WIDTH/4 + (WIDTH/8); // center square
 rcZoom.top = HEIGHT/4 + (HEIGHT/8);
 rcZoom.right = rcZoom.left + (WIDTH/4);
 rcZoom.bottom = rcZoom.top + (HEIGHT/4);

 cptUL.real -= (rcZoom.left * dPrec); // inverse of zoom in
 cptUL.imag += (rcZoom.top * dPrec);
 iWidthNew = (rcZoom.right - rcZoom.left + 1);
 iHeightNew = (rcZoom.bottom - rcZoom.top + 1);
 scaling = ((double) ((iWidthNew > iHeightNew) ? iWidthNew :
iHeightNew) / (double) width);
 dPrec /= scaling;

 rc.left = rc.top = 0;
 rc.bottom = height - 1;
 rc.right = width - 1;

 SetNewCalc(cptUL, dPrec, rc);
 fRectDefined = FALSE;
 DoSomeWork(hWnd, FALSE);
 break;

 case IDM_ZOOMIN: // zoom in on selected rectangle
 // if no rectangle, don't zoom in
 if (!fRectDefined)
 break;

 if (dPrec < (double)MINPREC) // don't allow zoom in
 break;

 DrawRect(hWnd, &rcZoom, TRUE, hdcMem); // draw new rect

 // calculate new upper-left
 cptUL.real += (rcZoom.left * dPrec);
 cptUL.imag -= (rcZoom.top * dPrec);

 iWidthNew = (rcZoom.right - rcZoom.left + 1);
 iHeightNew = (rcZoom.bottom - rcZoom.top + 1);
 scaling = ((double) ((iWidthNew > iHeightNew) ? iWidthNew :
iHeightNew) / (double) width);

 dPrec *= scaling;

 rc.left = rc.top = 0;
 rc.bottom = height - 1;
 rc.right = width - 1;

 SetNewCalc(cptUL, dPrec, rc);
 IncPictureID();

 fRectDefined = FALSE;
 DoSomeWork(hWnd, FALSE);
 break;

 case IDM_CONTINUOUS: // continuous zoom in
 if (fContinueZoom == TRUE) {
 CheckMenuItem(GetMenu(hWnd), IDM_CONTINUOUS, MF_UNCHECKED);
 fContinueZoom = FALSE;
 }
 else {
 CheckMenuItem(GetMenu(hWnd), IDM_CONTINUOUS, MF_CHECKED);
 fContinueZoom = TRUE;
 }
 break;

 case IDM_REDRAW:
 if (fContinueZoom == TRUE)
 InitHistogram();

 rc.left = rc.top = 0;
 rc.right = width+1;
 rc.bottom = height + 1;
 FillRect(hdcMem, &rc, GetStockObject(WHITE_BRUSH));
 InvalidateRect(hWnd, NULL, TRUE);

 rc.left = rc.top = 0;
 rc.bottom = height - 1;
 rc.right = width - 1;
 SetNewCalc(cptUL, dPrec, rc);

 fRectDefined = FALSE;
 DoSomeWork(hWnd, FALSE);
 break;

 case IDM_EXIT:
 DestroyWindow(hWnd);
 FreeDrawBuffer();
 break;

 case IDM_TOP:
 cptUL.real = (double) -2.05;
 cptUL.imag = (double) 1.4;
 dPrec = .01;

 rc.left = rc.top = 0;
 rc.bottom = height - 1;
 rc.right = width - 1;

 SetNewCalc(cptUL, dPrec, rc);
 ResetPictureID(); // incremented past original

 fRectDefined = FALSE;
 DoSomeWork(hWnd, FALSE);
 break;

 case IDM_1LINE:

 case IDM_2LINES:

 case IDM_4LINES:

 CheckMenuItem(GetMenu(hWnd), miOldLines, MF_UNCHECKED);
 miOldLines = wParam;
 switch(wParam) {

 case IDM_1LINE:
 iLines = 1;
 break;
 case IDM_2LINES:
 iLines = 2;
 break;
 case IDM_4LINES:
 iLines = 4;
 break;
 }

 CheckMenuItem(GetMenu(hWnd), miOldLines, MF_CHECKED);
 break;

#ifdef RPC
 case IDM_PROTSEQ:
 lpProc = MakeProcInstance(Protseq, hInst);
 DialogBox(hInst, // current instance
 "ProtseqBox", // resource to use
 hWnd, // parent handle
 lpProc); // Server instance address
 FreeProcInstance(lpProc);
 break;

 case IDM_SERVER:
 lpProc = MakeProcInstance(Server, hInst);
 DialogBox(hInst, // current instance
 "ServerBox", // resource to use
 hWnd, // parent handle
 lpProc); // Server instance address
 FreeProcInstance(lpProc);
 break;

 case IDM_ENDPOINT:
 lpProc = MakeProcInstance(Endpoint, hInst);
 DialogBox(hInst, // current instance
 "EndpointBox",// resource to use
 hWnd, // parent handle
 lpProc); // Server instance address
 FreeProcInstance(lpProc);
 break;
#endif
 case IDM_GO:

 SetTimer(hWnd, 1, POLL_TIME, NULL); // set timer for polls

 EnableMenuItem(GetMenu(hWnd), IDM_GO, MF_GRAYED); // disable
GO
 break;

 default: // Lets Windows process it
 return(DefWindowProc(hWnd, message, wParam, lParam));

 }

 break;

 case WM_DESTROY: // message: window being destroyed
 PostQuitMessage(0);
 DeleteDC(hdcMem);
 DeleteObject(hbmMem);
 break;

 case WM_DOSOMEWORK: // do another slice of calculation work
 DoSomeWork(hWnd, FALSE);
 break;

 case WM_PAINTLINE: // The shared buffer contains a line of data; draw
it
 PaintLine(hWnd,
 &SvrTable,
 hdcMem,
 height);
 break;

 case WM_TIMER: // timer means we should do another slice of work
 DoSomeWork(hWnd, TRUE);
 break;

 case WM_LBUTTONDOWN: // left button down; start to define a zoom
rectangle
 if (fRectDefined)
 DrawRect(hWnd, &rcZoom, FALSE, hdcMem); // undraw old rectangle

 // initialize rectangle
 rcZoom.left = rcZoom.right = pSelected.x = LOWORD(lParam);
 rcZoom.top = rcZoom.bottom = pSelected.y = HIWORD(lParam);

 // draw the new rectangle
 DrawRect(hWnd, &rcZoom, TRUE, hdcMem);

 fRectDefined = TRUE;
 fButtonDown = TRUE;
 SetCapture(hWnd); // capture all mouse events
 break;

 case WM_MOUSEMOVE: // mouse move
 // if the button is down, change the rect
 if (!fButtonDown)
 break;

 DrawRect(hWnd, &rcZoom, FALSE, hdcMem); // undraw old rect

 pMove.x = LOWORD(lParam);
 pMove.y = HIWORD(lParam);

 // update the selection rectangle
 if (pMove.x <= pSelected.x)
 rcZoom.left = pMove.x;
 if (pMove.x >= pSelected.x)
 rcZoom.right = pMove.x;
 if (pMove.y <= pSelected.y)
 rcZoom.top = pMove.y;
 if (pMove.y >= pSelected.y)
 rcZoom.bottom = pMove.y;

 DrawRect(hWnd, &rcZoom, TRUE, hdcMem); // draw new rect
 break;

 case WM_LBUTTONUP: // button up; end selection
 fButtonDown = FALSE;
 ReleaseCapture();
 break;

 default: // Passes it on if unproccessed
 return(DefWindowProc(hWnd, message, wParam, lParam));

 }

 return(0L);
}

/*
 * FUNCTION: About(HWND, unsigned, WORD, LONG)
 *
 * PURPOSE: Processes messages for "About" dialog box
 *
 * MESSAGES:
 *
 * WM_INITDIALOG - initialize dialog box
 * WM_COMMAND - Input received
 *
 * COMMENTS:
 *
 * No initialization is needed for this particular dialog box, but TRUE
 * must be returned to Windows.
 *
 * Wait for user to click on "Ok" button, then close the dialog box.
 */

BOOL APIENTRY About(
 HWND hDlg, /* window handle of the dialog box */
 UINT message, /* type of message */
 UINT wParam, /* message-specific information */

 LONG lParam)
{
 UNREFERENCED_PARAMETER(lParam);

 switch (message) {

 case WM_INITDIALOG: /* message: initialize dialog box */
 return(TRUE);

 case WM_COMMAND: /* message: received a command */
 if (wParam == IDOK || wParam == IDCANCEL)
 {
 EndDialog(hDlg, TRUE); /* Exits the dialog box */
 return(TRUE);
 }
 break;
 }

 return(FALSE); /* Didn't process a message */
}

/*
 * FUNCTION: Protseq(HWND, unsigned, WORD, LONG)
 *
 * PURPOSE: Processes messages for "Protseq" dialog box
 *
 * MESSAGES:
 *
 * WM_INITDIALOG - initialize dialog box
 * WM_COMMAND - Input received
 *
 * COMMENTS:
 *
 * No initialization is needed for this particular dialog box, but TRUE
 * must be returned to Windows.
 *
 * Wait for user to click on "Ok" button, then close the dialog box.
 */
BOOL APIENTRY Protseq(
 HWND hDlg, /* window handle of the dialog box */
 UINT message, /* type of message */
 UINT wParam, /* message-specific information */
 LONG lParam)
{

 UNREFERENCED_PARAMETER(lParam);

#ifdef RPC

 switch (message) {

 case WM_INITDIALOG: // message: initialize dialog box

 SetDlgItemText((HANDLE)hDlg, IDD_PROTSEQNAME, pszProtocolSequence);
 return(TRUE);

 case WM_COMMAND: // message: received a command
 switch(wParam) {

 case IDCANCEL: // System menu close command?
 EndDialog(hDlg, FALSE);
 return(TRUE);

 case IDOK: // "OK" box selected?
 GetDlgItemText(hDlg, IDD_PROTSEQNAME, pszProtocolSequence,
MAXPROTSEQ);

 if (Bind(hDlg) != RPC_S_OK) {
 EndDialog(hDlg, FALSE);
 return(FALSE);
 }

 KillTimer(hWND, 1); // stop timer for polls
 EnableMenuItem(GetMenu(hWND), IDM_GO, MF_ENABLED); // enable
GO

 EndDialog(hDlg, TRUE);
 return(TRUE);

 }

 }

#endif

 return(FALSE); // Didn't process a message
}

/*
 * FUNCTION: Server(HWND, unsigned, WORD, LONG)
 *
 * PURPOSE: Processes messages for "Server" dialog box
 *
 * MESSAGES:
 *
 * WM_INITDIALOG - initialize dialog box
 * WM_COMMAND - Input received
 *
 * COMMENTS:
 *
 * No initialization is needed for this particular dialog box, but TRUE
 * must be returned to Windows.
 *
 * Wait for user to click on "Ok" button, then close the dialog box.
 */

BOOL APIENTRY Server(
 HWND hDlg, /* window handle of the dialog box */

 UINT message, /* type of message */
 UINT wParam, /* message-specific information */
 LONG lParam)
{

 UNREFERENCED_PARAMETER(lParam);

#ifdef RPC

 switch (message) {

 case WM_INITDIALOG: /* message: initialize dialog box */
 SetDlgItemText(hDlg, IDD_SERVERNAME, pszNetworkAddress);
 return(TRUE);

 case WM_COMMAND: /* message: received a command */
 switch(wParam) {

 case IDCANCEL: /* System menu close command? */
 EndDialog(hDlg, FALSE);
 return(TRUE);

 case IDOK: /* "OK" box selected? */
 GetDlgItemText(hDlg, IDD_SERVERNAME, pszNetworkAddress,
UNCLEN);

 if (Bind(hDlg) != RPC_S_OK) {
 EndDialog(hDlg, FALSE);
 return(FALSE);
 }

 KillTimer(hWND, 1); // stop timer for polls
 EnableMenuItem(GetMenu(hWND), IDM_GO, MF_ENABLED); // enable
GO

 EndDialog(hDlg, TRUE);
 return(TRUE);
 }

 }

#endif

 return(FALSE); /* Didn't process a message */

}

/*
 * FUNCTION: Endpoint(HWND, unsigned, WORD, LONG)
 *
 * PURPOSE: Processes messages for "Endpoint" dialog box
 *
 * MESSAGES:
 *
 * WM_INITDIALOG - initialize dialog box

 * WM_COMMAND - Input received
 *
 * COMMENTS:
 *
 * No initialization is needed for this particular dialog box, but TRUE
 * must be returned to Windows.
 *
 * Wait for user to click on "Ok" button, then close the dialog box.
 */

BOOL APIENTRY Endpoint(
 HWND hDlg, /* window handle of the dialog box */
 UINT message, /* type of message */
 UINT wParam, /* message-specific information */
 LONG lParam)
{

 UNREFERENCED_PARAMETER(lParam);

#ifdef RPC

 switch (message) {

 case WM_INITDIALOG: // message: initialize dialog box
 SetDlgItemText(hDlg, IDD_ENDPOINTNAME, pszEndpoint);
 return(TRUE);

 case WM_COMMAND: // message: received a command
 switch(wParam) {

 case IDCANCEL:
 EndDialog(hDlg, FALSE);
 return(TRUE);

 case IDOK:
 GetDlgItemText(hDlg, IDD_ENDPOINTNAME, pszEndpoint, PATHLEN);

 if (Bind(hDlg) != RPC_S_OK) {
 EndDialog(hDlg, FALSE);
 return(FALSE);
 }

 KillTimer(hWND, 1); // stop timer for polls
 EnableMenuItem(GetMenu(hWND), IDM_GO, MF_ENABLED); // enable
GO

 EndDialog(hDlg, TRUE);
 return(TRUE);

 }

 }

#endif

 return(FALSE); // Didn't process a message

}

/*
 * DoSomeWork --
 *
 * This function does our work for us. It does it in little pieces, and
 * will schedule itself as it sees fit.
 */

void
DoSomeWork(HWND hwnd,
 BOOL fTimer)
{
 static WORD wIteration = 0;

 if (fTimer) {
 wIteration++;

 // on every nth tick, we send out a poll
 if (wIteration == 120) { // tune this?
 wIteration = 0;
 return;
 }

 // on the half-poll, we check for responses
 if ((wIteration == 2) || (wIteration == 10)) {
 return;
 }
 }

 if (CheckDrawStatus(hwnd))
 SendMessage(hwnd, WM_DOSOMEWORK, 0, 0L);

 return;
}

/*
 * DrawRect --
 *
 * This function draws (or undraws) the zoom rectangle.
 */

void
DrawRect(HWND hwnd,
 PRECT prc,
 BOOL fDrawIt,
 HDC hdcBM)
{
 HDC hdc;
 DWORD dwRop;

 hdc = GetDC(hwnd);

 if (fDrawIt)
 dwRop = NOTSRCCOPY;
 else
 dwRop = SRCCOPY;

 // top side
 BitBlt(hdc, prc->left, prc->top, (prc->right - prc->left) + 1,
 1, hdcBM, prc->left, prc->top, dwRop);

 // bottom side
 BitBlt(hdc, prc->left, prc->bottom, (prc->right - prc->left) + 1,
 1, hdcBM, prc->left, prc->bottom, dwRop);

 // left side
 BitBlt(hdc,prc->left, prc->top, 1, (prc->bottom - prc->top) + 1,
 hdcBM, prc->left, prc->top, dwRop);

 // right side
 BitBlt(hdc,prc->right, prc->top, 1, (prc->bottom - prc->top) + 1,
 hdcBM, prc->right, prc->top, dwRop);

 ReleaseDC(hwnd, hdc);
}

/*
 * PaintLine --
 *
 * This function paints a buffer of data into the bitmap.
 */

void
PaintLine(HWND hwnd,
 svr_table * pst,
 HDC hdcBM,
 int cHeight)
{
 LPWORD pwDrawData;
 int y;
 int x;
 DWORD dwThreshold;
 RECT rc;
 WORD lines;

 lines = (WORD) pst->cLines;

 // picture ID had better match, or else we skip it
 if (CheckDrawingID(pst->cPicture))
 {
 // figure out our threshold
 dwThreshold = QueryThreshold();

 // get a pointer to the draw buffer
 pwDrawData = (LPWORD) LockDrawBuffer();

 if (pwDrawData == NULL) {
 ReturnDrawBuffer();
 return;
 }

 // starting x coordinate
 x = (int) pst->dwLine;

 // now loop through the rectangle
 while (lines-- > 0)
 {
 // bottom to top, since that's the order of the data in the
buffer
 y = (int) cHeight-1;

 while (y >= 0)
 {
 // draw a pixel
 SetPixel(hdcBM, x,y, MapColor(*pwDrawData, dwThreshold));

 if (fContinueZoom == TRUE)
 CalcHistogram(x, y, *pwDrawData, dwThreshold);

 // now increment buffer pointer and y coord
 y--;
 pwDrawData++;
 }

 // increment X coordinate
 x++;
 }

 // figure out the rectangle to invalidate
 rc.top = 0;
 rc.bottom = cHeight;
 rc.left = (int)(pst->dwLine);
 rc.right = (int)(pst->dwLine) + pst->cLines;

 UnlockDrawBuffer();

 // and invalidate it on the screen so we redraw it
 InvalidateRect(hwnd, &rc, FALSE);
 }

 // free this for someone else to use
 ReturnDrawBuffer();

 // and change the pipe state, if necessary
 if (pst->iStatus == SS_PAINTING)
 pst->iStatus = SS_IDLE;

}

#define CLR_BLACK RGB(0,0,0)

#define CLR_DARKBLUE RGB(0,0,127)
#define CLR_BLUE RGB(0,0,255)
#define CLR_CYAN RGB(0,255,255)
#define CLR_DARKGREEN RGB(0,127,0)
#define CLR_GREEN RGB(0,255,0)
#define CLR_YELLOW RGB(255,255,0)
#define CLR_RED RGB(255,0,0)
#define CLR_DARKRED RGB(127,0,0)
#define CLR_WHITE RGB(255,255,255)
#define CLR_PALEGRAY RGB(194,194,194)
#define CLR_DARKGRAY RGB(127,127,127)

static COLORREF ColorMapTable[] = { // size = NCOLORS
 CLR_DARKBLUE,
 CLR_BLUE,
 CLR_CYAN,
 CLR_DARKGREEN,
 CLR_GREEN,
 CLR_YELLOW,
 CLR_RED,
 CLR_DARKRED,
 CLR_WHITE,
 CLR_PALEGRAY,
 CLR_DARKGRAY};

/*
 * MapColor --
 *
 * This function maps an iteration count into a corresponding RGB color.
 */

COLORREF
MapColor(DWORD dwIter,
 DWORD dwThreshold)
{

 /* if it's beyond the threshold, call it black */
 if (dwIter >= dwThreshold) {
 return(CLR_BLACK);
 }

 /* get a modulus based on the number of colors */
 dwIter = (dwIter / 3) % NCOLORS; // 11;

 /* and return the appropriate color */
 return(ColorMapTable[dwIter]);

}

/*
 * CalcHistogram --

 *
 * This function is used to select the region that is the
 * most complex and will be used to zoom in for the next picture;
 * it contains the most colors. The number of colors are counted.
 */

void
CalcHistogram(int x,
 int y,
 DWORD dwIter,
 DWORD dwThreshold)
{

 /* if it's beyond the threshold, call it black */
 if (dwIter >= dwThreshold) {
 Histogram[x/(WIDTH/4)][y/(HEIGHT/4)][NCOLORS]++;
 return;
 }

 /* get a modulus based on the number of colors */
 dwIter = (dwIter / 3) % NCOLORS; // 11;

 /* and bump the count for the appropriate color */
 Histogram[x/(WIDTH/4)][y/(HEIGHT/4)][dwIter]++; // region of map

 return;

}

/*
 * InitHistogram --
 *
 * This function initializes the histogram data structures.
 */

void InitHistogram(void)
{
 int i, j, k;

 for (i = 0; i < 4; i++)
 for (j = 0; j < 4; j++)
 for (k = 0; k <= NCOLORS; k++)
 Histogram[i][j][k] = 0; // count of colors
}

/*
 * CountHistogram --
 *
 * This function determines the number of colors represented
 * within a region. The region with the most colors is
 * selected using the maxi and maxj values. X and Y coordinates
 * corresponding to these regions are stored in the HistRegion
 * table and are used for the next picture.

 */

void CountHistogram(void)
{

 int i, j, k;

 /* count the number of colors in each region */
 /* find the color that dominates each region */
 for (i = 0; i < 4; i++) {
 for (j = 0; j < 4; j++) {
 ColorCount[i][j] = 0;
 Max[i][j] = 0;
 for (k = 0; k <= NCOLORS; k++) {
 if (Histogram[i][j][k] > Max[i][j])
 Max[i][j] = Histogram[i][j][k];
 if (Histogram[i][j][k] != 0) // count of colors
 ColorCount[i][j]++;
 }
 }
 }

 iHistMaxI = 0;
 iHistMaxJ = 0;

 /* if several regions have the same number of colors, */
 /* select the region with the most variety: the smallest max */
 for (i = 0; i < 4; i++) {
 for (j = 0; j < 4; j++) {
 if ((ColorCount[i][j] >= ColorCount[iHistMaxI][iHistMaxJ])
 && (Max[i][j] < Max[iHistMaxI][iHistMaxJ])) {
 iHistMaxI = i;
 iHistMaxJ = j;
 }
 }
 }

 InitHistogram(); // initialize for next time

}

#ifdef RPC

void __RPC_FAR * __RPC_API midl_user_allocate(size_t len)
{
 UNREFERENCED_PARAMETER(len);
 return(NULL);
}

void __RPC_API midl_user_free(void __RPC_FAR * ptr)
{
 UNREFERENCED_PARAMETER(ptr);

 return;
}

/*
 * FUNCTION: Bind(HWND)
 *
 * PURPOSE: Make RPC API calls to bind to the server application
 *
 * COMMENTS:
 *
 * The binding calls are made from InitInstance() and whenever
 * the user changes the server name or endpoint. If the bind
 * operation is successful, the global flag fBound is set to TRUE.
 *
 * The global flag fBound is used to determine whether to call
 * the RPC API function RpcBindingFree.
 */

RPC_STATUS Bind(HWND hWnd)
{
 RPC_STATUS status;
 char pszFail[MSGLEN];

 if (fBound == TRUE) { // unbind only if bound
 status = RpcStringFree(&pszStringBinding);
 if (status) {
 sprintf(pszFail, "RpcStringFree failed 0x%x", status);
 MessageBox(hWnd,
 pszFail,
 "RPC Sample Application",
 MB_ICONSTOP);
 return(status);
 }

 status = RpcBindingFree(&hMandel);
 if (status) {
 sprintf(pszFail, "RpcBindingFree failed 0x%x", status);
 MessageBox(hWnd,
 pszFail,
 "RPC Sample Application",
 MB_ICONSTOP);
 return(status);
 }

 fBound = FALSE; // unbind successful; reset flag
 }

 status = RpcStringBindingCompose(pszUuid,
 pszProtocolSequence,
 pszNetworkAddress,
 pszEndpoint,
 pszOptions,
 &pszStringBinding);
 if (status) {

 sprintf(pszFail, "RpcStringBindingCompose returned: (0x%x)\nNetwork
Address = %s\n",
 status, pszNetworkAddress);
 MessageBox(hWnd, pszFail, "RPC Sample Application",
MB_ICONINFORMATION);
 return(status);
 }

 status = RpcBindingFromStringBinding(pszStringBinding,
 &hMandel);
 if (status) {
 sprintf(pszFail, "RpcBindingFromStringBinding returned: (0x%x)\
nString = %s\n",
 status, pszStringBinding);
 MessageBox(hWnd, pszFail, "RPC Sample Application",
MB_ICONINFORMATION);
 return(status);
 }

 fBound = TRUE; // bind successful; reset flag

 return(status);
}

#endif

/* end mandel.c */

 REMOTE.C (MANDEL RPC Sample)

/
**
 Microsoft RPC Version 2.0
 Copyright Microsoft Corp. 1992, 1993, 1994
 mandel Example

 FILE: remote.c

 PURPOSE: Client side of the RPC distributed application Mandel

 COMMENTS: Code to do the remote calculations for the Windows
 Mandelbrot Set distributed drawing program.

 Information coming into this module (via API calls) is
 based on upper-left being (0,0) (the Windows standard).
 We translate that to lower-left is (0,0) before we ship
 it out onto the net, and we do reverse translations
 accordingly.

 The iteration data is passed back to the main window
 procedure (by means of a WM_PAINTLINE message) which
 draws the picture.

 A word about the shared buffer: multiple buffers could
 be used, but a single one is used. The buffer is requested
 in this code, and then released after the data has been
 drawn (in PaintLine() in mandel.c). So long as the painting
 is done quickly, this is efficient.

**
/

#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <windows.h>

#ifdef RPC
#include "mdlrpc.h"
#endif
#include "mandel.h"

/*
 * External variables
 */
extern int fBound;
extern svr_table SvrTable; // the server table
extern int iLines;
extern double dPrec;
extern int fContinueZoom;
extern int fZoomIn;

extern int iHistMaxI;
extern int iHistMaxJ;
extern RECT rcZoom;
extern BOOL fRectDefined;

/*
 * Picture information
 */
int cPictureID = 0; // picture id, in case we reset in the
middle
static CPOINT cptLL; // upper-left
static double dPrecision; // precision of draw
static LONGRECT rclPicture; // rectangle defining client window
static DWORD dwCurrentLine; // next line to be drawn
static DWORD dwThreshold; // threshold for iterations

/*
 * Function prototypes for local procs
 */
DWORD CalcThreshold(double);

/*
 * InitRemote --
 *
 * This function initializes everything for our remote connections.
 * It gets the local wksta name (making sure the wksta is started)
 * and it creates the mailslot with which to collect replies to our poll.
 *
 * RETURNS
 * TRUE - initialization succeeded
 * FALSE - initialization failed, can't go on
 */

BOOL InitRemote(HWND hWnd)
{

#ifndef RPC
 UNREFERENCED_PARAMETER(hWnd);
#endif

 // set up our local entry
 strcpy(SvrTable.name, "Local machine");
 SvrTable.iStatus = SS_LOCAL;

 // good, we succeeded
 return(TRUE);
}

/*
 * CheckDrawStatus --
 *
 * This function does a check of all buffers being drawn.

 *
 * If it finds an idle pipe, and there is work to be done, it assigns
 * a line, and writes out the request.
 * If it finds a read-pending pipe, it checks if the read has completed.
 * If it has, it is read and a message is sent so the read data can
 * be processed.
 *
 * RETURNS
 * TRUE - we did a piece of work
 * FALSE - we could not find any work to do.
 */

BOOL CheckDrawStatus(HWND hwnd)
{
 CALCBUF cb;
 LPVOID pbBuf;

 while(TRUE) {

 // Check the status
 switch(SvrTable.iStatus) {

 case SS_PAINTING:
 break;

 case SS_IDLE:
 break;

 case SS_LOCAL:
 // Do a chunk of work locally

#ifdef RPC
 if (fBound == FALSE)
 break;
#endif

 if ((long) dwCurrentLine > rclPicture.xRight) {
 if (fContinueZoom == TRUE) {
 if ((fZoomIn == TRUE) && (dPrec < (double)MINPREC))
 fZoomIn = FALSE; // start zooming out
 if ((fZoomIn == FALSE) && (dPrec > (double)MAXPREC))
 fZoomIn = TRUE;
 if (fZoomIn) {
 CountHistogram();
 rcZoom.top = iHistMaxJ * (WIDTH/4);
 rcZoom.bottom = rcZoom.top + (WIDTH/4) - 1;
 rcZoom.left = iHistMaxI * (HEIGHT/4);
 rcZoom.right = rcZoom.left + (HEIGHT/4) - 1;
 fRectDefined = TRUE;
 PostMessage(hwnd, WM_COMMAND, IDM_ZOOMIN, 0L);
 }
 else
 PostMessage(hwnd, WM_COMMAND, IDM_ZOOMOUT, 0L);
 }

 break;
 }

 if (TakeDrawBuffer() == FALSE)
 break;

 pbBuf = LockDrawBuffer();

 cb.rclDraw.xLeft = dwCurrentLine;
 cb.rclDraw.xRight = dwCurrentLine + iLines - 1;
 cb.rclDraw.yTop = rclPicture.yTop;
 cb.rclDraw.yBottom = rclPicture.yBottom;

 RpcTryExcept {
 MandelCalc(&cptLL,
 &(cb.rclDraw),
 dPrecision,
 dwThreshold,
 (LINEBUF *) pbBuf);
 }
 RpcExcept(1) {
 char szFail[MSGLEN];

 sprintf (szFail, "%s (0x%x)\n", EXCEPT_MSG,
RpcExceptionCode());
 MessageBox(hwnd,
 szFail,
 "Remote Procedure Call",
 MB_ICONINFORMATION);

 KillTimer(hwnd, 1); // stop timer for polls
 EnableMenuItem(GetMenu(hwnd), IDM_GO, MF_ENABLED); //

enable GO
 UnlockDrawBuffer();

 ReturnDrawBuffer();
 return(FALSE);

 }
 RpcEndExcept

 UnlockDrawBuffer();

 SvrTable.cPicture = cPictureID;
 SvrTable.dwLine = dwCurrentLine;
 SvrTable.cLines = iLines;

 PostMessage(hwnd, WM_PAINTLINE, 0, 0L);
 dwCurrentLine += iLines;

 return(TRUE);
 }

 return(FALSE);
 }
}

/*
 * SetNewCalc --
 *
 * This sets up new information for a drawing and
 * updates the drawing ID so any calculations in progress will not
 * be mixed in.
 */

void SetNewCalc(CPOINT cptUL, double dPrec, RECT rc)
{
 // First, translate from upper left to lower left
 cptLL.real = cptUL.real;
 cptLL.imag = cptUL.imag - (dPrec * (rc.bottom - rc.top));

 // Now the precision
 dPrecision = dPrec;

 // The rectangle. Once again, translate.
 rclPicture.xLeft = (long) rc.left;
 rclPicture.xRight = (long) rc.right;
 rclPicture.yBottom = (long) rc.top;
 rclPicture.yTop = (long) rc.bottom;

 // Current line, start of drawing
 dwCurrentLine = rclPicture.xLeft;

 dwThreshold = CalcThreshold(dPrecision);
}

void IncPictureID(void)
{
 cPictureID++;
}

void ResetPictureID(void)
{
 cPictureID = 0;
}

/*
 * CheckDrawing --
 *
 * Just a sanity check here -- a function to check to make sure that we're
 * on the right drawing
 */

BOOL CheckDrawingID(int id)
{
 return((id == cPictureID) ? TRUE : FALSE);
}

/*
 * TakeDrawBuffer ensures only one pipe read at a time.
 * LockDrawBuffer locks the handle and returns a pointer.
 * UnlockDrawBuffer unlocks the handle.
 * ReturnDrawBuffer lets another pipe read go.
 * FreeDrawBuffer ensures the allocated buffer is freed upon exit.
 */

static BOOL fBufferTaken = FALSE;
static HANDLE hSharedBuf = (HANDLE) NULL;

BOOL TakeDrawBuffer(void)
{
 if (fBufferTaken) {
 return(FALSE);
 }

 if (hSharedBuf == (HANDLE) NULL) {
 hSharedBuf = LocalAlloc(LMEM_MOVEABLE, MAX_BUFSIZE);
 if (hSharedBuf == (HANDLE) NULL)
 return(FALSE);
 }

 fBufferTaken = TRUE;
 return(TRUE);
}

LPVOID LockDrawBuffer(void)
{
 if (hSharedBuf == (HANDLE) NULL)
 return(NULL);

 return(LocalLock(hSharedBuf));
}

void UnlockDrawBuffer(void)
{
 LocalUnlock(hSharedBuf);
}

void ReturnDrawBuffer(void)
{
 fBufferTaken = FALSE;
}

void FreeDrawBuffer(void)
{
 if (hSharedBuf != (HANDLE) NULL)

 LocalFree(hSharedBuf);
}

/*
 * CalcThreshold --
 *
 * We need an iteration threshold beyond which we give up. We want it to
 * increase the farther we zoom in. This code generates a threshold value
 * based on the precision of drawing.
 *
 * RETURNS
 * threshold calculated based on precision
 */

DWORD CalcThreshold(double precision)
{
 DWORD thres = 25;
 double multiplier = (double) 100.0;

 /* for every 100, multiply by 2 */
 while ((precision *= multiplier) < (double)1.0)
 thres *= 2;

 return(thres);
}

/*
 * QueryThreshold --
 *
 * Callback for finding out what the current drawing's threshold is.
 */

DWORD QueryThreshold(void)
{
 return(dwThreshold);
}

 SERVER.C (MANDEL RPC Sample)

/
**
 Microsoft RPC Version 2.0
 Copyright Microsoft Corp. 1992, 1993, 1994
 mandel Example

 FILE: server.c

 USAGE: server -p protocol_sequence
 -e endpoint
 -m max calls
 -n min calls
 -f flag for RpcServerListen

 PURPOSE: Server side of RPC distributed application mandel

 FUNCTIONS: main() - registers interface and listen for clients

**
/

#include <stdlib.h>
#include <stdio.h>
#include <ctype.h>
#include "mdlrpc.h" // header file generated by MIDL compiler

void Usage(char * pszProgramName)
{
 fprintf(stderr, "Usage: %s\n", pszProgramName);
 fprintf(stderr, " -p protocol_sequence\n");
 fprintf(stderr, " -e endpoint\n");
 fprintf(stderr, " -m maxcalls\n");
 fprintf(stderr, " -n mincalls\n");
 fprintf(stderr, " -f flag_wait_op\n");
 exit(1);
}

void _CRTAPI1 main(int argc, char * argv[])
{
 RPC_STATUS status;
 unsigned char * pszProtocolSequence = "ncacn_np";
 unsigned char * pszSecurity = NULL;
 unsigned char * pszEndpoint = "\\pipe\\mandel";
 unsigned int cMinCalls = 1;
 unsigned int cMaxCalls = 20;
 unsigned int fDontWait = FALSE;
 int i;

 /* allow the user to override settings with command line switches */
 for (i = 1; i < argc; i++) {
 if ((*argv[i] == '-') || (*argv[i] == '/')) {

 switch (tolower(*(argv[i]+1))) {
 case 'p': // protocol sequence
 pszProtocolSequence = argv[++i];
 break;
 case 'e':
 pszEndpoint = argv[++i];
 break;
 case 'm':
 cMaxCalls = (unsigned int) atoi(argv[++i]);
 break;
 case 'n':
 cMinCalls = (unsigned int) atoi(argv[++i]);
 break;
 case 'f':
 fDontWait = (unsigned int) atoi(argv[++i]);
 break;
 case 'h':
 case '?':
 default:
 Usage(argv[0]);
 }
 }
 else
 Usage(argv[0]);
 }

 status = RpcServerUseProtseqEp(pszProtocolSequence,
 cMaxCalls,
 pszEndpoint,
 pszSecurity); // Security descriptor
 printf("RpcServerUseProtseqEp returned 0x%x\n", status);
 if (status) {
 exit(status);
 }

 status = RpcServerRegisterIf(mdlrpc_ServerIfHandle, // interface to
register
 NULL, // MgrTypeUuid
 NULL); // MgrEpv; null means use default
 printf("RpcServerRegisterIf returned 0x%x\n", status);
 if (status) {
 exit(status);
 }

 printf("Calling RpcServerListen\n");
 status = RpcServerListen(cMinCalls,
 cMaxCalls,
 fDontWait);
 printf("RpcServerListen returned: 0x%x\n", status);
 if (status) {
 exit(status);
 }

 if (fDontWait) {
 printf("Calling RpcMgmtWaitServerListen\n");

 status = RpcMgmtWaitServerListen(); // wait operation
 printf("RpcMgmtWaitServerListen returned: 0x%x\n", status);
 if (status) {
 exit(status);
 }
 }

} // end main()

/***/
/* MIDL allocate and free */
/***/

void __RPC_FAR * __RPC_API midl_user_allocate(size_t len)
{
 return(malloc(len));
}

void __RPC_API midl_user_free(void __RPC_FAR * ptr)
{
 free(ptr);
}

/* end server.c */

CountClipboardFormats
Windows NT Yes
Win95 Yes
Win32s Yes
Import Library user32.lib
Header File winuser.h
Unicode No
Platform Notes None

CreateAcceleratorTable
Windows NT Yes
Win95 Yes
Win32s No
Import Library user32.lib
Header File winuser.h
Unicode WinNT
Platform Notes None

CreateAntiMoniker
Windows NT Yes
Win95 Yes
Win32s Yes
Import Library ole32.lib
Header File objbase.h
Unicode No
Platform Notes None

CreateBindCtx
Windows NT Yes
Win95 Yes
Win32s Yes
Import Library ole32.lib
Header File objbase.h
Unicode No
Platform Notes None

CreateBitmap
Windows NT Yes
Win95 Yes
Win32s Yes
Import Library gdi32.lib
Header File wingdi.h
Unicode No

Platform Notes Windows 95: int == 16 bits

CreateBitmapIndirect
Windows NT Yes
Win95 Yes
Win32s Yes
Import Library gdi32.lib
Header File wingdi.h
Unicode No
Platform Notes Windows 95: int == 16 bits

CreateBrushIndirect
Windows NT Yes
Win95 Yes
Win32s Yes
Import Library gdi32.lib
Header File wingdi.h
Unicode No
Platform Notes Windows 95: int == 16 bits

CreateCaret
Windows NT Yes
Win95 Yes
Win32s Yes
Import Library user32.lib
Header File winuser.h
Unicode No
Platform Notes None

CreateColorSpace
Windows NT Stub
Win95 Yes
Win32s No
Import Library gdi32.lib
Header File wingdi.h
Unicode WinNT
Platform Notes None

CreateCompatibleBitmap
Windows NT Yes
Win95 Yes
Win32s Yes
Import Library gdi32.lib

Header File wingdi.h
Unicode No
Platform Notes Windows 95: int == 16 bits

CreateCompatibleDC
Windows NT Yes
Win95 Yes
Win32s Yes
Import Library gdi32.lib
Header File wingdi.h
Unicode No
Platform Notes Windows 95: int == 16 bits

CreateConsoleScreenBuffer
Windows NT Yes
Win95 Yes
Win32s No
Import Library kernel32.lib
Header File wincon.h
Unicode No
Platform Notes None

CreateCursor
Windows NT Yes
Win95 Yes
Win32s Yes
Import Library user32.lib
Header File winuser.h
Unicode No
Platform Notes None

CreateDataAdviseHolder
Windows NT Yes
Win95 Yes
Win32s Yes
Import Library ole32.lib
Header File objbase.h
Unicode No
Platform Notes None

CreateDataCache
Windows NT Yes

Win95 Yes
Win32s Yes
Import Library ole32.lib
Header File objbase.h
Unicode No
Platform Notes None

CreateDC
Windows NT Yes
Win95 Yes
Win32s Yes
Import Library gdi32.lib
Header File wingdi.h
Unicode WinNT
Platform Notes Windows 95: int == 16 bits

CreateDesktop
Windows NT Yes
Win95 No
Win32s No
Import Library user32.lib
Header File winuser.h
Unicode WinNT
Platform Notes None

CreateDialog
Windows NT Yes
Win95 Yes
Win32s Yes
Import Library
Header File winuser.h
Unicode No
Platform Notes None

CreateDialogIndirect
Windows NT Yes
Win95 Yes
Win32s Yes
Import Library
Header File winuser.h
Unicode No
Platform Notes None

CreateDialogIndirectParam
Windows NT Yes
Win95 Yes
Win32s Yes
Import Library user32.lib
Header File winuser.h
Unicode WinNT
Platform Notes None

CreateDialogParam
Windows NT Yes
Win95 Yes
Win32s Yes
Import Library user32.lib
Header File winuser.h
Unicode WinNT
Platform Notes None

CreateDIBitmap
Windows NT Yes
Win95 Yes
Win32s Yes
Import Library gdi32.lib
Header File wingdi.h
Unicode No
Platform Notes Windows 95: int == 16 bits

CreateDIBPatternBrush
Windows NT Yes
Win95 Yes
Win32s Yes
Import Library gdi32.lib
Header File wingdi.h
Unicode No
Platform Notes Windows 95: int == 16 bits

CreateDIBPatternBrushPt
Windows NT Yes
Win95 Yes
Win32s Yes
Import Library gdi32.lib
Header File wingdi.h

Unicode No
Platform Notes None

CreateDIBSection
Windows NT New
Win95 Yes
Win32s No
Import Library gdi32.lib
Header File wingdi.h
Unicode No
Platform Notes None

CreateDirectory
Windows NT Yes
Win95 Yes
Win32s Yes
Import Library kernel32.lib
Header File winbase.h
Unicode WinNT
Platform Notes None

CreateDirectoryEx
Windows NT Yes
Win95 Yes
Win32s Yes
Import Library kernel32.lib
Header File winbase.h
Unicode WinNT
Platform Notes None

CreateDiscardableBitmap
Windows NT Yes
Win95 Yes
Win32s Yes
Import Library gdi32.lib
Header File wingdi.h
Unicode No
Platform Notes Windows 95: int == 16 bits

CreateDispTypeInfo
Windows NT Yes
Win95 Yes

Win32s Yes
Import Library oleaut32.lib
Header File oleauto.h
Unicode WinNT; Win95; Win32s
Platform Notes All 32-bit OLE Apis are

UNICODE only

CreateEditableStream
Windows NT Yes
Win95 Yes
Win32s No
Import Library vfw32.lib
Header File vfw.h
Unicode No
Platform Notes None

CreateEllipticRgn
Windows NT Yes
Win95 Yes
Win32s Yes
Import Library gdi32.lib
Header File wingdi.h
Unicode No
Platform Notes Windows 95: 16-bit

coordinates only

CreateEllipticRgnIndirect
Windows NT Yes
Win95 Yes
Win32s Yes
Import Library gdi32.lib
Header File wingdi.h
Unicode No
Platform Notes Windows 95: 16-bit

coordinates only

CreateEnhMetaFile
Windows NT Yes
Win95 Yes
Win32s No
Import Library gdi32.lib
Header File wingdi.h
Unicode WinNT

Platform Notes None

CreateErrorInfo
Windows NT Yes
Win95 Yes
Win32s Yes
Import Library oleaut32.lib
Header File oleauto.h
Unicode No
Platform Notes None

CreateEvent
Windows NT Yes
Win95 Yes
Win32s No
Import Library kernel32.lib
Header File winbase.h
Unicode WinNT
Platform Notes None

CreateFile
Windows NT Yes
Win95 Yes
Win32s Yes
Import Library kernel32.lib
Header File winbase.h
Unicode WinNT
Platform Notes None

CreateFileMapping
Windows NT Yes
Win95 Yes
Win32s Yes
Import Library kernel32.lib
Header File winbase.h
Unicode WinNT
Platform Notes None

CreateFileMoniker
Windows NT Yes
Win95 Yes
Win32s Yes

Import Library ole32.lib
Header File objbase.h
Unicode WinNT; Win95; Win32s
Platform Notes All 32-bit OLE Apis are

UNICODE only

CreateFont
Windows NT Yes
Win95 Yes
Win32s Yes
Import Library gdi32.lib
Header File wingdi.h
Unicode WinNT
Platform Notes Windows 95: int == 16 bits

CreateFontIndirect
Windows NT Yes
Win95 Yes
Win32s Yes
Import Library gdi32.lib
Header File wingdi.h
Unicode WinNT
Platform Notes Windows 95: int == 16 bits

CreateGenericComposite
Windows NT Yes
Win95 Yes
Win32s Yes
Import Library ole32.lib
Header File objbase.h
Unicode No
Platform Notes None

CreateHalftonePalette
Windows NT Yes
Win95 Yes
Win32s Yes
Import Library gdi32.lib
Header File wingdi.h
Unicode No
Platform Notes None

CreateHatchBrush
Windows NT Yes
Win95 Yes
Win32s Yes
Import Library gdi32.lib
Header File wingdi.h
Unicode No
Platform Notes Windows 95: int == 16 bits

CreateIC
Windows NT Yes
Win95 Yes
Win32s Yes
Import Library gdi32.lib
Header File wingdi.h
Unicode WinNT
Platform Notes Windows 95: int == 16 bits

CreateIcon
Windows NT Yes
Win95 Yes
Win32s Yes
Import Library user32.lib
Header File winuser.h
Unicode No
Platform Notes None

CreateIconFromResource
Windows NT Yes
Win95 Yes
Win32s No
Import Library user32.lib
Header File winuser.h
Unicode No
Platform Notes None

CreateIconFromResourceEx
Windows NT Stub
Win95 Yes
Win32s No
Import Library user32.lib
Header File winuser.h
Unicode No

Platform Notes None

CreateIconIndirect
Windows NT Yes
Win95 Yes
Win32s No
Import Library user32.lib
Header File winuser.h
Unicode No
Platform Notes None

CreateILockBytesOnHGlobal
Windows NT Yes
Win95 Yes
Win32s Yes
Import Library ole32.lib
Header File ole2.h
Unicode No
Platform Notes None

CreateIoCompletionPort
Windows NT New
Win95 No
Win32s No
Import Library kernel32.lib
Header File winbase.h
Unicode No
Platform Notes None

CreateItemMoniker
Windows NT Yes
Win95 Yes
Win32s Yes
Import Library ole32.lib
Header File objbase.h
Unicode WinNT; Win95; Win32s
Platform Notes All 32-bit OLE Apis are

UNICODE only

CreateMailslot
Windows NT Yes
Win95 Yes
Win32s No

Import Library kernel32.lib
Header File winbase.h
Unicode WinNT
Platform Notes None

CreateMappedBitmap
Windows NT Yes
Win95 Yes
Win32s
Import Library
Header File commctrl.h
Unicode No
Platform Notes None

CreateMDIWindow
Windows NT Yes
Win95 Yes
Win32s No
Import Library user32.lib
Header File winuser.h
Unicode WinNT
Platform Notes None

CreateMenu
Windows NT Yes
Win95 Yes
Win32s Yes
Import Library user32.lib
Header File winuser.h
Unicode No
Platform Notes None

CreateMetaFile
Windows NT Yes
Win95 Yes
Win32s Yes
Import Library gdi32.lib
Header File wingdi.h
Unicode WinNT
Platform Notes Windows 95: int == 16 bits

CreateMutex
Windows NT Yes

Win95 Yes
Win32s No
Import Library kernel32.lib
Header File winbase.h
Unicode WinNT
Platform Notes None

CreateNamedPipe
Windows NT Yes
Win95 No
Win32s No
Import Library kernel32.lib
Header File winbase.h
Unicode WinNT
Platform Notes None

CreateOleAdviseHolder
Windows NT Yes
Win95 Yes
Win32s Yes
Import Library ole32.lib
Header File ole2.h
Unicode No
Platform Notes None

CreatePalette
Windows NT Yes
Win95 Yes
Win32s Yes
Import Library gdi32.lib
Header File wingdi.h
Unicode No
Platform Notes Windows 95: int == 16 bits

CreatePatternBrush
Windows NT Yes
Win95 Yes
Win32s Yes
Import Library gdi32.lib
Header File wingdi.h
Unicode No
Platform Notes Windows 95: int == 16 bits

CreatePen
Windows NT Yes
Win95 Yes
Win32s Yes
Import Library gdi32.lib
Header File wingdi.h
Unicode No
Platform Notes Windows 95: int == 16 bits

CreatePenIndirect
Windows NT Yes
Win95 Yes
Win32s Yes
Import Library gdi32.lib
Header File wingdi.h
Unicode No
Platform Notes Windows 95: int == 16 bits

CreatePipe
Windows NT Yes
Win95 Yes
Win32s No
Import Library kernel32.lib
Header File winbase.h
Unicode No
Platform Notes None

CreatePointerMoniker
Windows NT Yes
Win95 Yes
Win32s Yes
Import Library ole32.lib
Header File objbase.h
Unicode No
Platform Notes None

CreatePolygonRgn
Windows NT Yes
Win95 Yes
Win32s Yes
Import Library gdi32.lib
Header File wingdi.h

Unicode No
Platform Notes Windows 95: 16-bit

coordinates only

CreatePolyPolygonRgn
Windows NT Yes
Win95 Yes
Win32s Yes
Import Library gdi32.lib
Header File wingdi.h
Unicode No
Platform Notes Windows 95: 16-bit

coordinates only

CreatePopupMenu
Windows NT Yes
Win95 Yes
Win32s Yes
Import Library user32.lib
Header File winuser.h
Unicode No
Platform Notes None

CreatePrivateObjectSecurity
Windows NT Yes
Win95 No
Win32s No
Import Library advapi32.lib
Header File winbase.h
Unicode No
Platform Notes None

CreateProcess
Windows NT Yes
Win95 Yes
Win32s Yes
Import Library kernel32.lib
Header File winbase.h
Unicode WinNT
Platform Notes None

CreateProcessAsUser

Windows NT New
Win95 No
Win32s No
Import Library
Header File winbase.h
Unicode WinNT
Platform Notes None

CreatePropertySheetPage
Windows NT Yes
Win95 Yes
Win32s Yes
Import Library
Header File prsht.h
Unicode WinNT
Platform Notes None

CreateRectRgn
Windows NT Yes
Win95 Yes
Win32s Yes
Import Library gdi32.lib
Header File wingdi.h
Unicode No
Platform Notes Windows 95: 16-bit

coordinates only

CreateRectRgnIndirect
Windows NT Yes
Win95 Yes
Win32s Yes
Import Library gdi32.lib
Header File wingdi.h
Unicode No
Platform Notes Windows 95: 16-bit

coordinates only

CreateRemoteThread
Windows NT Yes
Win95 No
Win32s No
Import Library kernel32.lib
Header File winbase.h

Unicode No
Platform Notes None

CreateRoundRectRgn
Windows NT Yes
Win95 Yes
Win32s Yes
Import Library gdi32.lib
Header File wingdi.h
Unicode No
Platform Notes Windows 95: 16-bit

coordinates only

CreateScalableFontResource
Windows NT Yes
Win95 Yes
Win32s Yes
Import Library gdi32.lib
Header File wingdi.h
Unicode WinNT
Platform Notes Windows 95: int == 16 bits

CreateSemaphore
Windows NT Yes
Win95 Yes
Win32s No
Import Library kernel32.lib
Header File winbase.h
Unicode WinNT
Platform Notes None

CreateService
Windows NT Yes
Win95 No
Win32s No
Import Library advapi32.lib
Header File winsvc.h
Unicode WinNT
Platform Notes None

CreateSolidBrush
Windows NT Yes
Win95 Yes

Win32s Yes
Import Library gdi32.lib
Header File wingdi.h
Unicode No
Platform Notes Windows 95: int == 16 bits

CreateStatusWindow
Windows NT Yes
Win95 Yes
Win32s Yes
Import Library
Header File commctrl.h
Unicode WinNT
Platform Notes None

CreateStdDispatch
Windows NT Yes
Win95 Yes
Win32s Yes
Import Library oleaut32.lib
Header File oleauto.h
Unicode No
Platform Notes None

CreateStreamOnHGlobal
Windows NT Yes
Win95 Yes
Win32s Yes
Import Library ole32.lib
Header File ole2.h
Unicode No
Platform Notes None

CreateTapePartition
Windows NT Yes
Win95 No
Win32s No
Import Library kernel32.lib
Header File winbase.h
Unicode No
Platform Notes None

CreateThread
Windows NT Yes
Win95 Yes
Win32s No
Import Library kernel32.lib
Header File winbase.h
Unicode No
Platform Notes None

CreateToolbarEx
Windows NT Yes
Win95 Yes
Win32s Yes
Import Library
Header File commctrl.h
Unicode No
Platform Notes None

CreateTypeLib
Windows NT Yes
Win95 Yes
Win32s Yes
Import Library oleaut32.lib
Header File oleauto.h
Unicode WinNT; Win95; Win32s
Platform Notes All 32-bit OLE Apis are

UNICODE only

CreateUpDownControl
Windows NT Yes
Win95 Yes
Win32s Yes
Import Library
Header File commctrl.h
Unicode No
Platform Notes None

CreateWindow
Windows NT Yes
Win95 Yes
Win32s Yes
Import Library
Header File winuser.h

Unicode No
Platform Notes None

CreateWindowEx
Windows NT Yes
Win95 Yes
Win32s Yes
Import Library user32.lib
Header File winuser.h
Unicode WinNT
Platform Notes hMenu limited to WORD on

Win32s

CreateWindowStation
Windows NT Yes
Win95 No
Win32s No
Import Library user32.lib
Header File winuser.h
Unicode WinNT
Platform Notes None

data_from_ndr
Windows NT Yes
Win95 No
Win32s No
Import Library rpcrt4.lib
Header File rpcndr.h
Unicode
Platform Notes None

data_into_ndr
Windows NT Yes
Win95 No
Win32s No
Import Library rpcrt4.lib
Header File rpcndr.h
Unicode
Platform Notes None

data_size_ndr
Windows NT Yes
Win95 No

Win32s No
Import Library rpcrt4.lib
Header File rpcndr.h
Unicode
Platform Notes None

DceErrorInqText
Windows NT New
Win95 No
Win32s No
Import Library rpcrt4.lib
Header File rpcdce.h
Unicode WinNT
Platform Notes None

DdeAbandonTransaction
Windows NT Yes
Win95 Yes
Win32s Yes
Import Library user32.lib
Header File ddeml.h
Unicode No
Platform Notes None

DdeAccessData
Windows NT Yes
Win95 Yes
Win32s Yes
Import Library user32.lib
Header File ddeml.h
Unicode No
Platform Notes None

DdeAddData
Windows NT Yes
Win95 Yes
Win32s Yes
Import Library user32.lib
Header File ddeml.h
Unicode No
Platform Notes None

DdeClientTransaction
Windows NT Yes
Win95 Yes
Win32s Yes
Import Library user32.lib
Header File ddeml.h
Unicode No
Platform Notes None

DdeCmpStringHandles
Windows NT Yes
Win95 Yes
Win32s Yes
Import Library user32.lib
Header File ddeml.h
Unicode No
Platform Notes None

DdeConnect
Windows NT Yes
Win95 Yes
Win32s Yes
Import Library user32.lib
Header File ddeml.h
Unicode No
Platform Notes None

DdeConnectList
Windows NT Yes
Win95 Yes
Win32s Yes
Import Library user32.lib
Header File ddeml.h
Unicode No
Platform Notes None

DdeCreateDataHandle
Windows NT Yes
Win95 Yes
Win32s Yes
Import Library user32.lib
Header File ddeml.h
Unicode No

Platform Notes None

DdeCreateStringHandle
Windows NT Yes
Win95 Yes
Win32s Yes
Import Library user32.lib
Header File ddeml.h
Unicode WinNT
Platform Notes None

DdeDisconnect
Windows NT Yes
Win95 Yes
Win32s Yes
Import Library user32.lib
Header File ddeml.h
Unicode No
Platform Notes None

DdeDisconnectList
Windows NT Yes
Win95 Yes
Win32s Yes
Import Library user32.lib
Header File ddeml.h
Unicode No
Platform Notes None

DdeEnableCallback
Windows NT Yes
Win95 Yes
Win32s Yes
Import Library user32.lib
Header File ddeml.h
Unicode No
Platform Notes None

DdeFreeDataHandle
Windows NT Yes
Win95 Yes
Win32s Yes
Import Library user32.lib

Header File ddeml.h
Unicode No
Platform Notes None

DdeFreeStringHandle
Windows NT Yes
Win95 Yes
Win32s Yes
Import Library user32.lib
Header File ddeml.h
Unicode No
Platform Notes None

DdeGetData
Windows NT Yes
Win95 Yes
Win32s Yes
Import Library user32.lib
Header File ddeml.h
Unicode No
Platform Notes None

DdeGetLastError
Windows NT Yes
Win95 Yes
Win32s Yes
Import Library user32.lib
Header File ddeml.h
Unicode No
Platform Notes None

DdeImpersonateClient
Windows NT Yes
Win95 No
Win32s No
Import Library user32.lib
Header File ddeml.h
Unicode No
Platform Notes None

DdeInitialize
Windows NT Yes

Win95 Yes
Win32s Yes
Import Library user32.lib
Header File ddeml.h
Unicode WinNT
Platform Notes None

DdeKeepStringHandle
Windows NT Yes
Win95 Yes
Win32s Yes
Import Library user32.lib
Header File ddeml.h
Unicode No
Platform Notes None

DdeNameService
Windows NT Yes
Win95 Yes
Win32s Yes
Import Library user32.lib
Header File ddeml.h
Unicode No
Platform Notes None

DdePostAdvise
Windows NT Yes
Win95 Yes
Win32s Yes
Import Library user32.lib
Header File ddeml.h
Unicode No
Platform Notes None

DdeQueryConvInfo
Windows NT Yes
Win95 Yes
Win32s Yes
Import Library user32.lib
Header File ddeml.h
Unicode No
Platform Notes None

DdeQueryNextServer
Windows NT Yes
Win95 Yes
Win32s Yes
Import Library user32.lib
Header File ddeml.h
Unicode No
Platform Notes None

DdeQueryString
Windows NT Yes
Win95 Yes
Win32s Yes
Import Library user32.lib
Header File ddeml.h
Unicode WinNT
Platform Notes None

DdeReconnect
Windows NT Yes
Win95 Yes
Win32s Yes
Import Library user32.lib
Header File ddeml.h
Unicode No
Platform Notes None

DdeSetQualityOfService
Windows NT Yes
Win95 No
Win32s No
Import Library user32.lib
Header File dde.h
Unicode No
Platform Notes None

RegEnumValue
Windows NT Yes
Win95 Yes
Win32s Yes
Import Library advapi32.lib
Header File winreg.h
Unicode WinNT
Platform Notes None

RegFlushKey
Windows NT Yes
Win95 Yes
Win32s No
Import Library advapi32.lib
Header File winreg.h
Unicode No
Platform Notes None

RegGetKeySecurity
Windows NT Yes
Win95 No
Win32s No
Import Library advapi32.lib
Header File winreg.h
Unicode No
Platform Notes None

RegisterActiveObject
Windows NT Yes
Win95 Yes
Win32s Yes
Import Library oleaut32.lib
Header File oleauto.h
Unicode No
Platform Notes None

RegisterClass
Windows NT Yes
Win95 Yes
Win32s Yes
Import Library user32.lib
Header File winuser.h
Unicode WinNT

Platform Notes None

RegisterClassEx
Windows NT Stub
Win95 Yes
Win32s Yes
Import Library user32.lib
Header File winuser.h
Unicode WinNT
Platform Notes None

RegisterClipboardFormat
Windows NT Yes
Win95 Yes
Win32s Yes
Import Library user32.lib
Header File winuser.h
Unicode WinNT
Platform Notes None

RegisterDialogClasses
Windows NT Yes
Win95 Yes
Win32s No
Import Library scrnsave.lib
Header File scrnsave.h
Unicode No
Platform Notes None

RegisterDragDrop
Windows NT Yes
Win95 Yes
Win32s Yes
Import Library ole32.lib
Header File ole2.h
Unicode No
Platform Notes None

RegisterEventSource
Windows NT Yes
Win95 No
Win32s No
Import Library advapi32.lib

Header File winbase.h
Unicode WinNT
Platform Notes None

RegisterHotKey
Windows NT Yes
Win95 Yes
Win32s No
Import Library user32.lib
Header File winuser.h
Unicode No
Platform Notes None

RegisterServiceCtrlHandler
Windows NT Yes
Win95 No
Win32s No
Import Library advapi32.lib
Header File winsvc.h
Unicode WinNT
Platform Notes None

RegisterTypeLib
Windows NT Yes
Win95 Yes
Win32s Yes
Import Library oleaut32.lib
Header File oleauto.h
Unicode WinNT; Win95; Win32s
Platform Notes All 32-bit OLE Apis are

UNICODE only

RegisterWindowMessage
Windows NT Yes
Win95 Yes
Win32s Yes
Import Library user32.lib
Header File winuser.h
Unicode WinNT
Platform Notes None

RegLoadKey

Windows NT Yes
Win95 Yes
Win32s No
Import Library advapi32.lib
Header File winreg.h
Unicode WinNT
Platform Notes None

RegNotifyChangeKeyValue
Windows NT Yes
Win95 No
Win32s No
Import Library advapi32.lib
Header File winreg.h
Unicode No
Platform Notes None

RegOpenKey
Windows NT Yes
Win95 Yes
Win32s Yes
Import Library advapi32.lib
Header File winreg.h
Unicode WinNT
Platform Notes None

RegOpenKeyEx
Windows NT Yes
Win95 Yes
Win32s Yes
Import Library advapi32.lib
Header File winreg.h
Unicode WinNT
Platform Notes None

RegQueryInfoKey
Windows NT Yes
Win95 Yes
Win32s No
Import Library advapi32.lib
Header File winreg.h
Unicode WinNT
Platform Notes None

RegQueryMultipleValues
Windows NT No
Win95 Yes
Win32s No
Import Library kernel32.lib
Header File winbase.h
Unicode
Platform Notes None

RegQueryValue
Windows NT Yes
Win95 Yes
Win32s Yes
Import Library advapi32.lib
Header File winreg.h
Unicode WinNT
Platform Notes None

RegQueryValueEx
Windows NT Yes
Win95 Yes
Win32s Yes
Import Library advapi32.lib
Header File winreg.h
Unicode WinNT
Platform Notes None

RegReplaceKey
Windows NT Yes
Win95 Yes
Win32s No
Import Library advapi32.lib
Header File winreg.h
Unicode WinNT
Platform Notes None

RegRestoreKey
Windows NT Yes
Win95 No
Win32s No
Import Library advapi32.lib
Header File winreg.h

Unicode WinNT
Platform Notes None

RegSaveKey
Windows NT Yes
Win95 Yes
Win32s No
Import Library advapi32.lib
Header File winreg.h
Unicode WinNT
Platform Notes None

RegSetKeySecurity
Windows NT Yes
Win95 No
Win32s No
Import Library advapi32.lib
Header File winreg.h
Unicode No
Platform Notes None

RegSetValue
Windows NT Yes
Win95 Yes
Win32s Yes
Import Library advapi32.lib
Header File winreg.h
Unicode WinNT
Platform Notes None

RegSetValueEx
Windows NT Yes
Win95 Yes
Win32s Yes
Import Library advapi32.lib
Header File winreg.h
Unicode WinNT
Platform Notes None

RegUnLoadKey
Windows NT Yes
Win95 Yes

Win32s Yes
Import Library advapi32.lib
Header File winreg.h
Unicode WinNT
Platform Notes None

ReleaseCapture
Windows NT Yes
Win95 Yes
Win32s Yes
Import Library user32.lib
Header File winuser.h
Unicode No
Platform Notes None

ReleaseDC
Windows NT Yes
Win95 Yes
Win32s Yes
Import Library user32.lib
Header File winuser.h
Unicode No
Platform Notes None

ReleaseMutex
Windows NT Yes
Win95 Yes
Win32s No
Import Library kernel32.lib
Header File winbase.h
Unicode No
Platform Notes None

ReleaseSemaphore
Windows NT Yes
Win95 Yes
Win32s No
Import Library kernel32.lib
Header File winbase.h
Unicode No
Platform Notes None

ReleaseStgMedium
Windows NT Yes
Win95 Yes
Win32s Yes
Import Library ole32.lib
Header File ole2.h
Unicode No
Platform Notes None

RemoveDirectory
Windows NT Yes
Win95 Yes
Win32s Yes
Import Library kernel32.lib
Header File winbase.h
Unicode WinNT
Platform Notes None

RemoveFontResource
Windows NT Yes
Win95 Yes
Win32s Yes
Import Library gdi32.lib
Header File wingdi.h
Unicode WinNT
Platform Notes Windows 95: int == 16 bits

RemoveMenu
Windows NT Yes
Win95 Yes
Win32s Yes
Import Library user32.lib
Header File winuser.h
Unicode No
Platform Notes None

RemoveProp
Windows NT Yes
Win95 Yes
Win32s Yes
Import Library user32.lib
Header File winuser.h
Unicode WinNT

Platform Notes None

ReplaceText
Windows NT Yes
Win95 Yes
Win32s Yes
Import Library comdlg32.lib
Header File commdlg.h
Unicode WinNT
Platform Notes None

ReplyMessage
Windows NT Yes
Win95 Yes
Win32s Yes
Import Library user32.lib
Header File winuser.h
Unicode No
Platform Notes None

ReportEvent
Windows NT Yes
Win95 No
Win32s No
Import Library advapi32.lib
Header File winbase.h
Unicode WinNT
Platform Notes None

ResetDC
Windows NT Yes
Win95 Yes
Win32s Yes
Import Library gdi32.lib
Header File wingdi.h
Unicode WinNT
Platform Notes Windows 95: int == 16 bits

ResetDisplay
Windows NT Stub
Win95 Yes
Win32s No

Import Library user32.lib
Header File winuser.h
Unicode No
Platform Notes None

ResetEvent
Windows NT Yes
Win95 Yes
Win32s No
Import Library kernel32.lib
Header File winbase.h
Unicode No
Platform Notes None

ResetPrinter
Windows NT Yes
Win95 No
Win32s No
Import Library winspool.lib
Header File winspool.h
Unicode WinNT
Platform Notes None

ResizePalette
Windows NT Yes
Win95 Yes
Win32s Yes
Import Library gdi32.lib
Header File wingdi.h
Unicode No
Platform Notes Windows 95: int == 16 bits

RestoreDC
Windows NT Yes
Win95 Yes
Win32s Yes
Import Library gdi32.lib
Header File wingdi.h
Unicode No
Platform Notes Windows 95: int == 16 bits

ResumeThread
Windows NT Yes
Win95 Yes
Win32s No
Import Library kernel32.lib
Header File winbase.h
Unicode No
Platform Notes None

ReuseDDElParam
Windows NT Yes
Win95 Yes
Win32s Yes
Import Library user32.lib
Header File dde.h
Unicode No
Platform Notes None

RevertToSelf
Windows NT Yes
Win95 No
Win32s No
Import Library advapi32.lib
Header File winbase.h
Unicode No
Platform Notes None

RevokeActiveObject
Windows NT Yes
Win95 Yes
Win32s Yes
Import Library oleaut32.lib
Header File oleauto.h
Unicode No
Platform Notes None

RevokeDragDrop
Windows NT Yes
Win95 Yes
Win32s Yes
Import Library ole32.lib
Header File ole2.h
Unicode No

Platform Notes None

RoundRect
Windows NT Yes
Win95 Yes
Win32s Yes
Import Library gdi32.lib
Header File wingdi.h
Unicode No
Platform Notes Windows 95: 16-bit

coordinates only

RpcAbnormalTermination
Windows NT New
Win95 Yes
Win32s No
Import Library
Header File rpc.h
Unicode No
Platform Notes None

RpcBindingCopy
Windows NT Yes
Win95 Yes
Win32s No
Import Library rpcrt4.lib
Header File rpcdce.h
Unicode No
Platform Notes None

RpcBindingFree
Windows NT Yes
Win95 Yes
Win32s No
Import Library rpcrt4.lib
Header File rpcdce.h
Unicode No
Platform Notes None

RpcBindingFromStringBinding
Windows NT Yes
Win95 Yes
Win32s No

Import Library rpcrt4.lib
Header File rpcdce.h
Unicode WinNT
Platform Notes None

RpcBindingInqAuthClient
Windows NT Yes
Win95 Yes
Win32s No
Import Library rpcrt4.lib
Header File rpcdce.h
Unicode
Platform Notes None

RpcBindingInqAuthInfo
Windows NT Yes
Win95 Yes
Win32s No
Import Library rpcrt4.lib
Header File rpcdce.h
Unicode WinNT
Platform Notes None

RpcBindingInqObject
Windows NT Yes
Win95 Yes
Win32s No
Import Library rpcrt4.lib
Header File rpcdce.h
Unicode No
Platform Notes None

RpcBindingReset
Windows NT Yes
Win95 Yes
Win32s No
Import Library rpcrt4.lib
Header File rpcdce.h
Unicode No
Platform Notes None

RpcBindingServerFromClient
Windows NT Yes

Win95 Yes
Win32s
Import Library rpcrt4.lib
Header File rpcdce.h
Unicode No
Platform Notes None

RpcBindingSetAuthInfo
Windows NT Yes
Win95 Yes
Win32s No
Import Library rpcrt4.lib
Header File rpcdce.h
Unicode
Platform Notes None

RpcBindingSetObject
Windows NT Yes
Win95 Yes
Win32s No
Import Library rpcrt4.lib
Header File rpcdce.h
Unicode No
Platform Notes None

RpcBindingToStringBinding
Windows NT Yes
Win95 Yes
Win32s No
Import Library rpcrt4.lib
Header File rpcdce.h
Unicode WinNT
Platform Notes None

RpcBindingVectorFree
Windows NT Yes
Win95 Yes
Win32s No
Import Library rpcrt4.lib
Header File rpcdce.h
Unicode No
Platform Notes None

RpcCancelThread
Windows NT New
Win95 No
Win32s No
Import Library rpcrt4.lib
Header File rpcdce.h
Unicode No
Platform Notes None

RpcEndExcept
Windows NT New
Win95 Yes
Win32s No
Import Library
Header File rpc.h
Unicode No
Platform Notes None

RpcEndFinally
Windows NT New
Win95 Yes
Win32s No
Import Library
Header File rpc.h
Unicode No
Platform Notes None

RpcEpRegister
Windows NT Yes
Win95 Yes
Win32s No
Import Library rpcrt4.lib
Header File rpcdce.h
Unicode WinNT
Platform Notes None

RpcEpRegisterNoReplace
Windows NT Yes
Win95 Yes
Win32s No
Import Library rpcrt4.lib
Header File rpcdce.h

Unicode WinNT
Platform Notes None

RpcEpResolveBinding
Windows NT Yes
Win95 Yes
Win32s No
Import Library rpcrt4.lib
Header File rpcdce.h
Unicode No
Platform Notes None

RpcEpUnregister
Windows NT Yes
Win95 Yes
Win32s No
Import Library rpcrt4.lib
Header File rpcdce.h
Unicode No
Platform Notes None

RpcExcept
Windows NT New
Win95 Yes
Win32s No
Import Library
Header File rpc.h
Unicode No
Platform Notes None

RpcExceptionCode
Windows NT New
Win95 Yes
Win32s No
Import Library
Header File rpc.h
Unicode No
Platform Notes None

RpcFinally
Windows NT New
Win95 Yes

Win32s No
Import Library
Header File rpc.h
Unicode No
Platform Notes None

RpcIfIdVectorFree
Windows NT Yes
Win95 Yes
Win32s No
Import Library rpcrt4.lib
Header File rpcdce.h
Unicode No
Platform Notes None

RpcIfInqId
Windows NT Yes
Win95 Yes
Win32s No
Import Library rpcrt4.lib
Header File rpcdce.h
Unicode No
Platform Notes None

RpcImpersonateClient
Windows NT Yes
Win95 Yes
Win32s No
Import Library rpcrt4.lib
Header File rpc.h
Unicode
Platform Notes None

RpcMgmtEnableIdleCleanup
Windows NT Yes
Win95 Yes
Win32s No
Import Library rpcrt4.lib
Header File rpcdce.h
Unicode No
Platform Notes None

RpcMgmtEpEltInqBegin
Windows NT New
Win95 Yes
Win32s No
Import Library rpcrt4.lib
Header File rpcdce.h
Unicode No
Platform Notes None

RpcMgmtEpEltInqDone
Windows NT New
Win95 Yes
Win32s No
Import Library rpcrt4.lib
Header File rpcdce.h
Unicode No
Platform Notes None

RpcMgmtEpEltInqNext
Windows NT New
Win95 Yes
Win32s No
Import Library rpcrt4.lib
Header File rpcdce.h
Unicode WinNT
Platform Notes None

RpcMgmtEpUnregister
Windows NT New
Win95 Yes
Win32s No
Import Library rpcrt4.lib
Header File rpcdce.h
Unicode No
Platform Notes None

RpcMgmtInqComTimeout
Windows NT Yes
Win95 Yes
Win32s No
Import Library rpcrt4.lib
Header File rpcdce.h
Unicode No

Platform Notes None

RpcMgmtInqDefaultProtectLevel
Windows NT Yes
Win95 Yes
Win32s
Import Library rpcrt4.lib
Header File rpcdce.h
Unicode No
Platform Notes None

RpcMgmtInqIfIds
Windows NT Yes
Win95 Yes
Win32s
Import Library rpcrt4.lib
Header File rpcdce.h
Unicode No
Platform Notes None

RpcMgmtInqServerPrincName
Windows NT New
Win95
Win32s No
Import Library rpcrt4.lib
Header File rpcdce.h
Unicode WinNT
Platform Notes None

RpcMgmtInqStats
Windows NT Yes
Win95 Yes
Win32s No
Import Library rpcrt4.lib
Header File rpcdce.h
Unicode No
Platform Notes None

RpcMgmtIsServerListening
Windows NT Yes
Win95 Yes
Win32s No

Import Library rpcrt4.lib
Header File rpcdce.h
Unicode No
Platform Notes None

RpcMgmtSetAuthorizationFn
Windows NT New
Win95 Yes
Win32s No
Import Library rpcrt4.lib
Header File rpcdce.h
Unicode No
Platform Notes None

RpcMgmtSetCancelTimeout
Windows NT New
Win95 No
Win32s No
Import Library rpcrt4.lib
Header File rpcdce.h
Unicode No
Platform Notes None

RpcMgmtSetComTimeout
Windows NT Yes
Win95 Yes
Win32s No
Import Library rpcrt4.lib
Header File rpcdce.h
Unicode No
Platform Notes None

RpcMgmtSetServerStackSize
Windows NT Yes
Win95 Yes
Win32s No
Import Library rpcrt4.lib
Header File rpcdce.h
Unicode No
Platform Notes None

RpcMgmtStatsVectorFree
Windows NT Yes
Win95 Yes
Win32s No
Import Library rpcrt4.lib
Header File rpcdce.h
Unicode No
Platform Notes None

RpcMgmtStopServerListening
Windows NT Yes
Win95 Yes
Win32s No
Import Library rpcrt4.lib
Header File rpcdce.h
Unicode No
Platform Notes None

RpcMgmtWaitServerListen
Windows NT Yes
Win95 Yes
Win32s No
Import Library rpcrt4.lib
Header File rpcdce.h
Unicode No
Platform Notes None

RpcNetworkInqProtseqs
Windows NT Yes
Win95 Yes
Win32s No
Import Library rpcrt4.lib
Header File rpcdce.h
Unicode WinNT
Platform Notes None

RpcNetworkIsProtseqValid
Windows NT Yes
Win95 Yes
Win32s No
Import Library rpcrt4.lib
Header File rpcdce.h
Unicode WinNT

Platform Notes None

RpcNsBindingExport
Windows NT Yes
Win95 Yes
Win32s No
Import Library rpcns4.lib
Header File rpcnsi.h
Unicode WinNT
Platform Notes None

RpcNsBindingImportBegin
Windows NT Yes
Win95 Yes
Win32s No
Import Library rpcns4.lib
Header File rpcnsi.h
Unicode WinNT
Platform Notes None

RpcNsBindingImportDone
Windows NT Yes
Win95 Yes
Win32s No
Import Library rpcns4.lib
Header File rpcnsi.h
Unicode No
Platform Notes None

RpcNsBindingImportNext
Windows NT Yes
Win95 Yes
Win32s No
Import Library rpcns4.lib
Header File rpcnsi.h
Unicode No
Platform Notes None

RpcNsBindingInqEntryName
Windows NT Yes
Win95 Yes
Win32s No
Import Library rpcrt4.lib

Header File rpcdce.h
Unicode WinNT
Platform Notes None

RpcNsBindingLookupBegin
Windows NT Yes
Win95 Yes
Win32s No
Import Library rpcns4.lib
Header File rpcnsi.h
Unicode WinNT
Platform Notes None

RpcNsBindingLookupDone
Windows NT Yes
Win95 Yes
Win32s No
Import Library rpcns4.lib
Header File rpcnsi.h
Unicode No
Platform Notes None

RpcNsBindingLookupNext
Windows NT Yes
Win95 Yes
Win32s No
Import Library rpcns4.lib
Header File rpcnsi.h
Unicode No
Platform Notes None

RpcNsBindingSelect
Windows NT Yes
Win95 Yes
Win32s No
Import Library rpcns4.lib
Header File rpcnsi.h
Unicode No
Platform Notes None

RpcNsBindingUnexport
Windows NT Yes

Win95 Yes
Win32s No
Import Library rpcns4.lib
Header File rpcnsi.h
Unicode WinNT
Platform Notes None

RpcNsEntryExpandName
Windows NT Yes
Win95 Yes
Win32s No
Import Library rpcns4.lib
Header File rpcnsi.h
Unicode WinNT
Platform Notes None

RpcNsEntryObjectInqBegin
Windows NT Yes
Win95 Yes
Win32s No
Import Library rpcns4.lib
Header File rpcnsi.h
Unicode WinNT
Platform Notes None

RpcNsEntryObjectInqDone
Windows NT Yes
Win95 Yes
Win32s No
Import Library rpcns4.lib
Header File rpcnsi.h
Unicode No
Platform Notes None

RpcNsEntryObjectInqNext
Windows NT Yes
Win95 Yes
Win32s No
Import Library rpcns4.lib
Header File rpcnsi.h
Unicode No
Platform Notes None

RpcNsGroupDelete
Windows NT Yes
Win95 Yes
Win32s No
Import Library rpcns4.lib
Header File rpcnsi.h
Unicode WinNT
Platform Notes None

RpcNsGroupMbrAdd
Windows NT Yes
Win95 Yes
Win32s No
Import Library rpcns4.lib
Header File rpcnsi.h
Unicode WinNT
Platform Notes None

RpcNsGroupMbrInqBegin
Windows NT Yes
Win95 Yes
Win32s No
Import Library rpcns4.lib
Header File rpcnsi.h
Unicode WinNT
Platform Notes None

RpcNsGroupMbrInqDone
Windows NT Yes
Win95 Yes
Win32s No
Import Library rpcns4.lib
Header File rpcnsi.h
Unicode No
Platform Notes None

RpcNsGroupMbrInqNext
Windows NT Yes
Win95 Yes
Win32s No
Import Library rpcns4.lib
Header File rpcnsi.h

Unicode WinNT
Platform Notes None

RpcNsGroupMbrRemove
Windows NT Yes
Win95 Yes
Win32s No
Import Library rpcns4.lib
Header File rpcnsi.h
Unicode WinNT
Platform Notes None

RpcNsMgmtBindingUnexport
Windows NT Yes
Win95 Yes
Win32s No
Import Library rpcns4.lib
Header File rpcnsi.h
Unicode WinNT
Platform Notes None

RpcNsMgmtEntryCreate
Windows NT Yes
Win95 Yes
Win32s No
Import Library rpcns4.lib
Header File rpcnsi.h
Unicode WinNT
Platform Notes None

RpcNsMgmtEntryDelete
Windows NT Yes
Win95 Yes
Win32s No
Import Library rpcns4.lib
Header File rpcnsi.h
Unicode WinNT
Platform Notes None

RpcNsMgmtEntryInqIfIds
Windows NT Yes
Win95 Yes
Win32s No
Import Library rpcns4.lib
Header File rpcnsi.h
Unicode WinNT
Platform Notes None

RpcNsMgmtHandleSetExpAge
Windows NT Yes
Win95 Yes
Win32s No
Import Library rpcns4.lib
Header File rpcnsi.h
Unicode No
Platform Notes None

RpcNsMgmtInqExpAge
Windows NT Yes
Win95 Yes
Win32s No
Import Library rpcns4.lib
Header File rpcnsi.h
Unicode No
Platform Notes None

RpcNsMgmtSetExpAge
Windows NT Yes
Win95 Yes
Win32s No
Import Library rpcns4.lib
Header File rpcnsi.h
Unicode No

Platform Notes None

RpcNsProfileDelete
Windows NT Yes
Win95 Yes
Win32s No
Import Library rpcns4.lib
Header File rpcnsi.h
Unicode WinNT
Platform Notes None

RpcNsProfileEltAdd
Windows NT Yes
Win95 Yes
Win32s No
Import Library rpcns4.lib
Header File rpcnsi.h
Unicode WinNT
Platform Notes None

RpcNsProfileEltInqBegin
Windows NT Yes
Win95 Yes
Win32s No
Import Library rpcns4.lib
Header File rpcnsi.h
Unicode WinNT
Platform Notes None

RpcNsProfileEltInqDone
Windows NT Yes
Win95 Yes
Win32s No
Import Library rpcns4.lib
Header File rpcnsi.h
Unicode No
Platform Notes None

RpcNsProfileEltInqNext
Windows NT Yes
Win95 Yes
Win32s No
Import Library rpcns4.lib

Header File rpcnsi.h
Unicode WinNT
Platform Notes None

RpcNsProfileEltRemove
Windows NT Yes
Win95 Yes
Win32s No
Import Library rpcns4.lib
Header File rpcnsi.h
Unicode WinNT
Platform Notes None

RpcObjectInqType
Windows NT Yes
Win95 Yes
Win32s No
Import Library rpcrt4.lib
Header File rpcdce.h
Unicode No
Platform Notes None

RpcObjectSetInqFn
Windows NT Yes
Win95 Yes
Win32s No
Import Library rpcrt4.lib
Header File rpcdce.h
Unicode No
Platform Notes None

RpcObjectSetType
Windows NT Yes
Win95 Yes
Win32s No
Import Library rpcrt4.lib
Header File rpcdce.h
Unicode No
Platform Notes None

RpcProtseqVectorFree
Windows NT Yes

Win95 Yes
Win32s No
Import Library rpcrt4.lib
Header File rpcdce.h
Unicode
Platform Notes None

RpcRaiseException
Windows NT Yes
Win95 Yes
Win32s No
Import Library rpcrt4.lib
Header File rpcdce.h
Unicode
Platform Notes None

RpcRevertToSelf
Windows NT Yes
Win95 Yes
Win32s No
Import Library rpcrt4.lib
Header File rpc.h
Unicode
Platform Notes None

RpcServerInqBindings
Windows NT Yes
Win95 Yes
Win32s No
Import Library rpcrt4.lib
Header File rpcdce.h
Unicode
Platform Notes None

RpcServerInqIf
Windows NT Yes
Win95 Yes
Win32s No
Import Library rpcrt4.lib
Header File rpcdce.h
Unicode
Platform Notes None

RpcServerListen
Windows NT Yes
Win95 Yes
Win32s No
Import Library rpcrt4.lib
Header File rpcdce.h
Unicode
Platform Notes None

RpcServerRegisterAuthInfo
Windows NT Yes
Win95 Yes
Win32s No
Import Library rpcrt4.lib
Header File rpcdce.h
Unicode
Platform Notes None

RpcServerRegisterIf
Windows NT Yes
Win95 Yes
Win32s No
Import Library rpcrt4.lib
Header File rpcdce.h
Unicode
Platform Notes None

RpcServerUnregisterIf
Windows NT Yes
Win95 Yes
Win32s No
Import Library rpcrt4.lib
Header File rpcdce.h
Unicode
Platform Notes None

RpcServerUseAllProtseqs
Windows NT Yes
Win95 Yes
Win32s No
Import Library rpcrt4.lib
Header File rpcdce.h

Unicode
Platform Notes None

RpcServerUseAllProtseqsIf
Windows NT Yes
Win95 Yes
Win32s No
Import Library rpcrt4.lib
Header File rpcdce.h
Unicode
Platform Notes None

RpcServerUseProtseq
Windows NT Yes
Win95 Yes
Win32s No
Import Library rpcrt4.lib
Header File rpcdce.h
Unicode
Platform Notes None

RpcServerUseProtseqEp
Windows NT Yes
Win95 Yes
Win32s No
Import Library rpcrt4.lib
Header File rpcdce.h
Unicode
Platform Notes None

RpcServerUseProtseqIf
Windows NT Yes
Win95 Yes
Win32s No
Import Library rpcrt4.lib
Header File rpcdce.h
Unicode
Platform Notes None

RpcSmAllocate
Windows NT Yes
Win95 Yes

Win32s Yes
Import Library rpcrt4.lib
Header File rpcndr.h
Unicode No
Platform Notes None

RpcSmClientFree
Windows NT Yes
Win95 Yes
Win32s Yes
Import Library rpcrt4.lib
Header File rpcndr.h
Unicode No
Platform Notes None

RpcSmDestroyClientContext
Windows NT New
Win95 Yes
Win32s No
Import Library rpcrt4.lib
Header File rpcndr.h
Unicode No
Platform Notes None

RpcSmDisableAllocate
Windows NT New
Win95 Yes
Win32s No
Import Library rpcrt4.lib
Header File rpcndr.h
Unicode No
Platform Notes None

RpcSmEnableAllocate
Windows NT New
Win95 Yes
Win32s No
Import Library rpcrt4.lib
Header File rpcndr.h
Unicode No
Platform Notes None

RpcSmFree
Windows NT New
Win95 Yes
Win32s No
Import Library rpcrt4.lib
Header File rpcndr.h
Unicode No
Platform Notes None

RpcSmGetThreadHandle
Windows NT Yes
Win95 Yes
Win32s
Import Library rpcrt4.lib
Header File rpcndr.h
Unicode No
Platform Notes None

RpcSmSetClientAllocFree
Windows NT New
Win95 Yes
Win32s No
Import Library rpcrt4.lib
Header File rpcndr.h
Unicode No
Platform Notes None

RpcSmSetThreadHandle
Windows NT Yes
Win95 Yes
Win32s
Import Library rpcrt4.lib
Header File rpcndr.h
Unicode No
Platform Notes None

RpcSmSwapClientAllocFree
Windows NT New
Win95 Yes
Win32s No
Import Library rpcrt4.lib
Header File rpcndr.h
Unicode No

Platform Notes None

RpcSsAllocate
Windows NT Yes
Win95 Yes
Win32s
Import Library rpcrt4.lib
Header File rpcndr.h
Unicode No
Platform Notes None

RpcSsDestroyClientContext
Windows NT Yes
Win95 Yes
Win32s No
Import Library rpcrt4.lib
Header File rpcndr.h
Unicode No
Platform Notes None

RpcSsDisableAllocate
Windows NT Yes
Win95 Yes
Win32s
Import Library rpcrt4.lib
Header File rpcndr.h
Unicode No
Platform Notes None

RpcSsEnableAllocate
Windows NT Yes
Win95 Yes
Win32s
Import Library rpcrt4.lib
Header File rpcndr.h
Unicode No
Platform Notes None

RpcSsFree
Windows NT Yes
Win95 Yes
Win32s

Import Library rpcrt4.lib
Header File rpcndr.h
Unicode No
Platform Notes None

RpcSsGetThreadHandle
Windows NT Yes
Win95 Yes
Win32s
Import Library rpcrt4.lib
Header File rpcndr.h
Unicode No
Platform Notes None

RpcSsSetClientAllocFree
Windows NT New
Win95 Yes
Win32s No
Import Library rpcrt4.lib
Header File rpcndr.h
Unicode No
Platform Notes None

RpcSsSetThreadHandle
Windows NT Yes
Win95 Yes
Win32s
Import Library rpcrt4.lib
Header File rpcndr.h
Unicode No
Platform Notes None

RpcSsSwapClientAllocFree
Windows NT New
Win95 Yes
Win32s No
Import Library rpcrt4.lib
Header File rpcndr.h
Unicode No
Platform Notes None

RpcStringBindingCompose
Windows NT Yes
Win95 Yes
Win32s No
Import Library rpcrt4.lib
Header File rpcdce.h
Unicode WinNT
Platform Notes None

RpcStringBindingParse
Windows NT Yes
Win95 Yes
Win32s No
Import Library rpcrt4.lib
Header File rpcdce.h
Unicode WinNT
Platform Notes None

RpcStringFree
Windows NT Yes
Win95 Yes
Win32s No
Import Library rpcrt4.lib
Header File rpcdce.h
Unicode WinNT
Platform Notes None

RpcTestCancel
Windows NT Yes
Win95 No
Win32s No
Import Library rpcrt4.lib
Header File rpcdce.h
Unicode WinNT
Platform Notes None

RpcTryExcept
Windows NT New
Win95 Yes
Win32s No
Import Library
Header File rpc.h
Unicode No

Platform Notes None

RpcTryFinally
Windows NT New
Win95 Yes
Win32s No
Import Library
Header File rpc.h
Unicode No
Platform Notes None

RxNetAccessAdd
Windows NT Yes
Win95 No
Win32s No
Import Library netapi32.lib
Header File lmaccess.h
Unicode WinNT
Platform Notes All LanMan APIs are

UNICODE only

RxNetAccessDel
Windows NT Yes
Win95 No
Win32s No
Import Library netapi32.lib
Header File lmaccess.h
Unicode WinNT
Platform Notes All LanMan APIs are

UNICODE only

RxNetAccessEnum
Windows NT Yes
Win95 No
Win32s No
Import Library netapi32.lib
Header File lmaccess.h
Unicode WinNT
Platform Notes All LanMan APIs are

UNICODE only

RxNetAccessGetInfo
Windows NT Yes

Win95 No
Win32s No
Import Library netapi32.lib
Header File lmaccess.h
Unicode WinNT
Platform Notes All LanMan APIs are

UNICODE only

RxNetAccessGetUserPerms
Windows NT Yes
Win95 No
Win32s No
Import Library netapi32.lib
Header File lmaccess.h
Unicode WinNT
Platform Notes All LanMan APIs are

UNICODE only

RxNetAccessSetInfo
Windows NT Yes
Win95 No
Win32s No
Import Library netapi32.lib
Header File lmaccess.h
Unicode WinNT
Platform Notes All LanMan APIs are

UNICODE only

RxRemoteApi
Windows NT Yes
Win95 No
Win32s No
Import Library netapi32.lib
Header File lmremutl.h
Unicode WinNT
Platform Notes All LanMan APIs are

UNICODE only

SafeArrayAccessData
Windows NT Yes
Win95 Yes
Win32s Yes
Import Library oleaut32.lib
Header File oleauto.h

Unicode No
Platform Notes None

SafeArrayAllocData
Windows NT Yes
Win95 Yes
Win32s Yes
Import Library oleaut32.lib
Header File oleauto.h
Unicode No
Platform Notes None

SafeArrayAllocDescriptor
Windows NT Yes
Win95 Yes
Win32s Yes
Import Library oleaut32.lib
Header File oleauto.h
Unicode No
Platform Notes None

SafeArrayCopy
Windows NT Yes
Win95 Yes
Win32s Yes
Import Library oleaut32.lib
Header File oleauto.h
Unicode No
Platform Notes None

SafeArrayCreate
Windows NT Yes
Win95 Yes
Win32s Yes
Import Library oleaut32.lib
Header File oleauto.h
Unicode No
Platform Notes None

SafeArrayDestroy
Windows NT Yes
Win95 Yes
Win32s Yes

Import Library oleaut32.lib
Header File oleauto.h
Unicode No
Platform Notes None

SafeArrayDestroyData
Windows NT Yes
Win95 Yes
Win32s Yes
Import Library oleaut32.lib
Header File oleauto.h
Unicode No
Platform Notes None

SafeArrayDestroyDescriptor
Windows NT Yes
Win95 Yes
Win32s Yes
Import Library oleaut32.lib
Header File oleauto.h
Unicode No
Platform Notes None

SafeArrayGetDim
Windows NT Yes
Win95 Yes
Win32s Yes
Import Library oleaut32.lib
Header File oleauto.h
Unicode No
Platform Notes None

SafeArrayGetElement
Windows NT Yes
Win95 Yes
Win32s Yes
Import Library oleaut32.lib
Header File oleauto.h
Unicode No
Platform Notes None

SafeArrayGetElemsize
Windows NT Yes
Win95 Yes
Win32s Yes
Import Library oleaut32.lib
Header File oleauto.h
Unicode No
Platform Notes None

SafeArrayGetLBound
Windows NT Yes
Win95 Yes
Win32s Yes
Import Library oleaut32.lib
Header File oleauto.h
Unicode No
Platform Notes None

SafeArrayGetUBound
Windows NT Yes
Win95 Yes
Win32s Yes
Import Library oleaut32.lib
Header File oleauto.h
Unicode No
Platform Notes None

SafeArrayLock
Windows NT Yes
Win95 Yes
Win32s Yes
Import Library oleaut32.lib
Header File oleauto.h
Unicode No
Platform Notes None

SafeArrayPtrOfIndex
Windows NT Yes
Win95 Yes
Win32s Yes
Import Library oleaut32.lib
Header File oleauto.h
Unicode No

Platform Notes None

SafeArrayPutElement
Windows NT Yes
Win95 Yes
Win32s Yes
Import Library oleaut32.lib
Header File oleauto.h
Unicode No
Platform Notes None

SafeArrayRedim
Windows NT Yes
Win95 Yes
Win32s Yes
Import Library oleaut32.lib
Header File oleauto.h
Unicode No
Platform Notes None

SafeArrayUnaccessData
Windows NT Yes
Win95 Yes
Win32s Yes
Import Library oleaut32.lib
Header File oleauto.h
Unicode No
Platform Notes None

SafeArrayUnlock
Windows NT Yes
Win95 Yes
Win32s Yes
Import Library oleaut32.lib
Header File oleauto.h
Unicode No
Platform Notes None

SaveDC
Windows NT Yes
Win95 Yes
Win32s Yes
Import Library gdi32.lib

Header File wingdi.h
Unicode No
Platform Notes Windows 95: int == 16 bits

ScaleViewportExtEx
Windows NT Yes
Win95 Yes
Win32s Yes
Import Library gdi32.lib
Header File wingdi.h
Unicode No
Platform Notes Windows 95: 16-bit

coordinates only

ScaleWindowExtEx
Windows NT Yes
Win95 Yes
Win32s Yes
Import Library gdi32.lib
Header File wingdi.h
Unicode No
Platform Notes Windows 95: 16-bit

coordinates only

ScheduleJob
Windows NT Yes
Win95 Yes
Win32s No
Import Library winspool.lib
Header File winspool.h
Unicode No
Platform Notes None

ScreenSaverConfigureDialog
Windows NT Yes
Win95 Yes
Win32s No
Import Library scrnsave.lib
Header File scrnsave.h
Unicode No
Platform Notes None

ScreenSaverProc
Windows NT Yes
Win95 Yes
Win32s No
Import Library scrnsave.lib
Header File scrnsave.h
Unicode No
Platform Notes None

ScreenToClient
Windows NT Yes
Win95 Yes
Win32s Yes
Import Library user32.lib
Header File winuser.h
Unicode No
Platform Notes None

ScrollConsoleScreenBuffer
Windows NT Yes
Win95 Yes
Win32s No
Import Library kernel32.lib
Header File wincon.h
Unicode WinNT
Platform Notes None

ScrollDC
Windows NT Yes
Win95 Yes
Win32s Yes
Import Library user32.lib
Header File winuser.h
Unicode No
Platform Notes None

ScrollWindow
Windows NT Yes
Win95 Yes
Win32s Yes
Import Library user32.lib
Header File winuser.h
Unicode No

Platform Notes None

ScrollWindowEx
Windows NT Yes
Win95 Yes
Win32s Yes
Import Library user32.lib
Header File winuser.h
Unicode No
Platform Notes None

SearchPath
Windows NT Yes
Win95 Yes
Win32s Yes
Import Library kernel32.lib
Header File winbase.h
Unicode WinNT
Platform Notes None

select
Windows NT Yes
Win95 Yes
Win32s Yes
Import Library wsock32.lib
Header File winsock.h
Unicode No
Platform Notes None

SelectClipPath
Windows NT Yes
Win95 Yes
Win32s No
Import Library gdi32.lib
Header File wingdi.h
Unicode No
Platform Notes Windows 95: 16-bit

coordinates only

SelectClipRgn
Windows NT Yes
Win95 Yes
Win32s Yes

Import Library gdi32.lib
Header File wingdi.h
Unicode No
Platform Notes Windows 95: 16-bit

coordinates only

SelectObject
Windows NT Yes
Win95 Yes
Win32s Yes
Import Library gdi32.lib
Header File wingdi.h
Unicode No
Platform Notes

SelectPalette
Windows NT Yes
Win95 Yes
Win32s Yes
Import Library gdi32.lib
Header File wingdi.h
Unicode No
Platform Notes Windows 95: int == 16 bits

send
Windows NT Yes
Win95 Yes
Win32s Yes
Import Library wsock32.lib
Header File winsock.h
Unicode No
Platform Notes None

SendDlgItemMessage
Windows NT Yes
Win95 Yes
Win32s Yes
Import Library user32.lib
Header File winuser.h
Unicode WinNT
Platform Notes None

SendMessage

Windows NT Yes
Win95 Yes
Win32s Yes
Import Library user32.lib
Header File winuser.h
Unicode WinNT
Platform Notes None

SendMessageCallback
Windows NT Yes
Win95 Yes
Win32s No
Import Library user32.lib
Header File winuser.h
Unicode WinNT
Platform Notes None

SendMessageTimeout
Windows NT Yes
Win95 Yes
Win32s No
Import Library user32.lib
Header File winuser.h
Unicode WinNT
Platform Notes None

SendNotifyMessage
Windows NT Yes
Win95 Yes
Win32s No
Import Library user32.lib
Header File winuser.h
Unicode WinNT
Platform Notes None

sendto
Windows NT Yes
Win95 Yes
Win32s Yes
Import Library wsock32.lib
Header File winsock.h
Unicode No
Platform Notes None

ServiceMain
Windows NT Yes
Win95 No
Win32s No
Import Library
Header File
Unicode No
Platform Notes None

SetAbortProc
Windows NT Yes
Win95 Yes
Win32s Yes
Import Library gdi32.lib
Header File wingdi.h
Unicode No
Platform Notes Windows 95: int == 16 bits

SetAclInformation
Windows NT Yes
Win95 No
Win32s No
Import Library advapi32.lib
Header File winbase.h
Unicode No
Platform Notes None

SetActiveWindow
Windows NT Yes
Win95 Yes
Win32s Yes
Import Library user32.lib
Header File winuser.h
Unicode No
Platform Notes None

SetArcDirection
Windows NT Yes
Win95 No
Win32s No
Import Library gdi32.lib
Header File wingdi.h

Unicode No
Platform Notes Windows 95: 16-bit

coordinates only

SetBitmapBits
Windows NT Yes
Win95 Yes
Win32s Yes
Import Library gdi32.lib
Header File wingdi.h
Unicode No
Platform Notes Windows 95: int == 16 bits

SetBitmapDimensionEx
Windows NT Yes
Win95 Yes
Win32s Yes
Import Library gdi32.lib
Header File wingdi.h
Unicode No
Platform Notes Windows 95: int == 16 bits

SetBkColor
Windows NT Yes
Win95 Yes
Win32s Yes
Import Library gdi32.lib
Header File wingdi.h
Unicode No
Platform Notes Windows 95: int == 16 bits

SetBkMode
Windows NT Yes
Win95 Yes
Win32s Yes
Import Library gdi32.lib
Header File wingdi.h
Unicode No
Platform Notes Windows 95: int == 16 bits

SetBoundsRect
Windows NT Yes

Win95 Yes
Win32s Yes
Import Library gdi32.lib
Header File wingdi.h
Unicode No
Platform Notes Windows 95: 16-bit

coordinates only

SetBrushOrgEx
Windows NT Yes
Win95 Yes
Win32s Yes
Import Library gdi32.lib
Header File wingdi.h
Unicode No
Platform Notes Windows 95: 16-bit

coordinates only

SetCapture
Windows NT Yes
Win95 Yes
Win32s Yes
Import Library user32.lib
Header File winuser.h
Unicode No
Platform Notes None

SetCaretBlinkTime
Windows NT Yes
Win95 Yes
Win32s Yes
Import Library user32.lib
Header File winuser.h
Unicode No
Platform Notes None

SetCaretPos
Windows NT Yes
Win95 Yes
Win32s Yes
Import Library user32.lib
Header File winuser.h
Unicode No

Platform Notes None

SetClassLong
Windows NT Yes
Win95 Yes
Win32s Yes
Import Library user32.lib
Header File winuser.h
Unicode WinNT
Platform Notes None

SetClassWord
Windows NT Yes
Win95 Yes
Win32s Yes
Import Library user32.lib
Header File winuser.h
Unicode No
Platform Notes None

SetClipboardData
Windows NT Yes
Win95 Yes
Win32s Yes
Import Library user32.lib
Header File winuser.h
Unicode No
Platform Notes None

SetClipboardViewer
Windows NT Yes
Win95 Yes
Win32s Yes
Import Library user32.lib
Header File winuser.h
Unicode No
Platform Notes None

TranslateMessage
Windows NT Yes
Win95 Yes
Win32s Yes
Import Library user32.lib
Header File winuser.h
Unicode No
Platform Notes None

TransmitCommChar
Windows NT Yes
Win95 Yes
Win32s No
Import Library kernel32.lib
Header File winbase.h
Unicode No
Platform Notes None

TransmitFile
Windows NT Yes
Win95 No
Win32s No
Import Library wsock32.lib
Header File winsock.h
Unicode No
Platform Notes None

tree_into_ndr
Windows NT Yes
Win95 No
Win32s No
Import Library rpcrt4.lib
Header File rpcndr.h
Unicode
Platform Notes None

tree_peek_ndr
Windows NT Yes
Win95 No
Win32s No
Import Library rpcrt4.lib
Header File rpcndr.h
Unicode

Platform Notes None

tree_size_ndr
Windows NT Yes
Win95 No
Win32s No
Import Library rpcrt4.lib
Header File rpcndr.h
Unicode
Platform Notes None

UInt32x32To64
Windows NT Yes
Win95 Yes
Win32s No
Import Library
Header File winnt.h
Unicode No
Platform Notes None

UnhandledExceptionFilter
Windows NT Yes
Win95 Yes
Win32s Yes
Import Library kernel32.lib
Header File winbase.h
Unicode No
Platform Notes None

UnhookWindowsHook
Windows NT Yes
Win95 Yes
Win32s Yes
Import Library user32.lib
Header File winuser.h
Unicode No
Platform Notes None

UnhookWindowsHookEx
Windows NT Yes
Win95 Yes
Win32s Yes
Import Library user32.lib

Header File winuser.h
Unicode No
Platform Notes None

UnionRect
Windows NT Yes
Win95 Yes
Win32s Yes
Import Library user32.lib
Header File winuser.h
Unicode No
Platform Notes None

UnloadKeyboardLayout
Windows NT Yes
Win95 Yes
Win32s No
Import Library user32.lib
Header File winuser.h
Unicode No
Platform Notes None

UnlockFile
Windows NT Yes
Win95 Yes
Win32s Yes
Import Library kernel32.lib
Header File winbase.h
Unicode No
Platform Notes None

UnlockFileEx
Windows NT Yes
Win95 No
Win32s No
Import Library kernel32.lib
Header File winbase.h
Unicode No
Platform Notes None

UnlockResource
Windows NT Yes

Win95 Yes
Win32s Yes
Import Library
Header File winbase.h
Unicode No
Platform Notes None

UnlockSegment
Windows NT Yes
Win95 Yes
Win32s Yes
Import Library
Header File winbase.h
Unicode No
Platform Notes None

UnlockServiceDatabase
Windows NT Yes
Win95 No
Win32s No
Import Library advapi32.lib
Header File winsvc.h
Unicode No
Platform Notes None

UnmapViewOfFile
Windows NT Yes
Win95 Yes
Win32s Yes
Import Library kernel32.lib
Header File winbase.h
Unicode No
Platform Notes None

UnpackDDElParam
Windows NT Yes
Win95 Yes
Win32s Yes
Import Library user32.lib
Header File dde.h
Unicode No
Platform Notes None

UnrealizeObject
Windows NT Yes
Win95 Yes
Win32s Yes
Import Library gdi32.lib
Header File wingdi.h
Unicode No
Platform Notes Windows 95: int == 16 bits

UnregisterClass
Windows NT Yes
Win95 Yes
Win32s Yes
Import Library user32.lib
Header File winuser.h
Unicode WinNT
Platform Notes None

UnregisterHotKey
Windows NT Yes
Win95 Yes
Win32s No
Import Library user32.lib
Header File winuser.h
Unicode No
Platform Notes None

UpdateColors
Windows NT Yes
Win95 Yes
Win32s Yes
Import Library gdi32.lib
Header File wingdi.h
Unicode No
Platform Notes Windows 95: int == 16 bits

UpdateResource
Windows NT Yes
Win95 No
Win32s No
Import Library kernel32.lib
Header File winbase.h

Unicode WinNT
Platform Notes None

UpdateWindow
Windows NT Yes
Win95 Yes
Win32s Yes
Import Library user32.lib
Header File winuser.h
Unicode No
Platform Notes None

UuidCompare
Windows NT New
Win95 Yes
Win32s No
Import Library rpcrt4.lib
Header File rpcdce.h
Unicode No
Platform Notes None

UuidCreate
Windows NT Yes
Win95 No
Win32s No
Import Library rpcrt4.lib
Header File rpcdce.h
Unicode No
Platform Notes None

UuidCreateNil
Windows NT New
Win95 Yes
Win32s No
Import Library rpcrt4.lib
Header File rpcdce.h
Unicode No
Platform Notes None

UuidEqual
Windows NT New
Win95 Yes

Win32s No
Import Library rpcrt4.lib
Header File rpcdce.h
Unicode No
Platform Notes None

UuidFromString
Windows NT Yes
Win95 No
Win32s No
Import Library rpcrt4.lib
Header File rpcdce.h
Unicode WinNT
Platform Notes None

UuidHash
Windows NT New
Win95 Yes
Win32s No
Import Library rpcrt4.lib
Header File rpcdce.h
Unicode No
Platform Notes None

UuidIsNil
Windows NT New
Win95 Yes
Win32s No
Import Library rpcrt4.lib
Header File rpcdce.h
Unicode No
Platform Notes None

UuidToString
Windows NT Yes
Win95 No
Win32s No
Import Library rpcrt4.lib
Header File rpcdce.h
Unicode WinNT
Platform Notes None

ValidateRect
Windows NT Yes
Win95 Yes
Win32s Yes
Import Library user32.lib
Header File winuser.h
Unicode No
Platform Notes None

ValidateRgn
Windows NT Yes
Win95 Yes
Win32s Yes
Import Library user32.lib
Header File winuser.h
Unicode No
Platform Notes None

VarBoolFromCy
Windows NT Yes
Win95 Yes
Win32s Yes
Import Library oleaut32.lib
Header File oleauto.h
Unicode No
Platform Notes None

VarBoolFromDate
Windows NT Yes
Win95 Yes
Win32s Yes
Import Library oleaut32.lib
Header File oleauto.h
Unicode No
Platform Notes None

VarBoolFromDisp
Windows NT Yes
Win95 Yes
Win32s Yes
Import Library oleaut32.lib
Header File oleauto.h
Unicode No

Platform Notes None

VarBoolFromI2
Windows NT Yes
Win95 Yes
Win32s Yes
Import Library oleaut32.lib
Header File oleauto.h
Unicode No
Platform Notes None

VarBoolFromI4
Windows NT Yes
Win95 Yes
Win32s Yes
Import Library oleaut32.lib
Header File oleauto.h
Unicode No
Platform Notes None

VarBoolFromR4
Windows NT Yes
Win95 Yes
Win32s Yes
Import Library oleaut32.lib
Header File oleauto.h
Unicode No
Platform Notes None

VarBoolFromR8
Windows NT Yes
Win95 Yes
Win32s Yes
Import Library oleaut32.lib
Header File oleauto.h
Unicode No
Platform Notes None

VarBoolFromStr
Windows NT Yes
Win95 Yes
Win32s Yes

Import Library oleaut32.lib
Header File oleauto.h
Unicode WinNT; Win95; Win32s
Platform Notes All 32-bit OLE Apis are

UNICODE only

VarBoolFromUI1
Windows NT Yes
Win95 Yes
Win32s Yes
Import Library oleaut32.lib
Header File oleauto.h
Unicode No
Platform Notes None

VarBstrFromBool
Windows NT Yes
Win95 Yes
Win32s Yes
Import Library oleaut32.lib
Header File oleauto.h
Unicode WinNT; Win95; Win32s
Platform Notes All 32-bit OLE Apis are

UNICODE only

VarBstrFromCy
Windows NT Yes
Win95 Yes
Win32s Yes
Import Library oleaut32.lib
Header File oleauto.h
Unicode WinNT; Win95; Win32s
Platform Notes All 32-bit OLE Apis are

UNICODE only

VarBstrFromDate
Windows NT Yes
Win95 Yes
Win32s Yes
Import Library oleaut32.lib
Header File oleauto.h
Unicode WinNT; Win95; Win32s
Platform Notes All 32-bit OLE Apis are

UNICODE only

VarBstrFromDisp
Windows NT Yes
Win95 Yes
Win32s Yes
Import Library oleaut32.lib
Header File oleauto.h
Unicode WinNT; Win95; Win32s
Platform Notes All 32-bit OLE Apis are

UNICODE only

VarBstrFromI2
Windows NT Yes
Win95 Yes
Win32s Yes
Import Library oleaut32.lib
Header File oleauto.h
Unicode WinNT; Win95; Win32s
Platform Notes All 32-bit OLE Apis are

UNICODE only

VarBstrFromI4
Windows NT Yes
Win95 Yes
Win32s Yes
Import Library oleaut32.lib
Header File oleauto.h
Unicode WinNT; Win95; Win32s
Platform Notes All 32-bit OLE Apis are

UNICODE only

VarBstrFromR4
Windows NT Yes
Win95 Yes
Win32s Yes
Import Library oleaut32.lib
Header File oleauto.h
Unicode WinNT; Win95; Win32s
Platform Notes All 32-bit OLE Apis are

UNICODE only

VarBstrFromR8

Windows NT Yes
Win95 Yes
Win32s Yes
Import Library oleaut32.lib
Header File oleauto.h
Unicode WinNT; Win95; Win32s
Platform Notes All 32-bit OLE Apis are

UNICODE only

VarBstrFromUI1
Windows NT Yes
Win95 Yes
Win32s Yes
Import Library oleaut32.lib
Header File oleauto.h
Unicode WinNT; Win95; Win32s
Platform Notes All 32-bit OLE Apis are

UNICODE only

VarCyFromBool
Windows NT Yes
Win95 Yes
Win32s Yes
Import Library oleaut32.lib
Header File oleauto.h
Unicode No
Platform Notes None

VarCyFromDate
Windows NT Yes
Win95 Yes
Win32s Yes
Import Library oleaut32.lib
Header File oleauto.h
Unicode No
Platform Notes None

VarCyFromDisp
Windows NT Yes
Win95 Yes
Win32s Yes
Import Library oleaut32.lib
Header File oleauto.h

Unicode No
Platform Notes None

VarCyFromI2
Windows NT Yes
Win95 Yes
Win32s Yes
Import Library oleaut32.lib
Header File oleauto.h
Unicode No
Platform Notes None

VarCyFromI4
Windows NT Yes
Win95 Yes
Win32s Yes
Import Library oleaut32.lib
Header File oleauto.h
Unicode No
Platform Notes None

VarCyFromR4
Windows NT Yes
Win95 Yes
Win32s Yes
Import Library oleaut32.lib
Header File oleauto.h
Unicode No
Platform Notes None

VarCyFromR8
Windows NT Yes
Win95 Yes
Win32s Yes
Import Library oleaut32.lib
Header File oleauto.h
Unicode No
Platform Notes None

VarCyFromStr
Windows NT Yes
Win95 Yes
Win32s Yes

Import Library oleaut32.lib
Header File oleauto.h
Unicode WinNT; Win95; Win32s
Platform Notes All 32-bit OLE Apis are

UNICODE only

VarCyFromUI1
Windows NT Yes
Win95 Yes
Win32s Yes
Import Library oleaut32.lib
Header File oleauto.h
Unicode No
Platform Notes None

VarDateFromBool
Windows NT Yes
Win95 Yes
Win32s Yes
Import Library oleaut32.lib
Header File oleauto.h
Unicode No
Platform Notes None

VarDateFromCy
Windows NT Yes
Win95 Yes
Win32s Yes
Import Library oleaut32.lib
Header File oleauto.h
Unicode No
Platform Notes None

VarDateFromDisp
Windows NT Yes
Win95 Yes
Win32s Yes
Import Library oleaut32.lib
Header File oleauto.h
Unicode No
Platform Notes None

VarDateFromI2
Windows NT Yes
Win95 Yes
Win32s Yes
Import Library oleaut32.lib
Header File oleauto.h
Unicode No
Platform Notes None

VarDateFromI4
Windows NT Yes
Win95 Yes
Win32s Yes
Import Library oleaut32.lib
Header File oleauto.h
Unicode No
Platform Notes None

VarDateFromR4
Windows NT Yes
Win95 Yes
Win32s Yes
Import Library oleaut32.lib
Header File oleauto.h
Unicode No
Platform Notes None

VarDateFromR8
Windows NT Yes
Win95 Yes
Win32s Yes
Import Library oleaut32.lib
Header File oleauto.h
Unicode No
Platform Notes None

VarDateFromStr
Windows NT Yes
Win95 Yes
Win32s Yes
Import Library oleaut32.lib
Header File oleauto.h
Unicode WinNT; Win95; Win32s

Platform Notes All 32-bit OLE Apis are
UNICODE only

VarDateFromUI1
Windows NT Yes
Win95 Yes
Win32s Yes
Import Library oleaut32.lib
Header File oleauto.h
Unicode No
Platform Notes None

VarI2FromBool
Windows NT Yes
Win95 Yes
Win32s Yes
Import Library oleaut32.lib
Header File oleauto.h
Unicode No
Platform Notes None

VarI2FromCy
Windows NT Yes
Win95 Yes
Win32s Yes
Import Library oleaut32.lib
Header File oleauto.h
Unicode No
Platform Notes None

VarI2FromDate
Windows NT Yes
Win95 Yes
Win32s Yes
Import Library oleaut32.lib
Header File oleauto.h
Unicode No
Platform Notes None

VarI2FromDisp
Windows NT Yes
Win95 Yes
Win32s Yes

Import Library oleaut32.lib
Header File oleauto.h
Unicode No
Platform Notes None

VarI2FromI4
Windows NT Yes
Win95 Yes
Win32s Yes
Import Library oleaut32.lib
Header File oleauto.h
Unicode No
Platform Notes None

VarI2FromR4
Windows NT Yes
Win95 Yes
Win32s Yes
Import Library oleaut32.lib
Header File oleauto.h
Unicode No
Platform Notes None

VarI2FromR8
Windows NT Yes
Win95 Yes
Win32s Yes
Import Library oleaut32.lib
Header File oleauto.h
Unicode No
Platform Notes None

VarI2FromStr
Windows NT Yes
Win95 Yes
Win32s Yes
Import Library oleaut32.lib
Header File oleauto.h
Unicode WinNT; Win95; Win32s
Platform Notes All 32-bit OLE Apis are

UNICODE only

VarI2FromUI1

Windows NT Yes
Win95 Yes
Win32s Yes
Import Library oleaut32.lib
Header File oleauto.h
Unicode No
Platform Notes None

VarI4FromBool
Windows NT Yes
Win95 Yes
Win32s Yes
Import Library oleaut32.lib
Header File oleauto.h
Unicode No
Platform Notes None

VarI4FromCy
Windows NT Yes
Win95 Yes
Win32s Yes
Import Library oleaut32.lib
Header File oleauto.h
Unicode No
Platform Notes None

VarI4FromDate
Windows NT Yes
Win95 Yes
Win32s Yes
Import Library oleaut32.lib
Header File oleauto.h
Unicode No
Platform Notes None

VarI4FromDisp
Windows NT Yes
Win95 Yes
Win32s Yes
Import Library oleaut32.lib
Header File oleauto.h
Unicode No
Platform Notes None

VarI4FromI2
Windows NT Yes
Win95 Yes
Win32s Yes
Import Library oleaut32.lib
Header File oleauto.h
Unicode No
Platform Notes None

VarI4FromR4
Windows NT Yes
Win95 Yes
Win32s Yes
Import Library oleaut32.lib
Header File oleauto.h
Unicode No
Platform Notes None

VarI4FromR8
Windows NT Yes
Win95 Yes
Win32s Yes
Import Library oleaut32.lib
Header File oleauto.h
Unicode No
Platform Notes None

VarI4FromStr
Windows NT Yes
Win95 Yes
Win32s Yes
Import Library oleaut32.lib
Header File oleauto.h
Unicode WinNT; Win95; Win32s
Platform Notes All 32-bit OLE Apis are

UNICODE only

VarI4FromUI1
Windows NT Yes
Win95 Yes
Win32s Yes
Import Library oleaut32.lib

Header File oleauto.h
Unicode No
Platform Notes None

VariantChangeType
Windows NT Yes
Win95 Yes
Win32s Yes
Import Library oleaut32.lib
Header File oleauto.h
Unicode No
Platform Notes None

VariantChangeTypeEx
Windows NT Yes
Win95 Yes
Win32s Yes
Import Library oleaut32.lib
Header File oleauto.h
Unicode No
Platform Notes None

VariantClear
Windows NT Yes
Win95 Yes
Win32s Yes
Import Library oleaut32.lib
Header File oleauto.h
Unicode No
Platform Notes None

VariantCopy
Windows NT Yes
Win95 Yes
Win32s Yes
Import Library oleaut32.lib
Header File oleauto.h
Unicode No
Platform Notes None

VariantCopyInd
Windows NT Yes
Win95 Yes

Win32s Yes
Import Library oleaut32.lib
Header File oleauto.h
Unicode No
Platform Notes None

VariantInit
Windows NT Yes
Win95 Yes
Win32s Yes
Import Library oleaut32.lib
Header File oleauto.h
Unicode No
Platform Notes None

VariantTimeToDosDateTime
Windows NT Yes
Win95 Yes
Win32s Yes
Import Library oleaut32.lib
Header File oleauto.h
Unicode No
Platform Notes None

VarR4FromBool
Windows NT Yes
Win95 Yes
Win32s Yes
Import Library oleaut32.lib
Header File oleauto.h
Unicode No
Platform Notes None

VarR4FromCy
Windows NT Yes
Win95 Yes
Win32s Yes
Import Library oleaut32.lib
Header File oleauto.h
Unicode No
Platform Notes None

VarR4FromDate
Windows NT Yes
Win95 Yes
Win32s Yes
Import Library oleaut32.lib
Header File oleauto.h
Unicode No
Platform Notes None

VarR4FromDisp
Windows NT Yes
Win95 Yes
Win32s Yes
Import Library oleaut32.lib
Header File oleauto.h
Unicode No
Platform Notes None

VarR4FromI2
Windows NT Yes
Win95 Yes
Win32s Yes
Import Library oleaut32.lib
Header File oleauto.h
Unicode No
Platform Notes None

VarR4FromI4
Windows NT Yes
Win95 Yes
Win32s Yes
Import Library oleaut32.lib
Header File oleauto.h
Unicode No
Platform Notes None

VarR4FromR8
Windows NT Yes
Win95 Yes
Win32s Yes
Import Library oleaut32.lib
Header File oleauto.h
Unicode No

Platform Notes None

VarR4FromStr
Windows NT Yes
Win95 Yes
Win32s Yes
Import Library oleaut32.lib
Header File oleauto.h
Unicode WinNT; Win95; Win32s
Platform Notes All 32-bit OLE Apis are

UNICODE only

VarR4FromUI1
Windows NT Yes
Win95 Yes
Win32s Yes
Import Library oleaut32.lib
Header File oleauto.h
Unicode No
Platform Notes None

VarR8FromBool
Windows NT Yes
Win95 Yes
Win32s Yes
Import Library oleaut32.lib
Header File oleauto.h
Unicode No
Platform Notes None

VarR8FromCy
Windows NT Yes
Win95 Yes
Win32s Yes
Import Library oleaut32.lib
Header File oleauto.h
Unicode No
Platform Notes None

VarR8FromDate
Windows NT Yes
Win95 Yes

Win32s Yes
Import Library oleaut32.lib
Header File oleauto.h
Unicode No
Platform Notes None

VarR8FromDisp
Windows NT Yes
Win95 Yes
Win32s Yes
Import Library oleaut32.lib
Header File oleauto.h
Unicode No
Platform Notes None

VarR8FromI2
Windows NT Yes
Win95 Yes
Win32s Yes
Import Library oleaut32.lib
Header File oleauto.h
Unicode No
Platform Notes None

VarR8FromI4
Windows NT Yes
Win95 Yes
Win32s Yes
Import Library oleaut32.lib
Header File oleauto.h
Unicode No
Platform Notes None

VarR8FromR4
Windows NT Yes
Win95 Yes
Win32s Yes
Import Library oleaut32.lib
Header File oleauto.h
Unicode No
Platform Notes None

VarR8FromStr
Windows NT Yes
Win95 Yes
Win32s Yes
Import Library oleaut32.lib
Header File oleauto.h
Unicode No
Platform Notes None

VarR8FromUI1
Windows NT Yes
Win95 Yes
Win32s Yes
Import Library oleaut32.lib
Header File oleauto.h
Unicode No
Platform Notes None

VarUI1FromBool
Windows NT Yes
Win95 Yes
Win32s Yes
Import Library oleaut32.lib
Header File oleauto.h
Unicode No
Platform Notes None

VarUI1FromCy
Windows NT Yes
Win95 Yes
Win32s Yes
Import Library oleaut32.lib
Header File oleauto.h
Unicode No
Platform Notes None

VarUI1FromDate
Windows NT Yes
Win95 Yes
Win32s Yes
Import Library oleaut32.lib
Header File oleauto.h
Unicode No

Platform Notes None

VarUI1FromDisp
Windows NT Yes
Win95 Yes
Win32s Yes
Import Library oleaut32.lib
Header File oleauto.h
Unicode No
Platform Notes None

VarUI1FromI2
Windows NT Yes
Win95 Yes
Win32s Yes
Import Library oleaut32.lib
Header File oleauto.h
Unicode No
Platform Notes None

VarUI1FromI4
Windows NT Yes
Win95 Yes
Win32s Yes
Import Library oleaut32.lib
Header File oleauto.h
Unicode No
Platform Notes None

VarUI1FromR4
Windows NT Yes
Win95 Yes
Win32s Yes
Import Library oleaut32.lib
Header File oleauto.h
Unicode No
Platform Notes None

Microsoft Win32 Developer’s Reference
You have requested information from the Microsoft Win32 Developer’s Reference. One or more of
these help files is not available on your system.

